

Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in Hungarian swine herds

Gyula Balka, Ákos Hornyák, Ádám Bálint, István Kiss, Sándor Kecskeméti, Tamás Bakonyi, Miklós Rusvai

▶ To cite this version:

Gyula Balka, Ákos Hornyák, Ádám Bálint, István Kiss, Sándor Kecskeméti, et al.. Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in Hungarian swine herds. Veterinary Microbiology, 2007, 127 (1-2), pp.128. 10.1016/j.vetmic.2007.08.001 . hal-00532300

HAL Id: hal-00532300 https://hal.science/hal-00532300

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in Hungarian swine herds

Authors: Gyula Balka, Ákos Hornyák, Ádám Bálint, István Kiss, Sándor Kecskeméti, Tamás Bakonyi, Miklós Rusvai

Please cite this article as: Balka, G., Hornyák, Á., Bálint, Á., Kiss, I., Kecskeméti, S., Bakonyi, T., Rusvai, M., Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in Hungarian swine herds, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.08.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Genetic diversity of porcine reproductive and respiratory syndrome virus
2	strains circulating in Hungarian swine herds
3	
4	Gyula Balka ^{a,*} , Ákos Hornyák ^b , Ádám Bálint ^c , István Kiss ^d , Sándor Kecskeméti ^d ,
5	Tamás Bakonyi ^b , Miklós Rusvai ^a
6	
7	^a Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science,
8	Szent István University, István u. 2, H-1078 Budapest, Hungary
9	^b Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent
10	István University, Hungária krt. 23-25, H-1143 Budapest, Hungary
11	^c <u>Central Agricultural Office, Veterinary Diagnostic Directorate</u> , Tábornok u. 2, H-1149
12	Budapest, Hungary
13	^d <u>Central Agricultural Office, Veterinary Diagnostic Directorate</u> , Institute of Debrecen,
14	Bornemissza u. 3-5, H-4031 Debrecen, Hungary
15	* Corresponding author. Tel.: +36 1 478 4181; fax: +36 1 478 4284.
16	<i>E-mail address:</i> <u>balka.gyula@aotk.szie.hu</u> (Gy. Balka).
17	
18	
19	
20	Keywords: PRRSV, phylogenetic analysis, glycosilation
21	
22	
23	

24	Note: Nucleotide sequence data reported are available in the GenBank databases under the
25	accession numbers: DQ3666339 – DQ3666358, and EF406336 – EF406352.
26	Abstract
27	
28	Analysis of 37 ORF5 sequences of Hungarian porcine respiratory and reproductive syndrome
29	virus (PRRSV) strains revealed that most of them (35) belonged to the European genotype,
30	forming distinct subgroups, reflecting the exceptional diversity of Eastern European strains.
31	Twelve vaccine-like strains were also found in non-vaccinated animals. Two strains belonged
32	to the American genotype showing 90-91% nucleotide identity to the "Quebec" Canadian
33	reference strain. The analysis of the putative ectodomains and their N-linked glycosylation
34	sites of the vaccine strain and its variants suggested selective pressure on the first ectodomain,
35	by a consistent amino acid change on epitope B and by loosing a glycosylation site in the
36	otherwise conserved N-46 position.

2

37 **1. Introduction**

38 Porcine respiratory and reproductive syndrome (PRRS) is a widespread disease of 39 swine characterised by reproductive disorders in gilts and sows and by respiratory signs, 40 leading to death mostly in neonatal, suckling and weaned piglets. The porcine respiratory and 41 reproductive syndrome virus (PRRSV) is an enveloped, single stranded RNA virus of the 42 Arteriviridae family, member the order Nidovirales (Cavanagh et al., 1997). The genome of 43 PRRSV is approximately 15 kilobases (kb) in length, and comprises nine open reading frames 44 (ORFs). ORF 1a and 1b are coding for the enzymes responsible for the replication, ORF2a, 45 and ORFs 3 to 5 are coding the membrane associated glycoproteins, ORF2b and ORF6 are 46 encoding the nonglycosilated membrane proteins and the ORF7 codes for the nucleocapsid 47 protein (Wu et al., 2001; Snijder and Meulenberg 1998).

One of the most variable region of the PRRSV genome is the ORF5 encoding the 25kDa glycoprotein 5 (GP5) (Andreyev et al., 1997). This glycoprotein forms a heterodimeric complex with the M protein (encoded by ORF6) via disulphide bound and is located in the membrane of the virion (Snijder et al., 2003). GP5 contains neutralization epitopes in its Nterminal ectodomain and is one of the targets of the protective anti-viral immunity, since antibodies produced against it can protect the animals from viraemia and the development of the characteristic PRRSV lesions (Pirzadeh and Dea 1997; Balasuriya and MacLahan 2004).

Various sequence analyses have proven that there are marked genetic differences between the two major genotypes, the European and North American strains (Meng et al.,1995). In the past, European isolates were considered to be less variable than the American strains, however, recently significant differences were detected among the Eastern European strains supporting the definition of new genetic subtypes (Forsberg et al., 2002, Pesch et al., 2005, Stadejek et al., 2006). Genotypes forming a unique cluster were found in Lithuania and

4

61 thought to be closely related to the common ancestors of the European and American strains62 (Stadejek et al., 2002)

63 In Hungary only the presence of the European type sequences were reported so far 64 (Medveczky et al., 2001; Kiss et al., 2006). Considering the high diversity of the Eastern 65 European strains (Stadejek et al., 2002, 2006), including those surrounding Hungary (Indik et 66 al., 2005), and the observation that genetic variability might affect vaccination efficacy 67 (Labarque et al., 2004); the aim of this study was to detect and characterise PRRSV strains in 68 Hungary, and by comparing their ORF5 sequences, analyse their relationship to other 69 European and American isolates. Since European-type live virus vaccines are widely used in 70 Hungary, the presence of vaccine virus-like sequences in non vaccinated pigs of vaccinated 71 herds and their genetic stability was analysed by comparing them to the original vaccine 72 strains.

73

74 **2. Materials and methods**

75 2.1. Sample collection

Samples (lungs, were collected from pig farms located in different parts of Hungary,
between 2003 and 2006. (Description of the samples analysed in this study is given in Table
1.)

. .

79

80 2.2. RNA extraction and RT-PCR

81 The RNA preparation from the supernatant of the centrifugated tissue homogenates, 82 and from the sera and semen samples was carried out using the QIAmp Viral RNA Mini Kit 83 (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The RNA was 84 stored at -80°C until used.

85	The "diagnostic" primer pair (forward: 5'-CAGCCAGTCAATCARCTGTG-3' and				
86	reverse 5'-TCGCCCTAATTGAATAGGTG-3') was designed to amplify a part of the ORF7				
87	and the 3' noncoding region (from nucleotide 14658 to 15050 on the Lelystad strain,				
88	accession number: M96262, and 14937 - 15364 on the American reference strain VR-2332,				
89	acc. number: NC_001961) and to be used for detecting both European and, if present,				
90	American sequences in clinical samples. The positive samples were further tested by				
91	amplifying the ORF5 sequences using primers 5'-GTTGCTSCATTTCMTGACAC-3' and 5'-				
92	ATCGTCTAGGCCTCCCATTG-3' for the European strains (13416 - 14104 on the Lelystad				
93	strain); and 5'-ACCATGAGGTGGGCAACTGT-3' and 5'-				
94	TGGAGCCGTGCTATCATGAC-3' for the American strains (13721 – 14419 on VR-2332).				
95	The reverse transcription reactions (RTs) and the amplifications were performed by a				
96	continuous RT-PCR method using the Qiagen One-Step RT-PCR Kit (Qiagen, Hilden,				
97	Germany) at 52° annealing temperature for 35 cycles.				
98					
99	2.3. Sequencing and analysis of the sequence data				
100	The amplicons were sequenced using an ABI PRISM 3100 automatic sequencer. The				
101	chromatograms were visualised with the Chromas 2. software, and they were identified with				
102	BLAST (NCBI, Bethesda, USA), aligned by ALIGN PLUS 4 for Windows 95, version 4.0.				
103	Phylogenetic analyses were performed using the CLUSTAL X 1.81 software employing IUB				
104	DNA weight matrix with 0.5 transition ratio. Bootstrap resampling was carried out on 1000				
105	replicate data sets. Phylogenetic trees were plotted with the TREEVIEW (Win32 version				
106	1.6.6.) software. The N-linked glycosylation sites were determined with the NetNGlyc 1.0				
107	server software (<u>www.expasy.ch</u>).				

- 108
- 109

110 **3. Results and discussion**

111	Large majority of the samples, that were positive after the "diagnostic", ORF7 RT-
112	PCR were squenced after amplifying a part of the ORF5 gene with the appropriate primers.
113	Altogether 37 ORF5 sequences were analysed obtained from 17 herds all over the country.
114	The nucleic acid sequences were aligned and compared to each other and to selected
115	European and American strains. 35 of the 37 Hungarian strains belonged to the European
116	genotype showing 92.54±1.93% average nucleotide identity (and standard deviation) to the
117	Lelystad reference strain in the corresponding region of the genome. Strains HU12 and HU21
118	showed 86.80%, and 85.87% nucleotide identity with the American reference strain VR-2332,
119	respectively.
120	In one case (HU13), porcine alveolar macrophage (PAM) culture was prepared from
121	the lungs of an apparently healthy piglet for further virus propagation. To test the cell culture
122	before inoculation RNA was prepared from it and gave positive RT-PCR reaction when
123	applying the "diagnostic" primers, hence confirmed the "genuine" PRRSV infection of the
124	PAM cells. The aligned ORF5 sequence of the isolate from the PAM cells of the piglet
125	differed only by one nucleotide, and one AA $(g_{13659}$ to a, resulting D_{56} to U) from a European-
126	type live vaccine strain. The mother of the piglet was vaccinated twice during gestation with
127	this vaccine. Two other strains (HU14 and HU19) recovered from the same herd from
128	healthy, non-vaccinated gilts, housed together with vaccinated sows had 98.84% nucleotide
129	identity, 97.92% and 98.61% amino acid identity with the vaccine virus, respectively.
130	In an other case, amplicons from different positive samples collected in a seropositive
131	herd were sequenced. In the herd two different European-type live vaccines were used one
132	after the other (first "vaccine a", then "vaccine b", then "vaccine a" again). The samples were

obtained in the third phase when "vaccine a" was used again. Analysing the results of thenucleotide sequencing we could identify strains showing 98.84-99.77% nucleotide identity

7

with "vaccine b". All of these samples were lungs of aborted foetuses or piglets showing
severe respiratory symptoms before death. None of the piglets were vaccinated with any type
of vaccine, only their mothers were vaccinated twice with "vaccine a" during their gestation.
It is remarkable that "vaccine b" was detected from <u>all the pigs 3-4 months after</u> reintroduction of "vaccine a" (Kiss et al., 2006).

A phylogenetic tree was constructed by using sequence data of amplicons from 71 strains: 37 Hungarian sequences, and a further 34 representatives of different genogroups, deposited in the GenBank (Fig. 1). Strains used for the construction of the phylogenetic tree are shown in Table 1.

144 In the phylogenetic tree the separation of the Hungarian strains resembling European 145 and American type PRRSV genotypes was supported by high bootstrap values: 35 of 37 146 strains were positioned among the European genotype, while strain HU12 and HU21 were 147 clustered within the American genotype. The Hungarian strains of the European genotype are 148 all clustered within Subtype 1 defined by Stadejek et al., (2006), and located in four different 149 subgroups, while one strain (HU16) was positioned alone. Subroup 4 was formed by 20 150 Hungarian strains, 54% of the strains investigated in this study. Within this subgroup the 151 separation of the strains was in correlation with the distance of the geographical location of 152 the herds where these samples were collected. All vaccine related strains of subgroup 1 and 2 153 were recovered from herds using European type live-virus vaccine. None of these animals 154 were vaccinated with any type of vaccine. These results suggested that the live vaccine-virus 155 strains were able to spread and circulate within the herd. Strain HU12 and HU21 are the first 156 identified strains in Hungary belonging to the American genotype. In Hungary the use of 157 American type vaccine is not authorised, and HU12 was detected in a herd which has 158 breeding contact with a Danish farm (boars are regularly introduced from Denmark). 159 Although in Denmark both genotypes are reported to be present (Madsen et al., 1998), the

160 origin of these strains is unknown because they are more similar to the "Quebec" Canadian

161 reference strain (90%, and 91% nucleotide identity) than any American type MLV strain. The

162

herd where HU21 was detected is fattening weaned piglets of herd where HU12 was found.

163 Analysing the nucleic acid and the deduced amino acid identity values of the vaccine 164 related strains compared to live vaccine virus strains it is remarkable that in case of the 165 derivates of "vaccine b" all amino acid changes were found in the putative ectodomain, 166 consistently at the same amino acid positions (Fig. 2). The AA change at position 37 may also affect the attachment of neutralizing antibodies, since this is the first amino acid of the 167 168 neutralizing epitope B (Balasuriya and MacLahan 2004; Ostrowski et al., 2002). Analysing 169 the putative N-linked glycosylation sites of the first ectodomain of the live vaccine virus 170 strains and their derivates, it was found that in case of "vaccine b" almost all the vaccine-like variants lost the N-46 glycosylation site, by a consistent N to K AA change (compared to the 171 172 vaccine strain). Variability in this region is rare; since this part of the ectodomain is thought to 173 be extremely conserved (Pesch et al., 2005), and only few reports are found on wild type 174 strains without N-46 (Mateu et al., 2006; Stadejek et al., 2006). Vaccine-like strains lacking 175 N-46 are not reported so far. Strain HU08 is also without N-46. In an in vitro study the 176 infectivity of mutant PRRS viruses lacking oligosaccharide bound to N-46 exhibited a 177 significantly reduced infectivity compared to the wild type virus due to improper folding of 178 the GP5, which led to inefficient GP5-M heterodimerisation (Wissink et al., 2004). Loss of 179 glycan residues of the GP5 ectodomain enhances both the sensitivity of the viruses to in vitro 180 neutralization and the immunogenicity of the nearby neutralization epitopes (Ansari et al., 181 2006). However all these strains lacking N-46 have a glycosylation site at AA position 37 (the 182 vaccine has N-35), which is thought to adopt the function of N-46 (Wissink et al., 2004). The 183 comparison of these variants to the parental, wild isolate, from which the vaccine was 184 prepared could possibly confirm the reversion of the vaccine, because all "vaccine b"-like

185 sequences were recovered from aborted fetuses, or carcasses having severe respiratory 186 problems prior to death (Table 1), and the economical losses caused by PRRS-like symptoms 187 have extremely elevated after the introduction of this vaccine. Furthermore in an other herd 188 where "vaccine a" was used alone the AA changes of the vaccine like strains were found in 189 random distribution, all the "vaccine a"-like sequences were obtained from clinically healthy 190 animals, and such losses were not observed within the herd. Comparing the nucleotide and the 191 amino acid sequence alignments it is also remarkable that the incidence of the synonymous 192 mutations in case of the vaccine-like strains is quite low. One might speculate that the 193 explanation of this phenomenon could be the selective pressure of the immune system 194 directed against the GP5 ectodomain, and indicates putative positive and negative selection 195 sites on this part of the genome as observed previously by other investigators (Storgaard et al., 196 1999; Mateu et al., 2006). To avoid this selective pressure, those variants that have developed 197 greater phenotypic differences (AA changes) compared to the original strain, had better 198 chance to spread and persist within the herd while silent mutations were not rewarded by 199 higher chances to multiply and spread. Detailed sequence analyses are needed in the future to 200 identify the positive and negative selection sites, to verify the possible reversion of the 201 vaccine virus or determine the cause of the increased losses after the introduction of the 202 vaccine.

203

204 4. Acknowledgements

205

The work was supported by the Hungarian National Grants OTKA M041852, K62853, 206 M02765 and D048647.

1 **References**

2	Andreyev, V.G., Wesley, R.D., Mengeling, W.L., Vorwald, A.C., Lager, K.M., 1997. Genetic
3	variation and phylogenetic relationships of 22 porcine reproductive and respiratory
4	syndrome virus (PRRSV) field strains based on sequence analysis of open reading frame
5	5. Arch. Virol. 142, 993-1001.
6	Ansari, I.H., Kwon, B., Osorio, F.A., Pattnaik, A.K., 2006. Influence of N-linked
7	glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus
8	infectivity, antigenicity, and ability to induce neutralizing antibodies. J. Virol. 80, 3994-
9	4004.
10	Balasuriya, U.B., MacLachlan, N.J., 2004. The immune response to equine arteritis virus:
11	potential lessons for other arteriviruses. Vet. Immunol. Immunopathol. 102, 107-129.
12	Cavanagh, D., 1997. Nidovirales: a new order comprising Coronaviridae and Arteriviridae.
13	Arch. Virol. 142, 629-633.
14	Forsberg, R., Storgaard, T., Nielsen, H.S., Oleksiewicz, M.B., Cordioli, P., Sala, G., Hein, J.,
15	Bøtner, A., 2002. The genetic diversity of European type PRRSV is similar to that of the
16	North American type but is geographically skewed within Europe. Virology, 299. 38-47.
17	Indik, S., Schmoll, F., Sipos, W., and Klein, D., 2005. Genetic variability of PRRS virus in
18	Austria: consequences for molecular diagnostics and viral quantification. Vet.
19	Microbiol. 107, 171-179.
20	Kiss, I., Sámi, L., Kecskeméti, S., Hanada, K., 2006. Genetic variation of the prevailing
21	porcine respiratory and reproductive syndrome viruses occurring on a pig farm upon
22	vaccination. Arch. Virol. 151, 2269-2276.
23	Labarque, G., Van Reeth, K., Nauwynck, H., Drexler, C., Van Gucht, S., Pensaert, M., 2004.
23 24	Labarque, G., Van Reeth, K., Nauwynck, H., Drexler, C., Van Gucht, S., Pensaert, M., 2004. Impact of genetic diversity of European-type porcine reproductive and respiratory

1	Madsen, K.G., Hansen, C.M., Madsen, E.S., Strandbygaard, B., Botner, A., Sorensen, K.J.,			
2	1998. Sequence analysis of porcine reproductive and respiratory syndrome virus of the			
3	American type collected from Danish swine herds. Arch. Virol. 143, 1683–1700.			
4	Mateu, E., Díaz, L., Darwich, L., Casal, J., Martín, M., Pujols, J., 2006. Evolution of ORF5			
5	Spanish porcine reproductive and respiratory syndrome virus strains from 1991 to 200			
6	Virus Res.115, 198-206.			
7	Medveczky, I., Bálint, Á., Makranszky, L., Steverink, P., and Jacobs L., 2001. Sequenc			
8	analysis of the membrane protein gene and nucleocapsid gene of porcine reproductive			
9	and respiratory syndrome virus isolated from a swine herd in Hungary. Acta Vet. Hung.			
10	49, 237-244.			
11	Meng, X.J., Paul, P.S., Halbur, P.G., and Lum, M.A., 1995. Phylogenetic analyses of the			
12	putative M (ORF6) and N (ORF7) genes of porcine reproductive and respiratory			
13	syndrome virus (PRRSV): Implication for the existence of two genotypes of PRRSV in			
14	the USA and Europe. Arch. Virol. 140, 745-755.			
15	Meulenberg, J.J.M., 2000. PRRSV, the virus. Review article. Vet. Res. 31, 11-21.			
16	Ostrowski, M., Galeota, J.A., Jar. A.M., Platt, K.B., Osorio, F.A., and Lopez O.J. 2002.			
17	Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive			
18	and respiratory syndrome virus GP5 ectodomain. J. Virol. 76, 4241-4251.			
19	Pesch, S., Meyer, C., Ohrlinger, V.F., 2005. New insights into the genetic diversity of			
20	European porcine reproductive and respiratory syndrome virus (PRRSV). Vet.			
21	Microbiol. 107, 31-48.			
22	Pirzadeh, B., and Dea, S., 1997. Monoclonal antibodies to the ORF5 product of porcine			
23	reproductive and respiratory syndrome virus define linear neutralizing determinants. J.			
24	Gen. Virol. 78, 1867-1873.			

1	Snijder, E.J., Dobbe, J.C., Spaan, W.J.M., 2003. Heterodimerization of the two major				
2	envelope proteins is essential for arterivirus infectivity. J. Virol. 77, 97-104.				
3	Snijder, E.J., Meulenberg, J.J.M., 1998. The molecular biology of arteriviruses. J. Gen. Virol				
4	<u>83, 961-979.</u>				
5	Stadejek, T., Stankevicius, A., Storgaard, T., Oleksiewicz, M. B., Belák, S., Drew, T., and				
6	Pejsak, Z., 2002. Identification of radically different variants of porcine reproductive				
7	and respiratory syndrome virus (PRRSV) in Eastern Europe: Towards a common				
8	ancestor for European and American viruses. J. Gen. Virol. 83, 1861-1873.				
9	Stadejek, T., Oleksiewicz, M.B, Potapchuk, D., Podgórska, K., 2006. Porcine reproductive				
10	and respiratory syndrome virus strains of exceptional diversity in eastern Europe suppor				
11	the definition of new genetic subtypes. J. Gen. Virol. 87, 1835-1841.				
12	Storgaard, T., Oleksiewicz , M.B., Bøtner, A., 1999. Examination of the selective pressures on				
13	a live PRRS vaccine virus. Arch. Virol. 83, 2389-1873.				
14	Wissink, E.H.J., Kroese, M.V., Maneschijn-Bonsing, J.G., Meulenberg, J.J.M, van Rijn, P.A.,				
15	Rijsewijk, F.A.M., Rottier, P.J.M., 2004. Significance of the oligosaccharides of the				
16	porcine reproductive and respiratory syndrome virus glycoproteins GP_{2a} and GP_5 for				
17	infectious virus production. J. Gen. Virol. 85, 3715-3723.				
18	Wu, W.H., Fang, Y., Farwell, R., Steffen-Bien, M., Rowland, R.R.R., Christopher-Hennings,				
19	J., and Nelson, E., 2001. A 10 kDa structural protein of porcine reproductive and				
20	respiratory syndrome virus encoded by ORF2b. Virology 287, 183-191.				

1 Figure legends

- 2 Table 1. Viruses involved in the genetic investigations.
- 3
- ^{*} Porcine alveolar macrophage culture prepared from an apparently healthy 10 day old piglet for purposes
- 5 of virus propagation but tested positive by PCR before inoculation
- 6
- 7
- 8 Figure 1. Phylogenetic tree based on the data of nucleotide sequences on the ORF 5 gene of 37 Hungarian
- 9 strains and 34 foreign strains. Abbreviations are indicated in Table 1. Bar on the right demonstrates the
- 10 genetic distance. Internal labels represent the bootstrap values of 1000 replicates.
- 11
- 12

13 Figure 2. Multiple alignment of the putative amino acid sequences of the vaccine derived PRRSV strains

- 14 between amino acid position 33 and 176 of the GP5 protein.
- 15
- 16 Bars under the sequence of the vaccine strains indicate putative N-linked glycosylation sites.
- 17 Boxes represent the ectodomains 1 and 2, and epitope B.

13

		Date of sample	ConPonk ago
Strain	Origin	collection/ year of	number
		submission	number
HU01	lungs of an aborted fetus	20.06.2003.	DQ3666339
HU02	lungs of a dead fattening pig	20.10.2003.	DQ3666340
HU03	tonsil of a dead weaned pig	20.10.2004.	DQ3666341
HU04	lungs of a dead weated pig	13.10.2003.	DQ3666342
HU05	lungs of a dead fattening pig	30.07.2004.	DQ3000343
HU06	lungs of a dead fattening pig	16.12.2004.	DQ3666344
	lungs of a dead fattening pig	13.02.2003	DQ3000343
	lungs of an aborted fetus	17.02.2005	DQ3000340
HU10	lungs of a dead weaped pig	26.02.2005	DQ3666348
HU11	lungs of an aborted fetus	06.04.2005	DQ3666349
HU12	serum of a healthy weaped nig	11.05.2005	DQ3666350
HU13*	healthy suckling piglet	25 10 2004	DQ3666351
HU14	serum of a healthy gilt	25.10.2004	DO3666352
HU15	serum of an aborting sow	14.06.2004.	DQ3666353
HU16	lungs of a dead weaned pig	26.11.2004.	DQ3666354
HU17	serum of a weaned piglet	10.03.2005.	DQ3666355
HU18	lungs of a dead weaned pig	02.12.2004.	DQ3666356
HU19	lungs of a dead weaned pig	19.10.2004.	DQ3666357
HU20	lungs of a dead weaned pig	06.04.2005.	DQ3666358
HU21	lungs of a dead fattening pig	22.09.2006.	EF406336
HU22	lungs of an aborted fetus	11.09.2003.	EF406337
HU23	lungs of an aborted fetus	11.09.2003.	EF406338
HU24	lungs of an aborted fetus	18.09.2003.	EF406339
HU25	lungs of a dead fattening pig	20.10.2003.	EF406340
HU26	lungs of an aborted fetus	15.10.2004.	EF406341
HU27	lungs of a dead weaned pig	30.07.2004.	EF406342
HU28	lungs of a dead fattening pig	15.09.2004.	EF406343
HU29	lungs of a dead fattening pig	15.09.2004.	EF406344
HU30	lungs of a dead weaned pig	22.10.2004.	EF406345
HU31	lungs of a dead fattening pig	16.12.2004.	EF406346
HU32	lungs of a dead fattening pig	16.12.2004.	EF406347
HU33	lungs of a dead fattening pig	23.03.2005.	EF406348
HU34	lungs of a dead fattening pig	23.03.2005.	EF406349
HU35	lungs of a dead fattening pig	23.03.2005.	EF406350
HU36	lungs of a dead fattening pig	14.11.2005.	EF406351
HU37	lungs of a dead fattening pig	14.11.2005.	EF406352
AMERVAC	Spain	2006	DQ324668
BEL2001	Belgium Gesch Dan	2001	A Y 035901
BUH2000 BBIT2002	Czech Rep.	2000	AF233337 AF279700
DEN1002	Denmark	1002	AF5/8/99 A 1222078
DEN1992 DEN2001	Denmark	2001	AV035030
FR A 1995	France	1006	LIA0607
ARNSBERG	Germany	2002	ΔF378797
ITA 1995	Italy	1996	U40696
LELYSTAD	The Netherlands	1993	M96262
LITH01	Lithuania	2002	AF378800
LITH02	Lithuania	2002	AF378801
POL2002	Poland	2002	AF378804
PORCILIS	The Netherlands	2002	AF378819
PRIMEPAC	U.S.A.	1998	AF066384
PYRSVAC	Spain	2002	AF378820
QUE1994	Canada	1995	L40898
RESPPRRS	U.S.A.	1998	AF066183
SPA1996	Spain	1996	U40690
VR-2332	U.S.A.	1995	U87392
BEL-42	Belarus	2006	DQ324669
BOR-54	Belarus	2006	DQ324672
OBU-1	Belarus	2006	DQ324676
OKT-35	Belarus	2006	DQ324677
SNO-4	Belarus	2006	DQ324683
SOZ-6	Belarus	2006	DQ324686
VOS-49	Belarus	2006	DQ324690
ZAD-1	Belarus	2006	DQ324694
AUS	Lithuania	2006	DQ324667
SID	Lithuania	2006	DQ324682
FJ-1	China	2004	AY881994
GU992M	Japan	2005	AB175721
MD-001	Taiwan	1998	AF121131
01UD6	Thailand	2004	AY297113