

A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence

L. Grau-Roma, E. Crisci, M. Sibila, S. López-Soria, M. Nofrarias, M. Cortey,

L. Fraile, A. Olvera, J. Segalés

▶ To cite this version:

L. Grau-Roma, E. Crisci, M. Sibila, S. López-Soria, M. Nofrarias, et al.. A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multi-systemic wasting syndrome (PMWS) occurrence. Veterinary Microbiology, 2008, 128 (1-2), pp.23. 10.1016/j.vetmic.2007.09.007. hal-00532321

HAL Id: hal-00532321 https://hal.science/hal-00532321

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence

Authors: L. Grau-Roma, E. Crisci, M. Sibila, S. López-Soria, M. Nofrarias, M. Cortey, L. Fraile, A. Olvera, J. Segalés

PII:	S0378-1135(07)00449-X
DOI:	doi:10.1016/j.vetmic.2007.09.007
Reference:	VETMIC 3826
To appear in:	VETMIC
Received date:	20-7-2007
Revised date:	30-8-2007
Accepted date:	11-9-2007

weterinary Development Develop

Please cite this article as: Grau-Roma, L., Crisci, E., Sibila, M., López-Soria, S., Nofrarias, M., Cortey, M., Fraile, L., Olvera, A., Segalés, J., A proposal on porcine circovirus type 2 (PCV2) genotype definition and their relation with postweaning multisystemic wasting syndrome (PMWS) occurrence, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	A proposal on porcine circovirus type 2 (PCV2) genotype definition and their
2	relation with postweaning multisystemic wasting syndrome (PMWS) occurrence
3	
4	
5	Grau-Roma, L ^{1,2,*} , Crisci E ¹ , Sibila M ¹ , López-Soria S ¹ , Nofrarias M ¹ , Cortey M ³ ,
6	Fraile L ¹ , Olvera A ¹ , Segalés J ^{1,2}
7	
8	¹ Centre de Recerca en Sanitat animal (CReSA). Bellaterra. Spain.
9	² Dept. Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de
10	Barcelona (UAB). Bellaterra. Spain.
11	³ Bofill i Codina 14, Calella de P. (Girona).17210, Spain.
12	
13	*Corresponding Author: e-mail: <u>llgrau@cresa.uab.cat</u> , Phone: +34 93 581 32 84 Fax:
14	+34 93 581 44 90.
15	
16	Abstract
17	Porcine circovirus type 2 (PCV2) is the essential infectious agent of postweaning
18	multisystemic wasting syndrome (PMWS). Despite first sequencing studies did not find
19	any association between PCV2 sequences and PMWS occurrence, recent works have
20	suggested the opposite. In the present study, 87 open reading frame 2 (ORF2) sequences
21	obtained from pigs with different clinical conditions and coming from farms with
22	different PMWS status were analyzed. Results further confirmed the existence of two
23	genogroups and the definition of two PCV2 genotypes (1 and 2) is proposed. All
24	sequences included in genotype 1 came from pigs from PMWS affected farms, while all
25	sequences obtained from non-PMWS affected farms corresponded to genotype 2.

26	Moreover, infection of single pigs from PMWS affected farms harbouring both
27	genotypes is described. Present results suggest that PCV2 genotype 1 may potentially be
28	more pathogenic than PCV2 genotype 2.
29	
30	Keywords: porcine circovirus type 2 (PCV2), postweaning multisystemic wasting
31	syndrome (PMWS), genotype, phylogeny, epidemiology, pathogenicity
32	
33	Introduction
34	Porcine circovirus type 2 (PCV2) is recognized as the essential infectious agent of
35	postweaning multisystemic wasting syndrome (PMWS), which is considered to have a
36	severe economic impact on swine production (Segalés et al., 2005). The major clinical
37	sign of PMWS is wasting and growth retardation, but can also include pallor of the skin,
38	icterus, respiratory distress and diarrhoea (Harding and Clark, 1998).
39	
40	PCV2 belongs to the family circoviridae, genus cirvovirus, and is a small, non-
41	enveloped, single-stranded DNA virus containing a circular genome of 1767-1768 bp
42	(Hamel et al., 1998; Meehan et al., 1998; Mankertz et al., 2000). The genome contains
43	three open reading frames (ORF): ORF1 encodes the replicase (rep and rep') proteins
44	involved in virus replication (Mankertz et al., 1998), ORF2 encodes the capsid (cap)
45	protein (Nawagitgul et al., 2000) and ORF3 encodes a protein that is not essential for
46	PCV2 replication with potential apoptotic activities (Liu et al., 2005, 2006). It was
47	proposed that, since <i>cap</i> protein is the most variable PCV2 protein, a link between
48	capsid protein variation and pathogenicity of PCV2 could exist (Larochelle et al., 2002;
49	Todd et al., 2002). In addition, ORF2 has been shown as a good phylogenetic and

50	epidemiologic marker for PCV2, since it was able to reconstruct the same phylogenetic
51	tree as using the whole viral PCV2 genome (Olvera et al., 2007).

52

53	The first description of PMWS was in Canada in 1991 (Harding and Clark, 1998) and,
54	since then, it has been described in many parts around the world (Segalés et al., 2005).
55	Retrospective analysis in pig samples demonstrated that PCV2 infection in the livestock
56	occurred many years before the epizootic outbreaks described by mid and late 90s
57	(Magar et al., 2000; Rodriguez-Arrioja et al., 2003). This fact together with presence of
58	PCV2 in both PMWS and non-PMWS affected pigs and farms also suggested the
59	possible existence of differences in pathogenicity between different PCV2 strains.
60	Despite most sequencing studies did not find any relation between PCV2 sequences and
61	the occurrence of the disease (Larochelle et al., 2002; Pogranichniy et al., 2002;
62	Larochelle et al., 2003; de Boisseson et al., 2004; Grierson et al., 2004; Wen et al.,
63	2005; Martins Gomes de Castro et al., 2007), some recent studies and field observations
64	(Timmusk et al., 2005; Opriessnig et al., 2006; Cheung et al., 2007a, 2007b; Stevenson
65	et al., 2007; Woodbine et al., 2007) have suggested the opposite. Moreover,
66	epidemiological Danish and British studies strongly suggested that the spread of porcine
67	circovirus diseases (PCVDs) is consistent with the introduction of a "new infectious
68	agent" or a "new strain" of a known agent into a naïve population (Vigre et al., 2005;
69	Woodbine et al., 2007).
70	
71	Based on the controversy of potential different pathogenicity among PCV2 strains, the

- main objective of this study was to elucidate if *ORF2* PCV2 sequences could be
- 73 correlated with different health or disease status of farms and/or pigs. Concomitantly, a
- 74 potential definition of genotypes in PCV2 was explored. Moreover, we intended to

75	determine if multiple sequences can be present in the same animal at the same time, as
76	previously suggested (de Boisseson et al., 2004; Opriessnig et al., 2006; Cheung et al.,
77	2007a).

78

79 Materials and methods

|--|

81 Six farms (No. 1 to 6, table 1) located in North-Eastern Spain with historical records of 82 PMWS were included in a longitudinal case-control study performed during years 2005 83 and 2006. Actually, farms 4 and 5 corresponded to two batches of pigs from the same 84 farm. The diagnosis of PMWS at farm level was confirmed before the start the study. 85 Diagnostic procedures included a high percentage (>10%) of pigs with wasting and mortality in postweaning (nurseries, fattening and finishing) areas and the individual 86 diagnosis of PMWS (Segalés et al., 2005) in at least 1 out of 5 necropsied pigs. 87 88 89 One hundred piglets per farm from 12 to 14 randomly selected sows were ear-tagged at 90 birth and followed up until PMWS outbreak occurrence. Sows were bled at farrowing. 91 When PMWS compatible clinical picture (Segalés and Domingo, 2002) appeared, those

animals showing clinical signs were bled, euthanized and necropsied (n=8 to 12 per

farm). Moreover, one healthy age matched pig per every two diseased pigs was also

94 euthanized and sampled in the same manner with a maximum of 5 per farm (n=4 to 5

95 per farm). Sections of lymph nodes (tracheobronchial, mesenteric, superficial inguinal

and submandibular) and tonsil were collected and fixed by immersion in neutral-

97 buffered 10% formalin.

98

99	On the other hand, in 2006, eighty pigs from 2 different farms (No. 7 and 8) located also
100	in North-Eastern of Spain and without history of PMWS were bled at 3 months, which
101	corresponds to an age where PCV2 viremia is usually present (Larochelle et al., 2003;
102	Shibata et al., 2003).
103	
104	All treatments, housing, husbandry and slaughtering conditions were conformed to the
105	European Union Guidelines and Good Clinical Practices.
106	
107	Histopathology
108	Formalin-fixed paraffin-embedded blocks containing the abovementioned lymphoid
109	tissues were prepared. Two consecutive 4 μm thick sections corresponding to each pig
110	were cut from each block. One section was processed for histopathology, while the
111	other was processed for PCV2 nucleic acid detection by in situ hybridization (ISH)
112	(Rosell et al., 1999). PMWS was diagnosed when pigs fulfilled international accepted
113	criteria (Segalés et al., 2005). Pigs were finally classified into three different categories:
114	i) PMWS cases: pigs showing clinical wasting, moderate to severe PMWS
115	characteristic histopathological lymphoid lesions and moderate to high amount of virus
116	within the lesions; ii)Wasted non-PMWS cases: pigs showing clinical wasting but
117	without or slight PMWS characteristic histopathological lymphoid lesions and none or
118	low amount of PCV2 genome within lymphoid tissues; and iii) Healthy pigs: pigs
119	showing good clinical condition, which presented none or slight PMWS characteristic
120	histopathological lymphoid lesions and none or low amount of PCV2 genome within
121	lymphoid tissues.
122	

123 Screening of serum samples by polymerase chain reaction (PCR) and sequencing

124	DNA from serum	was extracted using a	commercial kit (Nucleosr	oin® Blood	Macherev
			•••••••••••	1		111000110101

125 <u>Nagel</u>) and tested using a previously described PCV2 PCR (Quintana et al., 2001).

126 From samples positive by PCV2 PCR, whole ORF2 was amplified using specific

127 primers (capFw 5'-CTTTTTTATCACTTCG TAATG-3' and capRw 5'-

128 CGCACTTCTTTCGTTTTC-3') under previously reported conditions (Fort et al.,

129 2007). Amplicon products from ORF2 PCV2 PCR positive samples were purified

130 (MiniElute®, Qiagen) and both strands were sequenced at least twice, using the same

131 above mentioned specific primers. Cycle sequencing was carried out with BigDye®

132 Terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) and

133 an ABI 3730 DNA sequencer (Applied Biosystems, Foster City, CA, USA) following

134 <u>the manufacturers' instructions.</u>

135

136 When sequences with <u>multiple peaks at the same position</u> were observed in the

137 chromatogram, PCR products were cloned and sequenced in order to elucidate possible

138 multiple sequences. The ORF2 PCV2 gene was amplified as already mentioned (Fort et

al., 2007) with a final extension of 72°C for 20 min and was cloned into the pGEMT®

140 vector system (Promega), transformed in *Escherichia coli* TOP10 competent cells and

141 screened following manufacturers' instructions. Positive colonies were detected with the

142 mentioned ORF2 PCR with the unique variation of the first denaturation, being at 96°C

143 for 10 min. Plasmid DNA was extracted by QIAprep spin Kit according the

144 manufacturers' instructions and sequenced using universal M13 primers.

145

146 Phylogenetic analysis of ORF2 PCV2 sequences

147 Sequence data was compiled and analyzed using Sequence Analysis (Applied

148 Biosystems, Foster City, USA) and Fingerprinting II software (Informatixtm Software,

149	2000). Sequences were aligned using Crustal W method. Phylogenetic relationships
150	among sequences were analyzed as described in Olvera et al. (2007) using parsimony
151	and nucleotide distance methods. Firstly, the heuristic search option of PAUP 4.0.b
152	(Swofford, 1998), considering a single stepwise addition procedure, and a tree
153	bisection-reconnection (TBR=100) branch swapping algorithm, was used for
154	unweighted Maximum Parsimony analysis (MP). A majority rule consensus tree was
155	then generated from the 100 most parsimonious trees found in each of the 1000
156	bootstrap replicates of the analysis. Secondly, we computed a nucleotide distance matrix
157	between sequences to infer phylogenies by a Neighbor-Joining (NJ) and a Maximum
158	Likelihood (ML) trees using respectively MEGA 3.1 (Kumar et al., 2001) and
159	TreePuzzle 5.0 (Schmidt et al., 2002). Confidence in the NJ tree was estimated by 1000
160	bootstrap replicates. The tree search quartet puzzling algorithm directly assigned
161	estimations of support to each internal branch of the ML tree. Trees were rooted with
162	two ORF2 PCV1 sequences (accession numbers AY660574 and AY193712).
163	
164	Genotype definition
165	Data from the pairwaise comparison of the obtained ORF2 PCV2 sequences together
166	with 148 ORF2 PCV2 sequences present at the NCBI nucleotide database
167	(http://www.ncbi.nlm.nih.gov) in September 2005 (Olvera et al., 2007) and two PCV1
168	ORF2 sequences (for rooting purposes) (accession numbers AY660574 and AY193712)
169	were used to construct a matrix of p-distance values. P-distance is the proportion of
170	nucleotide sites at which two sequences being compared are different. It is obtained by
171	dividing the number of nucleotide differences by the total number of nucleotides
172	compared (Kumar et al., 2000). Afterwards, p-distance/frequency histogram was

- 173 constructed in order to determine possible cut-off values to distinguish different PCV2
- 174 genotypes (Biagini et al., 1999; Rogers and Harpending, 1992).
- 175
- 176 Phylogenetic analysis among populations (farms)
- 177 Patterns of nucleotide diversity distribution among farms were estimated by a
- 178 hierarchical nested analysis of molecular variance (AMOVA) (Excoffier et al., 1992) of
- the frequency distribution of sequences and their pairwise divergence at three
- 180 hierarchical levels: within farms (φst), among farms within groups (φsc) and among
- 181 groups (oct). Those analyses were performed using Arlequin software (version 3.1) and
- 182 considered two groups of farms: i) PMWS affected farms (No. 1 to 6), and ii) non-
- 183 PMWS affected farms (No. 7 and 8). Moreover, phylogenetic relationships among
- 184 populations were assessed by computing a NJ population tree from the distance matrix
- 185 of nucleotide divergence <u>among</u> farms.
- 186
- 187 Nucleotide sequence accession numbers
- 188 The ORF2 PCV2 sequences reported in this work have been deposited at GenBank
- 189 (http://www.ncbi.nlm.nih.gov) under accession numbers EF647642- EF647728.
- 190

191 **Results**

- 192 Clinical Picture and PMWS diagnosis
- 193 Clinical picture compatible with PMWS appeared in farms No. 1 to 6 between 11 and
- 194 21 weeks of age, depending on the farm (Table 1). Acute clinical signs occurred during
- a period of about 3 weeks. Farms 1 to 5 suffered from PMWS based on clinical signs,
- 196 histopathological lesions in lymphoid tissues and PCV2 detection within lesions. In
- 197 farm 6, PMWS was suspected based on the occurrence of wasting in the growing phase,

- 198 but pathological studies could not finally confirm the diagnosis of the disease. No
- 199 clinical signs compatible to PMWS were observed in farms 7 and 8 and no pathological
- 200 studies were carried out. Mortality rates of the fattening period in each studied farm are
- 201 given in table 1.
- 202
- 203 PCV2 PCR and ORF2 sequencing
- 204 Prevalence of PCV2 by PCR in pig sera from PMWS affected farms calculated based on
- 205 necropsied animals ranged from 40 to 93.8%. The highest prevalence in those farms
- was found in PMWS affected pigs (median 85.7%; max. 100%, min. 66.7%), followed
- 207 by wasted non-PMWS affected pigs (median 83.3%; 100-33.3%), healthy pigs (median
- 60.0%; 75.0-20.0\%) and sows (median 0%; 14.3%-0%). On the other hand, the
- 209 prevalence was 10% in both non-affected PMWS studied farms.
- 210
- A total of 87 ORF2 PCV2 sequences coming from 60 animals (58 pigs and 2 sows)
- were obtained (Table 1). Seven out of 60 (11.7%) serum samples tested corresponded to
- 213 pigs yielded more than one sequence; all of them from PMWS affected farms. Thirty-
- 214 four clones containing the ORF2 PCV2 sequence were obtained and sequenced from
- those 7 serums containing multiple sequences. Results confirmed that those 7 animals
- 216 had more than one sequence at the same time. From these 34 sequences, 26 were
- 217 different in at least one nucleotide. Three out of the 7 animals harboured ORF2 PCV2
- sequences showing low percentage of identity (91-93%) (Table 2).
- 219

220 Genotype definition

- 221 The p-distance/frequency histogram obtained from the 235 ORF2 PCV2 sequences was
- 222 clearly bimodal; one mode corresponded to the number of differences between genotype

223	1 and genotype 2, and the other to differences among sequences within genotypes
224	(Figure 1). Considering the possible different cut-off values tested for the definition of
225	genotypes, only one gave results that matched phylogenetic results. That value was
226	finally established at 3.5%, since it was located in a fairly equidistant position between
227	both peaks and agreed with the distance observed between both groups 1 and 2 in the
228	NJ phylogenetic tree. Thus, two ORF2 PCV2 sequences could be assigned to different
229	genotypes (1 or 2) when the genetic distance between them was $>3.5\%$. On the other
230	hand, the branch length observed in the collapsed PCV1 rooted NJ tree (Figure 1) was
231	higher in genotype 2 than in genotype 1, indicating major variability inside genotype 2.
232	
233	According to this definition, sequences included in groups 1 and 2 (Olvera et al., 2007)
234	would constitute genotypes 1 and 2, respectively. It is worthy to say that a similar p-
235	distance/frequency histogram is obtained using the 148 whole PCV2 sequences present
236	in the NCBI nucleotide database (<u>http://www.ncbi.nlm.nih.gov</u>) in September 2005
237	(Olvera et al., 2007). In that case, the cut-off value to differentiate PCV2 genotypes was
238	established at 2.0% (data not shown).
239	
240	Phylogenetic analysis of ORF2 sequences
241	All three algorithms for ML, MP and NJ methods reported congruent results, and the
242	groupings were supported by high confidence values. NJ tree with 1000 bootstrap is
243	shown in Figure 2. The 87 sequences obtained could be divided into two main clusters
244	supported by high confidence values that matched the two genotypes defined above:

- 245 genotype 1 (n=75) and genotype 2, (n=12), equivalent to groups 1 and 2 previously
- reported by Olvera et al. (2007). Interestingly, PCV2 sequences detected in animals
- coming from PMWS affected farms were mainly included within genotype 1,

248	corresponding more specifically to cluster 1A of Olvera et al. (2007) classification, and
249	were randomly distributed among this group. On the other hand, genotype 1 was never
250	found in non-PMWS affected farms. All sequences obtained from healthy pigs from
251	non-PMWS farms (n=6) were included within genotype 2, corresponding to clusters 2C
252	and 2D of Olvera et al. (2007) classification. The other 6 sequences included within
253	genotype 2 corresponded to sequences obtained from 3 animals (one PMWS case, one
254	wasted non-PMWS and one healthy pigs) from PMWS affected farms. At the same
255	time, these 3 animals also harboured at least one sequence included in genotype 1.
256	Therefore, none of the PCV2 infected pigs coming from PMWS affected farms
257	contained only ORF2 PCV2 sequences genotype 2, since all of them were always co-
258	infected with PCV2 genotype 1.
259	
260	Two ORF2 PCV2 sequences obtained from two sows from the same PMWS affected
261	farm (No. 1) were also included in genotype 1 and had a sequence identity of 100%.
262	Moreover, from one of those sows, two ORF2 PCV2 sequences were obtained from two
263	of its offspring (one PMWS and one wasted non-PMWS affected pigs). Interestingly,
264	sequences obtained from both pigs had a 100% of identity between them and were
265	different from that obtained from its mother (sequence identity: 99.4%, having 4
266	nucleotide differences, resulting in 4 amino acid predicted differences).
267	
268	The lowest nucleotide and amino acid homology observed between all ORF2 PCV2
269	
	studied sequences was 90.2% and 86.5%, respectively. Three different regions with
270	studied sequences was 90.2% and 86.5%, respectively. Three different regions with high heterogeneity were observed in amino acid positions 57-91, 121-136 and 185-191

Thus, up to 15 amino acid substitutions were observed in all the 12 sequences present in

- 273 genotype 2, all of them fairly conserved within genotype 1. Eleven out of 15 positions
- suffered always the same substitution, and 8 out of those 11 positions were located
- within the first described heterogenic region (residues 57-91). The other three constant
- substitutions were located at positions 190, 210 and 232 (figure 3).
- 277
- 278 *Phylogenetic analysis among populations (farms)*
- 279 The high level of population structuring observed in the AMOVA analyses (φ st=0.
- 280 79494, p<<0.001) indicates that the pattern of population relationships is related with
- 281 the presence or absence of PMWS at farm level (φct=0.74418, p<<0.001). In addition,
- the low level of variation detected among farms within groups (φ sc=0.19840, p<<0.001)
- 283 emphasizes the uniformity of the groups described (Table 3).
- 284
- Additional support to the differences detected among farms is provided by the
- population tree (Figure 4), where clustering also followed the presence or absence of
- 287 PMWS disease. Moreover, farms 2 to 6 were more closely related between them than
- with farm No. 1. Despite PMWS could not be diagnosed in the batch of studied animals
- from farm No. 6, that farm was grouped with PMWS affected, being in agreement with
- the clinical picture observed and the previously diagnosed history of PMWS.
- 291

292 **Discussion**

- In the present study, we characterized and compared 87 ORF2 PCV2 sequences
- obtained from 60 animals from <u>7</u> different farms with the main aim to elucidate if ORF2
- 295 PCV2 sequences could be correlated with different health/disease status of PCV2
- 296 infected pigs and/or farms. Present results demonstrate the existence of two different
- 297 genotypes within PCV2 sequences: genotypes 1 and 2. While pigs from PMWS affected

298	farms harboured PCV2 genotype 1 always (with or without sequences from genotype
299	2), pigs from non-PMWS affected farms had exclusively sequences from genotype 2.
300	Moreover, we examined if multiple PCV2 different sequences can be present in the
301	same animal at the same time, which was demonstrated in 7 out the 60 PCV2 infected
302	studied pigs.
303	
304	Globally, in the seven studied farms, we observed a higher prevalence of PCV2 in pigs
305	coming from PMWS affected farms than in pigs coming from non-PMWS affected
306	farms, being in agreement with previous reports (Larochelle et al., 2003; Shibata et al.,
307	2003; Sibila et al., 2004). At the same time, within PMWS affected farms, the
308	prevalence of PCV2 in PMWS affected pigs was also higher than in healthy pigs (Liu et
309	al., 2000; Larochelle et al., 2003).
310	
311	It is known that the highest amount of virus in PCV2 infected pigs is found in lymphoid
312	tissues (Mankertz et al., 2000). However, we decided to perform the present study on
313	serum samples based on previous works that indicated blood as the most suitable
314	sample for PCV2 detection by PCR without the need of euthanizing the animal (Shibata
315	et al., 2003). Despite we sacrificed either diseased and healthy pigs from PMWS
316	affected farms, the use of serum samples allowed us to analyze a high number of
317	healthy animals from non-PMWS affected farms without euthanizing them.
318	
319	The mandate of the International Committee on Taxonomy of Viruses (ICTV) does not
320	include any consideration below the species level and there is no formally accepted
321	definition for any taxa below it; hence, this has been left to the initiative of specialty
322	groups (Fauquet and Stanley, 2005). In the present work, an effort was made to evaluate

323	the presence of distinct PCV2 genotypes and to unify the variable terminology that is
324	nowadays reported in the literature. Obtained results demonstrate the existence of two
325	clearly distinct PCV2 genotypes: genotypes 1 and 2 supported by molecular and
326	biological features. Both genotypes corresponded to two different groups that were
327	already described in different studies but usually using different nomenclature. Thus,
328	genotype 1 and 2 correspond respectively to groups 1 and 2 of Olvera et al. (2007),
329	patterns 321 and 422 reported by Carman et al. (2006), I and II reported by De
330	Boisséson et al. (2004), SG3 and SG1/SG2 reported by Timmusk et al. (2005), and A
331	and B reported by Martins Gomes de Castro at al. (2007).
332	
333	Our results support the hypothesis of differences in pathogenicity between PCV2
334	genotypes, since differences between ORF2 PCV2 sequences obtained from animals
335	from PMWS affected farms (mainly from genotype 1) and from animals from non-
336	PMWS affected farms (all of them from genotype 2) were observed. Therefore, present
337	results suggest that viruses from genotype 1 may potentially be more pathogenic than
338	those from genotype 2 (Timmusk et al., 2005; Cheung et al., 2007a, 2007b; Stevenson
339	et al., 2007). In addition, the major variability found inside genotype 2 using the data
340	from NCBI until September 2005 suggest that this genotype is older than genotype 1
341	(Carman et al., 2006; Cheung et al, 2007a). Although in favour, if this explains the
342	emergence of PMWS by late 90s in many European and Asiatic countries as well as the
343	recent re-emergence of the disease in North-America remains to be elucidated. On the
344	other hand, present data confirmed that within PMWS affected farms there is no
345	association between the PCV2 sequences contained in individual pigs and its clinical
346	status, being in agreement with some previous case-control studies (Larochelle et al.,
347	2002; Pogranichniy et al., 2002).

348

349	There are different possible explanations because some previous works were not able to
350	find such association between PMWS affected and non-PMWS affected farms (de
351	Boisseson et al., 2004; Martins Gomes de Castro et al., 2007): on one hand, the presence
352	of multiple sequences in the same animal can produce the sequencing of only one of the
353	virus present in the pig. Moreover, obtaining PCV2 from non-PMWS affected farms
354	requires exhaustive sampling due to the low viral load in serum of the animals (Olvera
355	et al., 2004). On the other hand, it is very difficult to establish a farm as a non-PMWS
356	affected due to the ubiquitous presence of PCV2 and that low number of cases of
357	PMWS can be unnoticed (for example, one of the sampled animals in de Boissesson et
358	al. (2004) initially considered as a non-PMWS farm was finally diagnosed as PMWS).
359	Moreover, the lack of confident information about the farm sanitary status in the public
360	available Genbank data makes practically impossible to compare both populations using
361	Genbank data (Olvera et al., 2007).
362	
363	Since the first description of the disease (Harding and Clark, 1998), many experimental
364	infections have been performed and just a few of them have been successful in
365	reproducing the disease using either PCV2 genotype 1 (Albina et al. 2001; Grasland et
366	al., 2005; Wang et al., 2007) and genotype 2 (Allan et al., 1999, Krakowka et al., 2000;
367	Harms et al., 2001; Allan et al., 2003). Therefore, both PCV2 genotypes seem to be able
368	to reproduce PMWS under the appropriate circumstances. However, one recent
369	experimental infection with PCV2 from both groups described more severe PMWS
370	clinical signs and lesions in pigs infected with PCV2 genotype 1 than those infected
371	with PCV2 genotype 2 (Cheung et al., 2007b). On the other hand, using PCV2 genotype

372 2, Opriessnig et al. (2006) were not able to reproduce PMWS, but they demonstrated

differences in pathogenicity even within genotype 2, further supporting such variability
among PCV2 <u>sequences</u>.

375

Population phylogenetic analysis showed significant differences between ORF2 PCV2 376 377 sequences from PMWS affected and non-PMWS affected farms. Those findings were 378 strongly supported by the population tree, where non-PMWS affected farms were 379 closed to each other and separately from PMWS affected farms. These two groups fitted 380 perfectly the two genotypes obtained in the nucleotide sequence analysis. Moreover, the 381 low variation observed in the population phylogenetic tree between PMWS affected 382 farms could apparently be explained by the geographic location of breeding and/or 383 weaning facilities, being in agreement with previous reports suggesting that minor 384 genetic differences among PCV2 sequences could be accounted by their geographic 385 origin (Fenaux et al., 2000; Meehan et al., 2001). Thus, sequences obtained from farm 1 386 (with breeding and weaning facilities separated approximately by 180 Km from the rest 387 of the studied farms, data not shown) had less similitude with those obtained from farms 388 2 to 6 (located all five in a radium of 40 km). On the contrary, there was no apparent 389 relation with the geographic distribution of fattening facilities. On the other hand, data 390 from one sow and its two offspring showed that ORF2 PCV2 sequences obtained from 391 both pigs were identical between them and different from that obtained from the mother. 392 Considering the possibility here demonstrated that different sequences can be present in 393 the same animal at the same time, we can not rule out that both pigs would have got 394 PCV2 from its sow. Moreover, the fact that both ORF2 PCV2 sequences obtained from 395 two different sows located in the same farm and in the same room were identical could 396 be explained easily by horizontal transmission of PCV2 (Albina et al., 2001; Sibila et 397 al., 2004).

16

398

399	Previous reports suggested that one animal can contain different PCV2 sequences at the
400	same time (de Boisseson et al., 2004; Opriessnig et al., 2006) but this is the first work
401	that have exhaustively studied this issue. Present results demonstrate that this is a
402	relatively frequent finding in PMWS affected farms and that occurs in PMWS affected
403	as well as in healthy animals. Interestingly, three animals (one PMWS, one wasted non-
404	PMWS and one healthy) harboured sequences from genotypes 1 and 2 at the same time.
405	Curiously, clones obtained from the PMWS affected pig contained predominantly
406	sequences from genotype 1 while clones obtained from the healthy pig contained
407	sequences predominantly from genotype 2. The biological importance of this fact is
408	nowadays unknown, but it may reinforce the hypothesis that sequences from genotype 1
409	could be more pathogenic than those from genotype 2.
410	
411	The amino acid alignment identified three major heterogenic regions between different
411 412	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those
411 412 413	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three
411412413414	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207).
 411 412 413 414 415 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive
 411 412 413 414 415 416 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive regions of the capsid protein of PCV2 as potential candidate regions involved in the
 411 412 413 414 415 416 417 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive regions of the capsid protein of PCV2 as potential candidate regions involved in the emergence of PCV2 variants, data supported also by other recent reports (Wen et al.,
 411 412 413 414 415 416 417 418 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive regions of the capsid protein of PCV2 as potential candidate regions involved in the emergence of PCV2 variants, data supported also by other recent reports (Wen et al., 2005). Specifically, up to 8 amino acid positions located in positions 57-91 were
 411 412 413 414 415 416 417 418 419 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive regions of the capsid protein of PCV2 as potential candidate regions involved in the emergence of PCV2 variants, data supported also by other recent reports (Wen et al., 2005). Specifically, up to 8 amino acid positions located in positions 57-91 were constantly different between sequences included in genotype 2 in respect those included
 411 412 413 414 415 416 417 418 419 420 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive regions of the capsid protein of PCV2 as potential candidate regions involved in the emergence of PCV2 variants, data supported also by other recent reports (Wen et al., 2005). Specifically, up to 8 amino acid positions located in positions 57-91 were constantly different between sequences included in genotype 2 in respect those included in genotype 1. These data suggest that specific primers within this region could be
 411 412 413 414 415 416 417 418 419 420 421 	The amino acid alignment identified three major heterogenic regions between different ORF2 PCV2 sequences in regions 57-91, 121-136 and 185-191, similarly to those already described (Larochelle et al., 2002) and corresponding to two out of the three antigenic domains described by Mahe et al (2000) (65-87, 113-139 and 193-207). Larochelle et al. (2002) pointed out the possible implication of these immunoreactive regions of the capsid protein of PCV2 as potential candidate regions involved in the emergence of PCV2 variants, data supported also by other recent reports (Wen et al., 2005). Specifically, up to 8 amino acid positions located in positions 57-91 were constantly different between sequences included in genotype 2 in respect those included in genotype 1. These data suggest that specific primers within this region could be designed to differentiate both genotypes by PCR techniques instead of using

Λ	2	2
-	-	Э

424	In summary, the present work contributes to the understanding of PCV2 epidemiology,
425	including the establishment of a genotype definition for PCV2 that should help unifying
426	different nomenclatures and classifications used. Taking into account the present results
427	and other recent data from USA and Canada (Carman et al., 2006; Cheung et al., 2007a)
428	it seems evident that nowadays PCV2 sequences included in genotype 1 are more
429	related to PMWS occurrence than PCV2 sequences included in genotype 2. Further in
430	vivo and in vitro studies are needed to confirm the suggested differences in
431	pathogenicity between genotypes and to establish relationship between PCV2 genotypes
432	and PMWS occurrence.
433	
434	Acknowledgements
435	This work was funded by the Projects No. 513928 from the Sixth Framework
436	Programme of the European Commission, GEN2003-20658-C05-02 (Spanish
437	Government) and Consolider Ingenio 2010 – PORCIVIR (Spanish Government). We
438	are grateful to all the production team from Vallcompanys S.A. for their great
439	collaboration during the study, M. Pérez, M. Mora and E. Huerta for their excellent
440	technical assistance and A. Allepuz, J. Casal and T. Kekarainen for their valuable
441	contribution to this work. PhD studies of Mr. Grau-Roma are funded by a pre-doctoral
442	FPU grant of Ministerio de Educación y Ciencia of Spain.

443 **References**

- 444 Albina, E., Truong, C., Hutet, E., Blanchard, P., Cariolet, R., L'Hospitalier, R., Mahe,
- D., Allee, C., Morvan, H., Amenna, N., Le Dimna, M., Madec, F., Jestin, A.,
 2001. An experimental model for post-weaning multisystemic wasting syndrome
- 447 (PMWS) in growing piglets. J. Comp. Pathol. 125, 292-303.
- 448 Allan G., McNeilly F., Meehan B., McNair I., Ellis J., Krakowka S., Fossum C.,
- Wattrang E., Wallgren P., Adair B., 2003. Reproduction of postweaning
 multisystemic wasting syndrome in pigs experimentally inoculated with a
 Swedish porcine circovirus 2 isolate. J. Vet. Diagn. Invest. 15(6), 553-60.
- Allan, G.M., Kennedy, S., McNeilly, F., Foster, J.C., Ellis, J.A., Krakowka, S.J.,
 Meehan, B.M., Adair, B.M., 1999. Experimental reproduction of severe wasting
 disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J
- 455 Comp. Pathol. 121, 1-11.
- Biagini, P., Gallian, P., Attoui, H., Cantaloube, J.F., de Micco, P., de Lamballerie, X.,
 1999. Determination and phylogenetic analysis of partial sequences from TT
 virus isolates. J. Gen. Virol. 80 (Pt 2), 419-424.
- 459 Carman, S., Mc Ewen, B., DelLay , J., Cari, H., Fairles, J., 2006. Porcine circovirus
- 460 type 2-associated disease in Ontario (2004 to 2005). Can. Vet. J. 47(8), 761-762.
- 461 Cheung, A.K., Lager, K.M., Kohutyuk, O.I., Vincent, A.L., Henry, S.C., Baker, R.B.,
- 462 Rowland, R.R., Dunham, A.G., 2007. Detection of two porcine circovirus type 2
 463 genotypic groups in United States swine herds. Arch. Virol. 152, 1035-1044.
- 464 Cheung, A.K., Lager, K., Gauger, P., Vincent A., Opriessnig, T., 2007. Comparison of
- the pathogenicity of porcine circovirus type 2 group 1 and group 2 isolates. In:
- 466 Proceedings of the 5th International Symposium on Emerging and Re-emerging
- 467 Pig Diseases, p. 273.

- 468 de Boisseson, C., Beven, V., Bigarre, L., Thiery, R., Rose, N., Eveno, E., Madec, F.,
- 469 Jestin, A., 2004. Molecular characterization of Porcine circovirus type 2 isolates
- 470 from post-weaning multisystemic wasting syndrome-affected and non-affected471 pigs. J Gen Virol 85, 293-304.
- 472 Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance
 473 inferred from metric distances among DNA haplotypes: application to human
 474 mitochondrial DNA restriction data. Genetics 131, 479-491.
- Fauquet, C.M., Stanley, J., 2005. Revising the way we conceive and name viruses
 below the species level: a review of geminivirus taxonomy calls for new
 standardized isolate descriptors. Arch. Virol. 150, 2151-2179.
- Fenaux, M., Halbur, P.G., Gill, M., Toth, T.E., Meng, X.J., 2000. Genetic
 characterization of type 2 porcine circovirus (PCV-2) from pigs with
 postweaning multisystemic wasting syndrome in different geographic regions of
 North America and development of a differential PCR-restriction fragment
 length polymorphism assay to detect and differentiate between infections with
 PCV-1 and PCV-2. J Clin. Microbiol. 38, 2494-2503.
- 484 Fort, M., Olvera, A., Sibila, M., Segales, J., Mateu, E., 2007. Detection of neutralizing
- antibodies in postweaning multisystemic wasting syndrome (PMWS)-affected
 and non-PMWS affected pigs. Vet. Microbiol. in press.
- Grasland, B., Loizel, C., Blanchard, P., Oger, A., Nignol, A.C., Bigarre, L., Morvan, H.,
 Cariolet, R., and Jestin, A., 2005. Reproduction of PMWS in
- 489 immunoestimulated PMWS SPF piglets transfected with infectious cloned
- 490 genomic DNA of type 2 porcine circovirus. Vet. Res. 36(5-6), 685-97.

- 491 Grierson, S.S., King, D.P., Wellenberg, G.J., Banks, M., 2004. Genome sequence
- 492 analysis of 10 Dutch porcine circovirus type 2 (PCV-2) isolates from a PMWS
- 493 case-control study. Res. Vet. Sci. 77, 265-268.
- Hamel, A.L., Lin, L.L., Nayar, G.P., 1998. Nucleotide sequence of porcine circovirus
 associated with postweaning multisystemic wasting syndrome in pigs. J. Virol.
 72, 5262-5267.
- Harding, J., Clark, E., 1998. Recognizing and diagnosing postweaning multisystemic
 wasting syndrome (PMWS). Swine Health Prod. 5, 201–203.
- 499 Harms, P.A., Sorden, S.D., Halbur, P.G., Bolin, S.R., Lager, K.M., Morozov, I., Paul,
- P.S., 2001. Experimental reproduction of severe disease in CD/CD pigs
 concurrently infected with type 2 porcine circovirus and porcine reproductive
 and respiratory syndrome virus. Vet. Pathol. 38, 528-539.
- Krakowka, S., Ellis, J.A., Meehan, B., Kennedy, S., McNeilly, F., Allan, G., 2000. Viral
 wasting syndrome of swine: experimental reproduction of postweaning
 multisystemic wasting syndrome in gnotobiotic swine by coinfection with
 porcine circovirus 2 and porcine parvovirus. Vet. Pathol. 37, 254-263.
- 507 Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., 2001. MEGA2: molecular evolutionary
- 508 genetics analysis software. Bioinformatics 17, 1244-1245.
- Larochelle, R., Magar, R., D'Allaire, S., 2002. Genetic characterization and
 phylogenetic analysis of porcine circovirus type 2 (PCV2) strains from cases
 presenting various clinical conditions. Virus. Res. 90, 101-112.
- 512 Larochelle, R., Magar, R., D'Allaire, S., 2003. Comparative serologic and virologic
- study of commercial swine herds with and without postweaning multisystemic
 wasting syndrome. Can J. Vet. Res. 67, 114-120.

- Liu, J., Chen, I., Du, Q., Chua, H., Kwang, J., 2006. The ORF3 protein of porcine
 circovirus type 2 is involved in viral pathogenesis in vivo. J. Virol. 80, 50655073.
- Liu, J., Chen, I., Kwang, J., 2005. Characterization of a Previously Unidentified Viral
 Protein in Porcine Circovirus Type 2-Infected Cells and Its Role in VirusInduced Apoptosis. J. Virol. 79, 8262-8274.
- Liu, Q., Wang, L., Willson, P., Babiuk, L.A., 2000. Quantitative, competitive PCR
 analysis of porcine circovirus DNA in serum from pigs with postweaning
 multisystemic wasting syndrome. J. Clin. Microbiol. 38, 3474-3477.
- 524 Magar, R., Muller, P., Larochelle, R., 2000. Retrospective serological survey of 525 antibodies to porcine circovirus type 1 and type 2. Can J. Vet. Res. 64, 184-186.
- 526 Mahe, D., Blanchard, P., Truong, C., Arnauld, C., Le Cann, P., Cariolet, R., Madec, F.,
- Albina, E., Jestin, A., 2000. Differential recognition of ORF2 protein from type
 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes.
 J. Gen, Virol. 81, 1815-1824.
- 530 Mankertz, A., Domingo, M., Folch, J.M., LeCann, P., Jestin, A., Segales, J.,
- 531 Chmielewicz, B., Plana-Duran, J., Soike, D., 2000. Characterisation of PCV-2
- isolates from Spain, Germany and France. Virus Res. 66, 65-77.
- Mankertz, A., Mankertz, J., Wolf, K., Buhk, H.J., 1998. Identification of a protein
 essential for replication of porcine circovirus. J. Gen. Virol. 79 (Pt 2), 381-384.
- 535 Martins Gomes de Castro, A.M., Cortez, A., Heinemann, M.B., Brandao, P.E.,
- 536 Richtzenhain, L.J., 2007. Genetic diversity of Brazilian strains of porcine
- 537 circovirus type 2 (PCV-2) revealed by analysis of the of cap gene (ORF-2).
- 538 Arch. Virol. <u>152(8)</u>, <u>1435-45</u>

- 539 Meehan, B.M., McNeilly, F., McNair, I., Walker, I., Ellis, J.A., Krakowka, S., Allan,
- 540 G.M., 2001. Isolation and characterization of porcine circovirus 2 from cases of
- 541 sow abortion and porcine dermatitis and nephropathy syndrome. Arch. Virol.542 146, 835-842.
- Meehan, B.M., McNeilly, F., Todd, D., Kennedy, S., Jewhurst, V.A., Ellis, J.A.,
 Hassard, L.E., Clark, E.G., Haines, D.M., Allan, G.M., 1998. Characterization of
 novel circovirus DNAs associated with wasting syndromes in pigs. J. Gen.
 Virol. 79 (Pt 9), 2171-2179.
- Nawagitgul, P., Morozov, I., Bolin, S.R., Harms, P.A., Sorden, S.D., Paul, P.S., 2000.
 Open reading frame 2 of porcine circovirus type 2 encodes a major capsid
 protein. J. Gen. Virol. 81, 2281-2287.
- Olvera A., Sibila M., Calsamiglia M., Segales J., Domingo M., 2004. Comparison of
 porcine circovirus type 2 load in serum quantified by a real time PCR in
 postweaning multisystemic wasting syndrome and porcine dermatitis and
 nephropathy syndrome naturally affected pigs. J. Virol. Methods, 117(1), 75-80.
- Olvera, A., Cortey, M., Segales, J., 2007, Molecular evolution of porcine circovirus
 type 2 genomes: phylogeny and clonality. Virolology. 357, 175-185.
- Opriessnig, T., McKeown, N.E., Zhou, E.M., Meng, X.J., Halbur, P.G., 2006. Genetic
 and experimental comparison of porcine circovirus type 2 (PCV2) isolates from
 cases with and without PCV2-associated lesions provides evidence for
 differences in virulence. J. Gen. Virol. 87, 2923-2932.
- Pogranichniy, R.M., Yoon, K.J., Harms, P.A., Sorden, S.D., Daniels, M., 2002. Casecontrol study on the association of porcine circovirus type 2 and other swine
 viral pathogens with postweaning multisystemic wasting syndrome. J. Vet.
 Diagn. Invest. 14, 449-456.

	~ ·	-	~ .	-		~	~			~
561	Quintono		Sagalag		Docoll	(Colcomialia	N/I	Dodriguoz Arrigio	(1 N A
304	Oumana.	J	Segales.	J	RUSEII.	U	Caisanngna.	171	Rounguez-Amoia.	U.W
	`	2		2				- 2		

- 565 Chianini, F., Folch, J.M., Maldonado, J., Canal, M., Plana-Duran, J., Domingo,
- 566 M., 2001. Clinical and pathological observations on pigs with postweaning 567 multisystemic wasting syndrome. Vet. Rec. 149, 357-361.
- 568 Rodriguez-Arrioja, G.M., Segales, J., Rosell, C., Rovira, A., Pujols, J., Plana-Duran, J.,
- 569 Domingo, M., 2003. Retrospective study on porcine circovirus type 2 infection
- 570 in pigs from 1985 to 1997 in Spain. J. Vet. Med. B. Infect. Dis. Vet. Public.
 571 Health. 50, 99-101.
- 572 Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution
 573 of pairwise genetic differences. Mol. Biol. Evol. 9, 552-569.
- 574 Rosell, C., Segales, J., Plana-Duran, J., Balasch, M., Rodriguez-Arrioja, G.M.,
- 575 Kennedy, S., Allan, G.M., McNeilly, F., Latimer, K.S., Domingo, M., 1999.
- 576 Pathological, immunohistochemical, and in-situ hybridization studies of natural 577 cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J.
- 578 Comp. Pathol. 120, 59-78.
- 579 Schmidt, H.A., Strimmer, K., Vingron, M., von Haeseler, A., 2002. TREE-PUZZLE:
- 580 maximum likelihood phylogenetic analysis using quartets and parallel 581 computing. Bioinformatics 18, 502-504.
- Segalés, J., Allan, G.M. & Domingo, M., 2005. Porcine circovirus diseases. Animal
 Health Research Reviews 6, 119-142.
- Segalés, J., Domingo, M., 2002. Postweaning multisystemic wasting syndrome
 (PMWS) in pigs. A review. Vet. Q. 24, 109-124.
- 586 Shibata, I., Okuda, Y., Yazawa, S., Ono, M., Sasaki, T., Itagaki, M., Nakajima, N.,
- 587 Okabe, Y., Hidejima, I., 2003. PCR detection of Porcine circovirus type 2 DNA

588	in	whole	blood,	serum,	oropharyngeal	swab,	nasal	swab,	and	feces	from
589	exp	perimen	tally inf	fected pi	gs and field case	es. J. Ve	et. Mec	l. Sci. 6	5, 40	5-408.	

- Sibila, M., Calsamiglia, M., Segales, J., Blanchard, P., Badiella, L., Le Dimna, M.,
 Jestin, A., Domingo, M., 2004. Use of a polymerase chain reaction assay and an
 ELISA to monitor porcine circovirus type 2 infection in pigs from farms with
 and without postweaning multisystemic wasting syndrome. Am. J. Vet. Res. 65,
 88-92.
- Stevenson, L., McNeilly, F., Duffy, C., McNair, I., Adair, B., Allan, G., 2007.
 Biological Comparison of porcine circovirus type 2 (PCV2) isolates. In:
 Proceedings of the 5th International Symposium on Emerging and Re-emerging
 Pig Diseases, p. 51.
- Swofford, D., 1998, PAUP* Phylogenetic Analysis Using Parsimony (* and Other
 Methods). 4. Sinauer Associates, Sunderland, Massachusetts.

Timmusk, S., Wallgren, P., Belak, K., Berg, M., Fossum, C., 2005. Genetic analysis of
 PCV2 capsid protein sequences reveals two main groups of Swedish isolates.

603 Proc. ESVV. In. Con Animal Circoviruses and Assiciated diseases, Belfast p82.

- Todd, D., Scott, A.N., Ball, N.W., Borghmans, B.J., Adair, B.M., 2002. Molecular basis
- 605of the attenuation exhibited by molecularly cloned highly passaged chicken606anemia virus isolates. J. Virol. 76, 8472-8474.
- Vigre, H., Baekbo, P., Jorsal, S.E., Bille-Hansen, V., Hassing, A.G., Enoe, C., Botner,
 A., 2005. Spatial and temporal patterns of pig herds diagnosed with Postweaning
 Multisystemic Wasting Syndrome (PMWS) during the first two years of its
- 610 occurrence in Denmark. Vet. Microbiol. 110, 17-26.
- Wang, X., Jiang, P., Li, Y., Jiang, W., Dong, X., 2007. Protection of pigs against postweaning multisystemic wasting syndrome by a recombinant adenovirus

- expressing the capsid protein of porcine circovirus type 2. Vet. Microbiol. 121,215-224.
- Wen, L., Guo, X., Yang, H., 2005. Genotyping of porcine circovirus type 2 from a
 variety of clinical conditions in China. Vet. Microbiol. 110, 141-146.
- 617 Woodbine, K.A., Medley, G.F., Slevin, J., Kilbride, A.L., Novell, E.J., Turner, M.J.,
- 618 Keeling, M.J., Green, L.E., 2007. Spatiotemporal patterns and risks of herd
- 619 breakdowns in pigs with postweaning multisystemic wasting syndrome. Vet.
- 620 Rec. 160, 751-762.

621 Figure 1. PLOT: Frequency distribution of pairwise distances between ORF2 PCV2.

TREE: Collapsed PCV1 rooted NJ tree deduced from the comparison of 235
PCV2 ORF2 sequences. Vertical arrows indicate the cutt-off value to distinguish
both genotypes. Sequences belonging to distinct genotypes show genetic
distances > 0.035.

626

Figure 2. Phylogenetic tree based on the NJ method for 87 ORF2 PCV2 sequences and PCV1 rooted using 1000 bootstraps. Numbers along the branches refer to the percentages of confidence in the NJ, MP and ML analyses respectively. Minor branches values are hidden. References means: number of farm-number of sow-number of pigletweeks of age. • =PMWS case, \circ = wasted non-PMWS case, \Box = Healthy from PMWS affected farm, Δ = Healthy from non-PMWS affected farm, \diamond = sow. * =sequences obtained from different clones of same animal.

634

Figure 3. Amino acid sequences of capsid protein. All 12 obtained sequences from
genotype 2 as well as 12 randomly selected sequences from genotype 1 are represented.
Heterogenic regions are marked in black lines. References means: number of farmnumber of sow-number of piglet-weeks of age. * =sequences obtained from different
clones of same animal.

640

641 **Figure 4**. Population tree (NJ) clustering 8 farms according to the distance matrix of 642 nucleotide divergence. • =history of PMWS with PMWS diagnosed in the studied 643 batch, \circ = history of PMWS without PWMS diagnosis in studied batch, Δ = non-644 PMWS affected farm.

645

- **Table 1**. Characteristics of farms and studied animals.
- **Table 2**. Animals showing more than one ORF2 PCV2 sequence at the same time.
- **Table 3.** Hierarchical nested analysis of molecular variance (AMOVA) results.

-				• • • • • • • • • • • • • • • •		••••	••••
	20	30	40	50	60	70	80 90
2-1-3-21 Genotype 1 8-8-12 Genotype 2	RHRPRSHLGQILF	RREWLVHERHRI	RORRENGEFT	A.	V.AS	S L L	D V T. KI. I
7-14-12 Genotype 2	. L			A	V.AS	.SLL	DVT.KI.I
8-36-12 Genotype 2	·	•••••	• • • • • • • • • •	A	V.AS	.SL	DVT.KI.I
7-38-12 Genotype 2	·	т.	• • • • • • • • • •	A	V.AS V A P	.S	D.V.VT.KI.I
7-22-12 Genotype 2		L			V.AR		DVT.KI.I
1-12-50-17* Genotype 2					V.AR	K.	DVT.KI.I
1-12-50-17* Genotype 2	•••••	L	•••••	•••••••	V.AR	K.	DV T. KI.I
1-12-50-17* Genotype 2 1-12-50-17* Genotype 2		Б			V.AR		D V T. KI. I D V T. KI. I
2-3-26-21* Genotype 2		L			V.AR	K.	DVT.KI.I
2-8-75-20* Genotype 2	• • • • • • • • • • • • • •	•••••	•••••	A	V.A	.SL	DVT.KI.I
1-4-29-17 Genotype 1					V		
1-4-31-17 Genotype 1					VR.		
2-10-87-18 Genotype 1		•••••	•••••			· · · · · · · · · · ·	
2-10-88-18 Genotype 1	•••••	•••••	•••••	••••••••		•••••	••••••
3-2-13-13 Genotype 1 3-2-10-15 Genotype 1							
4-5-51-13 Genotype 1						· · · • • • • • • • • •	
5-6-51-12 Genotype 1	• • • • • • • • • • • • • •	•••••	•••••	••••••	R	•••••	•••••
5-8-70-13 Genotype 1 6-5-33-17 Genotype 1							
0 3 33 I, Genocype I							,
-		1		•••••			••••
	100	110	120	130	140	150	160 170
2-1-3-21 Genotype 1 8-8-12 Genotype 2	PFEIIKIRKVKVI	rwecserrugen	RGVGSSAVIL	M.VP.C)	P	HSRIFTPREVLDSTI
7-14-12 Genotype 2			Ī	I.VP.C	2	P	
8-36-12 Genotype 2		•••••	<u>.</u>	M.VP.C	2	P	• _ • • • • • • • • • • • • • • •
7-38-12 Genotype 2		•••••	I	I.VP.C	2	••••••••••••••••••••••••••••••••••••••	. P
7-22-12 Genotype 2			Ť	FP.S			
1-12-50-17* Genotype 2			T	FP.S		•••••	
1-12-50-17* Genotype 2		•••••	· · · · · T · · · ·	FP.S	•••••	•••••	••••••••••••
1-12-50-17* Genotype 2 1-12-50-17* Genotype 2				FP.S			
2-3-26-21* Genotype 2			T	FP.S		P	
2-8-75-20* Genotype 2		• • • • • • • • • • •		IA.C	2	•••• <u>₽</u> •••••	•••••••••••
1-4-29-17 Genotype 1				••••••		· · · · P · · · · ·	
1-4-31-17 Genotype 1						P	
2-10-87-18 Genotype 1		•••••	• • • • • • • • • • •	• • • • • • • • • • • •		•••••	••••••••••••
2-10-88-18 Genotype 1		•••••	•••••	••••••		•••••	••••••
3-2-13-13 Genotype 1 3-2-10-15 Genotype 1							
4-5-51-13 Genotype 1				••••••N•••••		•••••	
5-6-51-12 Genotype 1		•••••	•••••			•••••	••••••••••••
6-5-33-17 Genotype 1							
		1					
	180	190	200	210	220	230	
2-1-3-21 Genotype 1 8-8-12 Genotype 2	DARGENNKKNÖFN	M SR	GLGTAFENS	LYDQEYNLRVI KD	TYYVQFREFNI	PKDLAFTXL	
7-14-12 Genotype 2		MSR		KD		К	
8-36-12 Genotype 2	•••••	MSR		KD		K.	
7-38-12 Genotype 2	••••••	MSR		KD		К.	
7-22-12 Genotype 2				. D		К	
1-12-50-17* Genotype 2	•••••	SA	• • • • • • • • • • •	<u>D</u>		K.	
1-12-50-17* Genotype 2	••••••	SA	•••••	D	••••	K.	
1-12-50-17* Genotype 2 1-12-50-17* Genotype 2				. D		К	
2-3-26-21* Genotype 2	•••••	SA		D		K.	
2-8-75-20* Genotype 2	••••••	M SR	•••••••••	KD		· · · · . K.	
1-13-105-17 Genotype 1		T					
1-4-31-17 Genotype 1						•••••	
2-10-87-18 Genotype 1	••••••	••••••	•••••	••••••	•••••	•••••	
2-10-00-10 Genotype 1 3-2-13-15 Genotype 1							
3-2-10-15 Genotype 1							
4-5-51-13 Genotype 1	••••••	••••••	•••••	• • • • • • • • • • • • •	•••••	•••••	
5-8-70-13 Genotype 1							
6-5-33-17 Genotype 1							

*Farms 4 and 5 corresponded to two independent studied batches coming from the same farm.

	History of PMWS	Clinical PMWS compatible picture	Weeks of Age	PMWS Confirmation	Numbe animals w				
Farm					PMWS	Wasted non- PMWS	Healthy	sows	Mortality*
1	Yes	Yes	17-18	Yes	2(1)	6 (4)	4 (3)	14 (2)	6.0
2	Yes	Yes	18-21	Yes	7 (6)	4 (4)	5 (2)	12 (0)	8.0
3	Yes	Yes	15-17	Yes	6 (5)	6 (3)	4 (1)	12 (0)	10.0
4	Yes	Yes	12-15	Yes	4 (3)	6 (3)	5 (0)	12 (0)	17.4
5	Yes	Yes	11-15	Yes	9 (7)	2 (0)	5 (1)	12 (0)	17.4
6	Yes	Yes	15-17	No	0 (0)	12 (7)	5 (2)	12 (0)	7.0
7	No	No	12	No	0	0	40 (3)	0	4.3
8	No	No	12	No	0	0	40 (3)	0	4.9
Total					28 (22)	36 (21)	108 (15)	74 (2)	

* = percentage of mortality during the fattening period (from 8 to 24 weeks of age).

Pig Reference*	Clinical status	No. of different sequences in the same pig (No of clones sequenced)	No. of different sequences within genotype 1 (number of sequenced clones)	No. of different sequences within genotype 2 (number of sequenced clones)	Sequence identity between different sequences
1-17	Wasted non- PMWS	3(4)	3(4)	0(0)	98.8-99.2
2-26	Wasted non- PMWS	3(3)	2(2)	1(1)	92.9-99.7
4-87	Wasted non- PMWS	3(4)	3(4)	0(0)	99.7-99-8
2-75	PMWS	6(7)	5(6)	1(1)	91.3-99.8
3-85	PMWS	3(5)	3(5)	0(0)	99.4-99.8
4-88	PMWS	3(5)	3(5)	0(0)	99.1-99-8
1-50	Healthy	5(6)	1(2)	4(4)	92.5-99.8
Total		26(34)	20(28)	6(6)	90.2-99.8

*Number of farm-number of pig.

Source of variation	df	Sum of squares	Variance components	% of variation	Related φ- statistics	P value
Within farms	81	440.6	5.43	20.50	φst =0.79494	<< 0.001
Among frams within groups	6	128.3	1.34	5.08	φsc=0.19840	<<0.001
Between groups	1	231.5	19.74	74.42	φct=0.74418	<<0.001
Total	88	800.3	26.52	100		