

High genetic relatedness among strains isolated from pigs and humans revealed by comparative IS RFLP analysis

T. Tirkkonen, J. Pakarinen, A-M. Moisander, J. Mäkinen, H. Soini, T. Ali-Vehmas

► To cite this version:

T. Tirkkonen, J. Pakarinen, A-M. Moisander, J. Mäkinen, H. Soini, et al.. High genetic relatedness among strains isolated from pigs and humans revealed by comparative IS RFLP analysis. Veterinary Microbiology, 2007, 125 (1-2), pp.175. 10.1016/j.vetmic.2007.05.005 . hal-00532263

HAL Id: hal-00532263 https://hal.science/hal-00532263

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: High genetic relatedness among *Mycobacterium avium* strains isolated from pigs and humans revealed by comparative IS *1245* RFLP analysis

Authors: T. Tirkkonen, J. Pakarinen, A-M. Moisander, J. Mäkinen, H. Soini, T. Ali-Vehmas

PII:	S0378-1135(07)00232-5
DOI:	doi:10.1016/j.vetmic.2007.05.005
Reference:	VETMIC 3692
To appear in:	VETMIC
Received date:	8-12-2006
Revised date:	4-5-2007
Accepted date:	10-5-2007

Please cite this article as: Tirkkonen, T., Pakarinen, J., Moisander, A-M., Mäkinen, J., Soini, H., Ali-Vehmas, T., High genetic relatedness among *Mycobacterium avium* strains isolated from pigs and humans revealed by comparative IS *1245* RFLP analysis, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.05.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	High genetic relatedness among Mycobacterium avium strains isolated from pigs
2	and humans revealed by comparative IS1245 RFLP analysis
3	
4	
5	Tirkkonen ¹ , T., Pakarinen ^{2*} , J., Moisander ³ , A-M., Mäkinen ⁴ , J., Soini ⁴ , H., Ali-Vehmas ² , T.
6	
7	¹ Faculty of Veterinary Medicine, Department of Production Animal Medicine, POB 66, FIN 00014,
8	University of Helsinki, Finland, Present address of T. Tirkkonen: A-Farmers Ltd, POB 910, FIN
9	60061 Atria, Finland.
10	² Faculty of Agriculture and Forestry, Department of Applied Chemistry and Microbiology, POB 56,
11	FIN 00014, University of Helsinki, Finland
12	³ Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences, POB 66, FIN 00014
13	University of Helsinki; Finland
14	⁴ Mycobacterial Reference Laboratory, National Public Health Institute, Kiinanmyllynkatu 13, FIN
15	20520, Turku, Finland.
16	
17	*Corresponding author. Mailing address: Department of Applied Chemistry and Microbiology, P.O.
18	Box 56, FIN-00014 University of Helsinki Finland, Phone: +358-9-19159324, FAX: +358-9-
19	19159301, E-mail: jaakko.pakarinen@helsinki.fi.
20	
21	Key words: molecular epidemiology, zoonosis, food safety.
22	

23 Abstract

24	Members of the Mycobacterium avium complex cause pig mycobacteriosis and opportunistic
25	human infections. Infections due to environmental mycobacteria are increasing in both industrial
26	and developing countries. Mycobacterium-infected pig carcasses can pass for human consumption
27	due to the poor specificity of meat control by visual detection at the slaughter houses.
28	The genetic relatedness of porcine and human MAC isolates in Finland has been unknown. M.
29	avium isolates isolated from pig organs (n=16) and clinical samples (n=13) were compared by
30	IS1245 RFLP analysis to evaluate the similarity of the isolates obtained from human and porcine
31	samples.
32	Nearly identical multicopy Mycobacterium avium subsp. hominissuis IS1245 RFLP fingerprints
33	were obtained for isolates of porcine and human origin. IS1245 RFLP patterns of 38 % of the
34	porcine and human <i>M. a. hominissuis</i> isolates were >90% similar. The RFLP patterns of 2 porcine
35	and 2 human isolates showed >95 % similarity. The high similarity of the IS1245 RFLP patterns of
36	the human and porcine <i>M. a. hominissuis</i> isolates indicates close genetic relatedness, suggesting that
37	M. a. hominissuis is transmitted between pigs and humans, or that pigs and humans share common
38	environmental sources of infection. Porcine and human isolates with RFLP patterns differing by
39	only 1 or 2 bands were found, which shows that the same <i>M. a. hominissuis</i> strains may infect both
40	humans and pigs.

42 INTRODUCTION

43 Animal mycobacteriosis causes major economical losses world wide and a potential health risk to 44 humans (Biet et al., 2005; Thorel et al., 2001). Pig mycobacteriosis is a significant problem in 45 several European countries, with a prevalence of 0.34% in Finland, 0.5% in the Netherlands (Ali-46 Vehmas et al., 2004; Komijn et al., 1999) and 10% in Germany in an area where pigs were fed peat 47 (von Durrling et al., 1998). Economic losses worth approximately 0.5 million euros per the annually 48 processed 2.1 million carcasses (Information Centre of the Ministry of Agriculture and Forestry of 49 Finland, 2005) are caused in Finland due to condemnation of pork infected by mycobacteria as only 50 conditionally edible after processing. 51 Martín-Casabona et al. (2004) reported 36,099 human infections by non-tuberculous mycobacteria 52 (NTM) and 22,884 NTM isolates identified to the species level in 14 countries world wide between 53 1991 and 1996. A total of 3,961 NTM isolates were obtained from human specimens in Finland 54 between 1995 and 2004 (livonen et al., 2005). Human NTM infection occurs mainly in 55 immunosuppressed individuals and is most frequently caused by members of the Mycobacterium 56 avium complex (MAC), which occurred in 1,360 (34%) of the 3,961 human cases in Finland and 57 6,633 (29%, including *M. intracellulare*) of the 22,884 human cases in the multi-country survey by 58 Martín-Casabona et al. (2004). 59 Komijn et al. (1999) compared human and porcine Mycobacterium avium subsp. hominissuis (M. a. 60 hominissuis) isolates in the Netherlands by the IS1245 restriction fragment length polymorphism 61 (RFLP) method standardized by van Soolingen et al. (1998) and discovered that the RFLP patterns 62 of 61% of the human and 59% of the porcine isolates were > 75% similar, showing close genetic 63 relatedness, and that pigs may be a vehicle for human M. a. hominissuis infections, or that pigs and 64 humans share common sources of infection. Direct transmission of NTM between animals and 65 humans has not been proven. Möbius et al. (2006) found close genetic relatedness between porcine 66 and human M. a. hominissuis isolates in Germany using the IS1245 RFLP method and pulse field

67 gel electrophoresis. The IS1245 probe used in the standard method may cross hybridize with the

68 IS1311 element, whereby the RFLP method is not strictly specific to IS1245 (Johansen et al., 2005).

69 In the present study we used the IS1245 RFLP analysis to study the genetic relatedness of *M. a.*

70 hominissuis isolates isolated from slaughter pigs and humans in Finland with regard to public health

71 aspects.

72 MATERIAL AND METHODS

73 Bacterial strains

We randomly selected 13 clinical *M. avium* isolates collected 2001 to 2004 from patients living in Finland, and stored in the culture collection of the Mycobacterial Reference Laboratory, National Public Health Institute, Turku, Finland, for comparison. The clinical isolates were originally obtained from sputum, bronchial washings and lung biopsies. *M. avium* subsp. *avium* reference strains were supplied by culture collections as indicated by strain code (Fig. 1) and the reference strain IWGMT 49 kindly provided by Dick van Soolingen.

80 Isolation of mycobacteria from porcine tissue

81 Specimens of liver (n=27), lung (n=10), spleen (n=3), lymph node (n=2) and heart (n=1) tissue with 82 visible tuberculous lesions were collected from 9 pigs raised in Southern Finland and Western 83 Central Finland and slaughtered at the slaughterhouse in Nurmo Finland in 2002. Mycobacteria 84 were isolated on Mycobacterium 1 and Mycobacterium 2 modified Löwenstein-Jensen culture 85 medium (Orion Diagnostica, Finland) and Middlebrook 7H10 agar medium (Difco Laboratories, 86 USA) and incubated for 14 to 28 days at 28 °C. Samples were incubated at 28°C to enable the 87 isolation of mycobacterial species that grow slowly at temperature above 28°C. The colonies 88 obtained were stained by the Ziel-Nielsen Carbol Fuchsin method. Representatives of each acid-fast 89 colony type were subcultured on Middlebrook 7H10 agar plates, incubated at 28°C and stored in 90 glycerol at -70 °C.

91 Identification of isolates

92	59 bacterial cultures were identified to species level by partial sequencing of the 16S rDNA gene as
93	described by (Kirschner et al, 1993). The sequences were compared with the RIDOM (Harmsen et
94	al., 2002) and GenBank (Benson et al. 2006) databases and a 100% match was required for species
95	identification.
96	RFLP-typing and data analysis
97	For the genetic typing of 16 porcine and 13 human <i>M. avium</i> isolates IS1245 Restriction Fragment
98	Length Polymorphism (RFLP) was used as described by van Soolingen et al. (1998). 5 porcine
99	isolates and one human isolate were run in duplicate to confirm the reproducibility of the RFLP
100	patterns.
101	The RFLP patterns were analyzed with the Bionumerics program (version 4.0, Applied Maths,
102	Kortrijk, Belgium). Autoradiograms of the IS1245 patterns were superimposed on the
103	autoradiograms of internal markers for normalization. The dice coefficient of similarity for all pair
104	wise comparisons of patterns was calculated. A dendrogram of relatedness among the patterns was
105	constructed by the unweighted pair group method with arithmetic averages clustering method.
106	RESULTS
107	Isolation and identification of mycobacteria from porcine tissue
108	43 tissue specimens from 9 pigs with tuberculous lesions were investigated for the presence of
109	mycobacteria (Table 1). 18 tissues (42%) were culture positive. Culture positive specimens were
110	obtained from all 9 pigs. A total of 59 pure mycobacterial cultures were obtained. All porcine
111	mycobacterial isolates (n=59) had 16S rRNA gene sequences 100% identical with the 16S rRNA
112	gene sequence of <i>M. avium</i> (GeneBank accession number CP000479), which supports the view of
113	M. avium as the principal pig pathogen. The partial 16S rRNA gene sequence of the strain AM26
114	was deposited in the EMBL nucleotide database with the accession number AM698088.
115	RFLP-typing of <i>M. avium</i> isolates

Genetic fingerprints were generated for 16 porcine and 13 human *M. avium* isolates by RFLP analysis of the IS*1245* element. Fig. 1 shows the IS*1245* RFLP patterns of 16 porcine and 13 human *M. avium* isolates and 5 *M. avium* reference strains. 29 different RFLP patterns were obtained for the porcine and human isolates. The replicate DNA preparations produced identical RFLP patterns for each strain. In 6 pigs 2 or more isolates with different RFLP patterns were isolated. In one case (pig 3247), 4 strains with different RFLP patterns were obtained from 4 specimens from the same pig (2 lung, 1 liver, 1 lymph node specimen).

123 Cluster analysis

124 The genetic relatedness of the porcine and human *M. avium* isolates was studied by cluster analysis 125 of the IS1245 RFLP patterns. All porcine and human isolates showed high-copy IS1245 RFLP 126 patterns (>5 bands) typical for *M. avium* subsp. hominissuis (Mijs et al., 2002) (Table 1) and 127 differed from the low-copy number patterns of the M. a. avium isolates (Fig. 1). The similarity of 128 RFLP patterns between the *M. a. avium* reference strains was 100%. Similarity of the IS1245 129 RFLP patterns among the porcine isolates was >50% and among the human isolates >40%. Ten 130 porcine and seven human isolates grouped together with >80% similarity. Six porcine (38%) and 131 five human (38%) isolates had RFLP patterns with >90% similarity. In two cases porcine (AM23B) 132 and AM26) and human (H03965/1 and H0147/2) isolates grouped together with >95% similarity. 133 The human isolate H03965/1 was analyzed as a duplicate to ensure the reproducibility of the close 134 clustering. The high similarity between the RFLP patterns of porcine and human M. avium isolates 135 shows that they are closely genetically related. Four isolates with IS1245 RFLP patterns 50% to 136 80% similar were obtained from the pig 3247, which suggests simultaneous infection by four 137 different strains.

138 **DISCUSSION**

The prevalence of tuberculous lesions in slaughter pigs has increased ten-fold in Finland during the
last decade (Ali-Vehmas et al., 2004). Approximately one in 10,000 individuals in Finland is yearly

infected by environmental mycobacteria, and the infections are caused by members of MAC moreoften than any other NTM species (Iivonen et al., 2005).

143 In this study porcine *M. avium* isolates were identified by sequencing of the 16S rRNA gene and 144 compared to human isolates using the IS1245 RFLP standard method. No earlier reports on 145 comparative RFLP typing of human and porcine M. avium isolates from Finland exist. RFLP 146 analysis showed that both pigs and humans were infected with strains carrying a large number of 147 the IS1245 element. These isolates produced more than 15 identical bands, which is the typical 148 IS1245 RFLP pattern for *M. avium* subsp. hominissuis (Mijs et al., 2002). Almost identical IS1245 149 RFLP fingerprints were found in strains of porcine and human origin. The high similarity (>90%) 150 of the IS1245 RFLP patterns of ~40% of the human and porcine M. a. hominissuis isolates 151 evidences close genetic relatedness between human and porcine M. a. hominissuis isolates in 152 Finland. The results of this study support the earlier studies reporting close genetic relatedness 153 between human and porcine *M. a. hominissuis* isolates in the Netherlands (Komijn et al., 1999), 154 Sweden (Ramasoota et al., 2001), and Germany (Möbius et al., 2006) and the hypothesis about a 155 common source of *M. a. hominissuis* infection for pigs and humans or pigs as a vehicle for human 156 infections. 157 Isolation of several IS1245 genotypes of *M. avium* from one pig suggests simultaneous infection by 158 several *M. avium* strains. This finding supports the study of Matlova et al. (2005) where one isolate 159 from a single pig contained several mycobacterial clones with different RFLP types. Simultaneous 160 infection by several strains can be the result of a heavy load of M. a. hominissuis in the piggery 161 environment, or susceptibility of some pigs to M. a. hominissuis infection. M. avium and other

- 162 NTM have been shown to occur in piggery bedding materials such as peat, sawdust, and straw and
- also in drinking water (Matlova et al., 2003, 2004, 2005; Pakarinen et al., 2006; Windsor et al.,
- 164 1984). The high prevalence of pig mycobacteriosis and the common occurrence of mycobacteria in

- the piggery environment indicate that piggeries may be reservoirs of infective environmentalmycobacteria.
- 167 Pig mycobacteriosis is diagnosed at slaughterhouses by a visual detection of tuberculous lesions in 168 pig organs. Komijn et al. (1999) reported isolation of M. a. hominissuis from the mesenteric lymph 169 nodes of 48 out of 345 (13.9%) healthy slaughter pigs without tuberculous lesions in the lymph 170 nodes, which shows that visual inspection is a poor method for detection of pig mycobacteriosis. 171 There is long-term evidence that ingestion can be a route of human M. avium infection (Argueta et 172 al., 2000; Yoder et al., 1999). In some cases temperature of up to 70 °C is required for inhibition of 173 *M. avium* (Nichols et al., 2004), whereby mycobacteria may survive in poorly heated pork. 174 Effective methods are needed for detection, quantification, identification and genetic profiling of 175 environmental mycobacteria in order to trace the environmental reservoirs of human and animal 176 mycobacteriosis. Using IS1245 RFLP we identified nearly identical M. a. hominissuis from pig 177 organ samples and clinical cases and showed that pigs may be a vehicle for *M. a. hominissuis* 178 infections in humans, or that pigs and humans share common sources of infection in Finland.
- 179 Acknowledgements
- 180 This work was supported by the Academy of Finland grant no 53305, TEKES grant no 2265/31/03
- 181 and the Finnish Graduate School of Applied Bioscience.

182 **References**

- Ali-Vehmas, T., Moisander, A.-M., Soini, H., 2004. , Mycobacteriosis A review and
 survey in Finland. Finn. Vet. J. 110, 79-84 (in finnish).
- 185 2. Argueta, C., Yoder, S., Holtzman, A.E., Aronson, T.W., Glover, N., Berlin, O.G., Stelma,
- 186 G.N. Jr, Froman, S., Tomasek, P., 200. Isolation and identification of nontuberculous
- 187 mycobacteria from foods as possible exposure sources. J. Food Prot. 63, 930-933.
- 188 3. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L., 2006. GenBank.
- 189 Nucleic Acids Res. 34, D16-20.

190	4.	Biet, F., Boschiroli, M.L., Thorel, M.F., Guilloteau, L.A., 2005. Zoonotic aspects of
191		Mycobacterium Bovis and Mycobacterium avium-intracellulare complex (MAC). Vet. Res.
192		36, 411-436.
193	5.	Harmsen, D., Rothgänger, J., Frosch, M., & Albert, J., 2002. RIDOM: ribosomal
194		differentiation of medical microorganisms database. Nucleic Acids Res. 30, 416-417
195	6.	Iivonen, J., Kela, E., Kuusi, M., Lyytikäinen, O., Ruutu, P., 2005. Infectious diseases in
196		Finland 1995 - 2004, National Public Health Institute, Helsinki, p. 44.
197	7.	Johansen, T.B., Djonne, B., Jensen, M.R., Olsen, I., 2005. Distribution of IS1311 and
198		IS1245 in Mycobacterium avium subspecies revisited. J. Clin. Microbiol.43, 2500-2502.
199	8.	Information Centre of the Ministry of Agriculture and Forestry of Finland, 2005.
200		Teurastukset 2002 - Slaughtering statistics in 2002 (in Finnish), [Online.]
201		http://tike.mmm.fi/Tilasto/teurastukset_2002.pdf.
202	9.	Kulikova, T., Akhtar, R., Aldeber, tP., Althorpe, N., Andersson, M., Baldwin, A., Bates, K.,
203		Bhattacharyya, S., Bower, L., Browne, P., Castro, M., Cochrane, G., Duggan, K., Eberhardt,
204		R., Faruque, N., Hoad, G., Kanz, C., Lee, C., Leinonen, R., Lin, Q., Lombard, V., Lopez, R.,
205		Lorenc, D., McWilliam, H., Mukherjee, G., Nardone, F., Garcia-Pastor, M.P., Plaister, S.,
206		Sobhany, S., Stoehr, P., Vaughan, R., Wu, D., Zhu, W., Apweiler, R. 2007. EMBL
207		Nucleotide Sequence Database in 2006. Nucleic Acids Research 35, D16-D20.
208	10.	Kirschner, P., Springer, B., Voge, IU., Meier, A., Wrede, A., Kiekenbeck, M., Bange, FC.,
209		Böttger, E.C., 1993, Genotypic identification of mycobacteria by nucleic acid sequence
210		determination: report of a 2-year experience in a clinical laboratory. J. Clin. Microbiol.
211		31:2882-2889.
212	11.	Komijn, R.E., De Haas, P.E., Schneider, M.M.E., Eger, T., Nieuwenhuijs, J.H.M., Van Den
213		Hoek, J., Bakker, D., Van Zijd Erveld, F.G., Van Soolingen, D., 1999. Prevalence of
214		Mycobacterium avium in slaughter pigs in the Netherlands and comparison of IS1245

215	restriction fragment length polymorphism patterns of porcine and human isolates. J. Clin.
216	Microbiol. 37, 1254-1259.
217	12. Martín-Casabona, N., Bahrmand, A.R., Bennedsen, J., Thomsen, V.O., Curcio, M., Fauville-
218	Dufaux, M., Feldman, K., Havelkova, M., Katila, M.L., Koksalan, K., Pereira, M.F.,
219	Rodrigues, F., Pfyffer, G.E., Portaels, F., Urgell, J.R., Rusch-Gerdes, S., Tortoli, E.,
220	Vincent, V., Watt, B., Spanish Group for Non-Tuberculosis Mycobacteria, 2004. Non-
221	tuberculous mycobacteria: patterns of isolation. A multi-country retrospective survey. Int. J.
222	Tuberc. Lung Dis. 10, 1186-1193.
223	13. Matlova, L., Dvorska, L., Bartl, J., Bartos, M., Ayele, W.Y., Alexa, M., Pavlik, I., 2003.
224	Mycobacteria isolated from the environment of pig farms in the Czech Republic during the
225	years 1996 to 2002. Vet. Med. Czech. 48, 343-357.
226	14. Matlova, L., Dvorska, L., Palecek, K., Maurenc, L., Bartos, M., Pavlik, I., 2004. Impact of
227	sawdust and wood shavings on pig bedding on pig tuberculous lesions in lymph nodes, and
228	IS1245 RFLP analysis of Mycobacterium avium subsp. Hominissuis of serotypes 6 and 8
229	isolated from pigs and environment. Vet. Microbiol. 102, 227-236.
230	15. Matlova, L., Dvorska, L., Ayele, W.Y., Bartos, M., Amemori, T., Pavlik, I., 2005.
231	Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat
232	naturally contaminated with mycobacteria as a supplement. J. Clin. Microbiol. 43, 1261-
233	1268.
234	16. Mijs, W., de Haas, P., Rossau, R., van der, L.T., Rigouts, L., Portaels, F., van Soolingen, D.,
235	2002. Molecular evidence to support a proposal to reserve the designation Mycobacterium
236	avium subsp. avium for bird-type isolates and 'M. avium subsp. hominissuis' for the
237	human/porcine type of M. avium. Int. J. Syst. Evol. Microbiol. 52, 1505-1518.
238	17. Möbius, P., Lenttzsch, P., Moser, I., Naumann, L., Martin, G., Köhler, H., 2006.
239	Comparative macrorestriction and RFLP analysis of Mycobacterium avium subsp. avium

240		and Mycobacterium avium subsp. hominissuis isolates from man, pig, and cattle. Vet.
241		Microbiol. 117, 284-291.
242	18.	Nichols, G., Ford, T., Bartram, J., Dufour, A., Portaels F., 2004. The epidemiology of
243		environmental mycobacteria. In: Pedley, S., Bartram, J., Rees, G., Dufour, A., Cotruvo, J.A.
244		(Eds), Pathogenic Mycobacteria in Water: A Guide to Public Health Consequences,
245		Monitoring and Management. WHO Emerging Issues in Water & Infectious Disease Series,
246		IWA Publishing, London, UK, pp. 5-6.
247	19.	Pakarinen, J., Nieminen, T., Tirkkonen, T., Tsitko, I., Ali-Vehmas, T., Neubauer, P.,
248		Salkinoja-Salonen, M., 2006. Proliferation of mycobacteria in a piggery environment
249		revealed by Mycobacterium-specific real-time quantitative PCR and 16S rRNA sandwich
250		hybridization.Vet. Microbiol. 120, 105-112.
251	20.	Primm, T.P., Lucero, C.A., Falkinham III J.O., 2004. Health impacts of Environmental
252		Mycobacteria. Appl. Environ. Microbiol. 17, 98-106.
253	21.	Ramasoota, P., Chansiripornchai, N., Källenius, G., Hoffner, S., Svenson, S.B., 2001.
254		Comparison of Mycobacterium avium complex (MAC) strains from pigs and humans in
255		Sweden by random amplified polymorphic DNA (RAPD) using standardized reagents. Vet.
256		Microbiol. 12, 251-259.
257	22.	Thorel, M.F., Huchzermeyer, H.F., Michel, A.L., 2001. Mycobacterium avium and
258		Mycobacterium intracellulare infection in mammals. Rev. Sci. Tech. Off. Int. Epiz. 20, 204-
259		218.
260	23.	van Soolingen, D., Bauer, J., Ritacco, V., Leao, S.C., Pavlik, I., Vincent, C., Rastogi, N.,
261		Gori, A., Bodmer, T., Garzelli, D., Garcia, M.J., 1998. IS 1245 restriction fragment length
262		polymorphism typing of Mycobacterium avium isolates: proposal for standardization. J.
263		Clin. Microbiol. 36, 3051-3054.

264 24. von Dürrling, H., Ludewig, H., Uhlemann, J., Gericke, R., 1998. Torf al	s Quelle einer
---	----------------

- 265 Infektion mit aviären Mykobakterien bei Schweinen. Tierärztl. Umschau 53, 259-261.
- 266 25. Windsor, R.S., Durrant, D.S., Burn, K.J., 1984. Avian tuberculosis in pigs: *Mycobacterium* 267 *intracellulare* infection in a breeding herd. Vet. Rec. 114, 497-500.
- 268 26. Yoder, S., Argueta, C., Holtzman, A., Aronson, T., Berlin, O.G., Tomasek, P., Glover, N.,
- 269 Froman, S., Stelma, G. Jr., 1999. PCR comparison of Mycobacterium avium isolates
- 270 obtained from patients and foods. Appl. Environ. Microbiol. 65, 2650-2653.

271

Table 1. Isolation and characterization of mycobacteria in porcine tissues.

	Mycobacte	erial cu	ulture	Characterization of mycobacterial isolates					
	of porcine tissues								
				Sequencing of the 16S rRNA gene			IS1245 RFLP analysis		
	Examined	Positi	tive	Examined	MA ^a		Examined	MAH	D
	No.	No.	%	No.	No.	%	No.	No	%
Liver	27	11	41	40	40	100	9	9	100
Lung	10	3	30	7	7	100	4	4	100
Spleen	3	2	67	9	9	100	2	2	100
Lymph node	2	1	50	1	1	100	1	1	100
Heart	1	1	100	2	2	100	0	0	0
Total	43	18	42	59	59	100	16	16	100

^aIdentified as *M. avium*

^bIdentified as *M. avium* subsp. *hominissuis*

- Fig. 1. Dendogram of the IS1245 RFLP patterns of porcine, human and avian *M. avium*
- isolates. Source: OUH: Oulu University Hospital, HUH: Helsinki University Hospital, PHCH:
- 277 Päijät-Häme Central Hospital, EP: Etelä-Pohjanmaa Hospital District, TAUH: Tampere
- 278 University Hospital, TUH: Turku University Hospital, LCH: Lappi Central Hospital, SCH:
- 279 Seinäjoki Central Hospital. Isolates >80% similar marked with "*". Isolates >90% similar
- 280 marked with "[†]". Four isolates obtained from a single pig marked by emboldened text.

