

#### Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic F4 (ETEC) post weaning diarrhoea in piglets

T.A. Niewold, A.J. van Dijk, P.L. Geenen, H. Roodink, R. Margry, J. van Der

Meulen

#### ▶ To cite this version:

T.A. Niewold, A.J. van Dijk, P.L. Geenen, H. Roodink, R. Margry, et al.. Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic F4 (ETEC) post weaning diarrhoea in piglets. Veterinary Microbiology, 2007, 124 (3-4), pp.362. 10.1016/j.vetmic.2007.04.034 . hal-00532256

#### HAL Id: hal-00532256 https://hal.science/hal-00532256

Submitted on 4 Nov 2010

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

#### Accepted Manuscript

Title: Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic *Escherichia coli* F4 (ETEC) post weaning diarrhoea in piglets

Authors: T.A. Niewold, A.J. van Dijk, P.L. Geenen, H. Roodink, R. Margry, J. van der Meulen

| PII:           | S0378-1135(07)00216-7            |
|----------------|----------------------------------|
| DOI:           | doi:10.1016/j.vetmic.2007.04.034 |
| Reference:     | VETMIC 3676                      |
| To appear in:  | VETMIC                           |
| Received date: | 6-2-2007                         |
| Revised date:  | 19-4-2007                        |
| Accepted date: | 25-4-2007                        |
|                |                                  |



Please cite this article as: Niewold, T.A., van Dijk, A.J., Geenen, P.L., Roodink, H., Margry, R., van der Meulen, J., Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic *Escherichia coli* F4 (ETEC) post weaning diarrhoea in piglets, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.04.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

| 1  | Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Escherichia coli F4 (ETEC) post weaning diarrhoea in piglets.                                                                                          |
| 3  |                                                                                                                                                        |
| 4  | Niewold, T.A <sup>1,4</sup> *, van Dijk <sup>2</sup> , A.J., Geenen, P.L. <sup>1,5</sup> , Roodink, H. <sup>3</sup> , Margry, R <sup>2</sup> , van der |
| 5  | Meulen, J <sup>1</sup> .                                                                                                                               |
| 6  |                                                                                                                                                        |
| 7  | 1. Animal Sciences Group of Wageningen University and Research, P.O. Box 65, Lelystad,                                                                 |
| 8  | The Netherlands                                                                                                                                        |
| 9  | 2. CCL-Research, PO Box 107, NL-5460 AC, Veghel, The Netherlands                                                                                       |
| 10 | 3. Sonac, PO Box 50, NL-7370 AA, Loenen (Gld), The Netherlands                                                                                         |
| 11 | 4. Present address: Nutrition and Health Unit, Faculty of Bioscience Engineering, Katholieke                                                           |
| 12 | Universiteit Leuven, B-3001 Heverlee, Belgium                                                                                                          |
| 13 | 5. Present address: Department of Animal Health Economics, Wageningen University, The                                                                  |
| 14 | Netherlands                                                                                                                                            |
| 15 |                                                                                                                                                        |
| 16 |                                                                                                                                                        |
| 17 |                                                                                                                                                        |
| 18 |                                                                                                                                                        |
| 19 |                                                                                                                                                        |
| 20 | *: corresponding author                                                                                                                                |
| 21 | Tel: +32 16 321560, Fax: +32 16 321994, e-mail:theo.niewold@biw.kuleuven.be                                                                            |
| 22 |                                                                                                                                                        |
| 23 |                                                                                                                                                        |
|    |                                                                                                                                                        |

Keywords: E. coli, pig, antibody, spray-dried plasma, F4, heat labile toxin (LT)

1

#### 25 Abstract

26

| 27 | In order to establish the mechanism of spray dried plasma powder (SDPP) in improving            |
|----|-------------------------------------------------------------------------------------------------|
| 28 | pig health and performance, a diet containing either 8% SDPP, spray dried immune plasma         |
| 29 | powder (SDIPP), or control protein (soybean and whey) ration was fed to piglets in an           |
| 30 | experimental model of enterotoxigenic Escherichia coli F4 (ETEC) post-weaning diarrhoea         |
| 31 | (PWD). SDIPP was obtained from pigs immunized with a vaccine containing ETEC fimbrial           |
| 32 | subunit F4 and heat-labile toxin (LT), and SDPP from non-immunized controls. Average            |
| 33 | daily growth (ADG) was determined, and daily samples of rectal faeces were assessed for         |
| 34 | diarrhoea (as percentage of dry matter), and ETEC excretion (in CFU/g).                         |
| 35 | SDPP and SDIPP (p< 0.05) significantly reduced diarrhoea, and SDIPP significantly               |
| 36 | reduced ETEC excretion. ADG was not significantly $(p > 0.05)$ affected. After the              |
| 37 | experiment, 30% of piglets tested F4 receptor positive (F4R+). A significant correlation        |
| 38 | between F4R status and morbidity was found. In F4R+ animals, SDIPP significantly                |
| 39 | improved diarrhoea and ADG, and decreased ETEC excretion, and SDPP significantly                |
| 40 | improved diarrhoea and ADG. Surprisingly, SDPP reduced diarrhoea in F4R+ animals                |
| 41 | without significant reduction of ETEC excretion, which is most likely related to the presence   |
| 42 | of anti-LT antibodies in SDPP.                                                                  |
| 43 | The results show that oral protection against ETEC by SDPP is attributable to spontaneous       |
| 44 | antibodies, in this case anti-LT antibodies. Furthermore, the results indicate that the         |
| 45 | combination of anti-LT and anti-F4 antibodies as in SDIPP is most effective in ETEC             |
| 46 | prevention. Finally, the F4R distribution in the herd should be taken into account to correctly |
| 47 | assess efficacy.                                                                                |

#### 48 1. Introduction

49

Spray dried plasma powder (SDPP) is a common protein source in starter diets for weaned 50 51 piglets in many countries. It is described to improve growth and health during the first days 52 after weaning, in particular under high infection pressure (Coffey and Cromwell, 1995, Bergstrom et al., 1997). Results are varying, which is probably also related to the 53 54 susceptibility for one of the most common diseases in the post-weaning period, post weaning 55 diarrhoea (PWD). Enterotoxigenic Escherichia coli (ETEC) induced PWD is an important 56 cause of morbidity and mortality in neonatal and weaned piglets. In pigs, successful intestinal colonization of ETEC strains is associated with bacterial adhesion factors (fimbriae), such as 57 F4 (Gaastra and de Graaf, 1982). Upon colonization ETEC can produce several toxins among 58 59 which heat labile toxin (LT), which cause secretory diarrhoea. Immunization of the sow with ETEC adhesion factors and LT protects suckling piglets against PWD, weaning withdraws 60 61 lactogenic protection, and maternal colostrum-derived systemic antibodies in piglets are ineffective (Francis and Willgohs, 1991). Dietary inclusion of specific antibodies raised 62 against F4 (Yokoyama et al 1992, de Geus et al., 1998, Owusu-Asiedu et al., 2002, 2003) 63 protected against E. coli F4 ETEC. The mechanism behind SDPP is unclear, transfer of 64 passive immunity has been proposed (van Dijk et al., 2001), but only in one case specific anti-65 66 F4 antibodies were found in SDPP (Owusu-Asiedu et al., 2002). The objectives of the present study were 1. to establish the effect of addition of SDPP and 67 spray dried immune plasma (SDIPP) to the weaning diet on prevention of enterotoxigenic E. 68 69 coli F4 post-weaning diarrhoea (PWD), 2. to get insight into the role of specific antibodies in the pathogenesis of ETEC, and 3. to determine the influence of the F4R status on this process. 70

71

72

#### 73 **2. Material and methods**

74

#### 75 2.1. Bacterial strains

76

| 77 | E. coli O149K91 was isolated from a pig farm with post weaning diarrhoea. The ETEC                |
|----|---------------------------------------------------------------------------------------------------|
| 78 | strain was typed at the Animal Sciences Group in Lelystad, and further characterized as F4        |
| 79 | (K88ac), LT+, STb+ (Nabuurs et al., 1993), and designated CVI-1000. As a control in the           |
| 80 | brush border adhesion studies CVI-1084 was used, a strain identical to CVI-1000 but without       |
| 81 | F4 fimbrial expression (a gift from Dr. F. van Zijderveld, Department of Bacteriology,            |
| 82 | Animal Sciences Group, Lelystad, the Netherlands). The strains were grown overnight in            |
| 83 | brain heart infusion broth (Difco Laboratories, Detroit, MI, USA), pelleted by centrifugation     |
| 84 | and resuspended in PBS (pH 7.2) to an extinction at 600 nm, corresponding to $10^9$ CFU/ml.       |
| 85 |                                                                                                   |
| 86 | 2.2. Post weaning diarrhoea (PWD) animal model                                                    |
| 87 |                                                                                                   |
| 88 | The protocol was approved by the local Ethics Committee for Animal Experiments in                 |
| 89 | Lelystad. PWD is induced in piglets weaned at 3 weeks of age. The induction protocol              |
| 90 | involves cold stress, fasting, treatment with colistin to disturb intestinal ecology, inoculation |
| 91 | with rotavirus, and inoculation with ETEC. Animals (96 from 16 different litters, 3 wk of age)    |
| 92 | were purchased from a commercial piggery, and transported to our facilities on the day of         |
| 93 | weaning. Piglets were housed in 4 multipurpose boxes, each containing 3 pens, separated by        |
| 94 | closed planking, containing 8 piglets each. Piglets were divided over the pens, taking litter,    |
| 95 | weight, and sex into account. Piglets were kept at a 16 h light, 8 h dark cycle, at 24°C.         |

- 96 Animals were fasted on day 1 and 2. Water was given ad lib throughout the experiment.
- 97 Colistin sulphate (Eurovet, Bladel, The Netherlands)(60 mg/L) was added to the drinking

| 98  | water on the first 5 days. From day three on, animals had ad lib access to one of the three diets     |
|-----|-------------------------------------------------------------------------------------------------------|
| 99  | (containing SDPP, SDIPP, or control protein). On day 5, all piglets were orally inoculated by         |
| 100 | syringe with 2 ml (10 <sup>6</sup> particles/ml) rotavirus strain RV277 (Debouck and Pensaert, 1979)  |
| 101 | suspension. On day 6 and 7, all animals received 5 ml ETEC suspension of 10 <sup>9</sup> CFU/ml. From |
| 102 | day 2 on, each day the animals were weighed, their health was assessed, the total food intake         |
| 103 | per pen was determined for determination of average daily food intake (ADFI) and feed                 |
| 104 | conversion ratio (FCR). Daily, a rectal content sample was taken for determination of the %           |
| 105 | dry matter (%DM), and for determination of ETEC counts. On day 15, the animals were                   |
| 106 | euthanized by Nembutal, bled, and heparin plasma was taken. Gross pathology was                       |
| 107 | performed, and a jejunal sample was taken for determination of F4R status by brush border             |
| 108 | adhesion assay. On animals found dead gross pathology was performed and, if possible, a               |
| 109 | plasma and a jejunal sample were collected.                                                           |
| 110 |                                                                                                       |
| 111 | 2.3. Determination of the percentage dry matter (%DM) of faeces                                       |
| 112 |                                                                                                       |
| 113 | Faeces (0.5-3 g) was weighed into aluminium trays. Samples were desiccated for 20 h in                |
| 114 | an incubator at 80 °C, and weighed again to determine lost water.                                     |
| 115 |                                                                                                       |
| 116 | 2.4. Quantification of ETEC excretion                                                                 |
| 117 |                                                                                                       |
| 118 | One gram of faeces was weighed into 10 ml tubes, and 9 ml of 0.9% NaCl was added, and                 |
| 119 | vortexed. Dilutions were plated on sheep blood agar plates containing 5% sheep blood,                 |
| 120 | streptomycin 50 $\mu$ g/ml, tetracycline 25 $\mu$ g/ml, vancomycin 50 $\mu$ g/ml (Biotrading, The     |
| 121 | Netherlands). Haemolytic colonies with the typical appearance of <i>E. coli</i> were counted. In      |
| 122 | cases of ambiguous colony morphology, identity was confirmed by slide agglutination.                  |
|     |                                                                                                       |

123

124 2.5. Source of plasma, and immune plasma powder

125

| 126 | At a large commercial breeder and fattener, animals $(n=320)$ were immunized (i.m. in the      |
|-----|------------------------------------------------------------------------------------------------|
| 127 | neck) with 2 ml of Porcilis coli (Intervet International BV, Boxmeer, The Netherlands)         |
| 128 | containing adhesion factors K88ab (F4), K88ac (F4), K99 (F5), 987P (F6), and heat labile       |
| 129 | toxin (LT). Pigs were immunized at 6, 4, and 2 weeks before slaughter (at ca. 115 kg live      |
| 130 | weight). The non-immunized control group (n= 320) was from the same farm, and from the         |
| 131 | same period. At the slaughterhouse of the farm, blood was collected separately per animal      |
| 132 | into citrated bags. After post mortem inspection, blood was pooled per group (ca 1000 L),      |
| 133 | transported to the plasma protein factory (Sonac), plasma was separated by centrifugation, the |
| 134 | pH increased to 10 using a 25% ammonia solution, and stored overnight at 2°C. The next day,    |
| 135 | plasma was two-fold concentrated by ultra filtration (membrane cut-off 9 kD, MSD3 Ultra        |
| 136 | filtration unit, Stork, The Netherlands), and spray dried in an Anhydro Lab S1 spray dryer     |
| 137 | (Anhydro, Copenhagen, Denmark), at an outlet temperature of 80-83 °C. Since antibiotics        |
| 138 | possess growth promoting and antibacterial activity, anti-microbial drug residue was           |
| 139 | determined by the well diffusion method, using 10% SDPP and SDIPP in PBS in 9 mm               |
| 140 | diameter wells in 5 different 2 mm agar plates seeded with Micrococcus luteus at pH 6 or pH    |
| 141 | 8, and Bacillus subtilis at pH6 or pH8 with or without Trimethoprim. After overnight           |
| 142 | incubation at 37°C the inhibition zone was measured. An inhibition zone < 3 mm is              |
| 143 | considered to be negative. Microbiological quality was determined according to the             |
| 144 | International Standard, for total bacterial count (ISO 4833:1991(E), for Enterobacteriaceae    |
| 145 | (ISO 7402:1993(E), and Salmonella spp (ISO 6579:1993(E). The percentage dry matter was         |
| 146 | determined by drying at 103 °C, and the soluble fraction in water was determined               |
| 147 | gravimetrically.                                                                               |

| 149 | 2.6. Production of pelleted feed                                                                     |
|-----|------------------------------------------------------------------------------------------------------|
| 150 |                                                                                                      |
| 151 | The composition of the three experimental diets is shown in Table 1. The diets contained             |
| 152 | either soybean (meal) and whey powder, or SDPP, or SDIPP as main protein source. The diets           |
| 153 | were pelleted at 61 °C, 66 °C and 67 °C, respectively and were formulated to contain 1.03 %          |
| 154 | apparent ileal digestible lysine, 2352 kcal NE/kg and 4.7 % lactose (van Dijk et al., 2002).         |
| 155 | Analysis of feed was performed as described before (van Dijk et al., 2002). The total                |
| 156 | immunoglobulin content of SDPP, SDIPP, whey powder and the diets was determined by                   |
| 157 | protein-G affinity chromatography with UV detection (Pharmacia/LKB, Uppsala, Sweden).                |
| 158 |                                                                                                      |
| 159 | 2.7. Immunological analysis                                                                          |
| 160 |                                                                                                      |
| 161 | Pelleted samples were first ground up to powder. Dry powder samples were incubated                   |
| 162 | overnight 10% w/v in PBS at 4°C. Samples were then centrifuged and the supernatant                   |
| 163 | analyzed. Samples were analyzed by ELISA for the presence of specific antibodies. Pooled             |
| 164 | plasma from specific pathogen free (SPF) piglets from the Lelystad facilities served as              |
| 165 | negative control. Indirect ELISA for determination of anti-F4 and anti-LT titre was performed        |
| 166 | according to van Zijderveld et al. (1990), and Lauterslager et al. (2001) respectively, using        |
| 167 | 96-wells microtiter plates coated with 0.5 $\mu$ g purified F4ac/well or 0.05 $\mu$ g LT (Sigma, St. |
| 168 | Louis, Missouri, USA)/well. Samples were serially diluted, incubated, washed, and bound              |
| 169 | antibodies were detected with HRPO-labelled rabbit anti-swine immunoglobulins (Dakopatts,            |
| 170 | Copenhagen, Denmark). Titres were expressed as EC50.                                                 |
| 171 |                                                                                                      |

171

148

172 2.8. Determination of piglet F4R status by brush border adhesion (BBA) assay

| 173 |                                                                                               |
|-----|-----------------------------------------------------------------------------------------------|
| 174 | At necropsy, 5-10 cm of jejunal mucosa was scraped off, and epithelial brush borders were     |
| 175 | prepared, and the F4R status determined using the BBA method modified after Sellwood et al.   |
| 176 | (1975). The number of bacteria attached to 50-100 cells with well-defined brush borders were  |
| 177 | counted by phase contrast microscopy (magnification, x 400). Animals with no or an average    |
| 178 | of 1-2 bacteria/brush border were considered F4R-, samples exceeding this are judged F4R+.    |
| 179 | In case of ambiguity, the test was repeated.                                                  |
| 180 |                                                                                               |
| 181 | 2.9. Brush border adhesion (BBA) inhibition assay                                             |
| 182 |                                                                                               |
| 183 | Functionality of plasma was determined by the BBA assay described above, modified as          |
| 184 | described (Harmsen et al., 2005). Briefly, serial dilutions of plasma preparations were added |
| 185 | to brush border preparations. Then the bacterial suspension was added, and bacterial adhesion |
| 186 | was determined. Titres were expressed as the reciprocal highest dilution showing complete     |
| 187 | inhibition of BBA.                                                                            |
| 188 |                                                                                               |
| 189 | 2.10. LT Vero-cell assay                                                                      |
| 190 |                                                                                               |
| 191 | Functionality of anti-LT antibodies was assayed in Vero cells (Speirs et al., 1977). Pooled   |
| 192 | plasma from SPF-piglets from the Lelystad facilities served as negative control.              |
| 193 |                                                                                               |
| 194 | 2.11. Statistics                                                                              |
| 195 |                                                                                               |
| 196 | The piglet was the experimental unit. A four factorial analysis on the effects of the         |
| 197 | different feeds, the two F4 receptor types, box and pen was carried out. There were no main   |
|     |                                                                                               |

| 198 | and interaction effects of box and pen and consequently these factors were omitted from       |
|-----|-----------------------------------------------------------------------------------------------|
| 199 | further analysis. A two factorial ANOVA with the factors FEED (control, SDPP, SDIPP) and      |
| 200 | F4Receptor (F4R+, F4R-) was performed (GLM procedure, SAS version 9.1, SAS Institute,         |
| 201 | Cary, NC). In case of significant FEED by F4R interactions one factorial ANOVA was            |
| 202 | performed with the factor Group (representing all 6 combinations of FEED and F4R)             |
| 203 | supplemented by Fisher's least significant difference (LSD) post hoc comparisons. Statistical |
| 204 | significance was predefined at p<0.05. Data are presented as mean $\pm$ sem.                  |
| 205 |                                                                                               |
| 206 | 3. Results                                                                                    |
| 207 |                                                                                               |
| 208 | 3.1. Feed analysis                                                                            |
| 209 |                                                                                               |
| 210 | Analysis of pelleted feed showed that the analyzed values for feed composition were in        |
| 211 | line with those calculated (Table 1). The immunoglobulin content of control feed was below    |
| 212 | the detection limit, in undiluted preparations the immunoglobulin content was 1.3 % in whey   |
| 213 | powder, 23.7 % in SDPP, and 25.7 % in SDIPP.                                                  |
| 214 |                                                                                               |
| 215 | 3.2. Production of porcine plasma powder, analysis of SDPP and SDIPP, and survival of         |
| 216 | antibody titres in the production process                                                     |
| 217 |                                                                                               |
| 218 | From 320 animals, a little over 20 kg spray dried plasma powder was obtained (Table 2a).      |
| 219 | Microbial quality was within the industrial norm. Antimicrobial drug residue activity was     |
| 220 | below the detection limit (Table 2b). Immune plasma did shown high anti-F4 titres, whereas    |
| 221 | normal plasma did not. Immune plasma showed BBAI reciprocal titre of >100, normal             |
| 222 | plasma, and SPF plasma <3. Survival of anti-F4 titres in SDIPP was 70% after spray drying,    |
|     |                                                                                               |

| 223 | no further | reduction | was found | at pelleting | (Table 2c)    | . Further | testing for | anti-LT |
|-----|------------|-----------|-----------|--------------|---------------|-----------|-------------|---------|
| -   |            |           |           |              | · ··· · · · / |           |             |         |

immunoreactivity showed that immune plasma had a titre of  $976 \pm 241$  (n=2), and normal

plasma  $140 \pm 25$  (n=2). In the Vero cell bio-assay, at a dilution of 1:50, both normal plasma

- and immune plasma completely inhibited LT cytotoxicity, whereas SPF plasma did not.
- 227

228 3.3. The effect of diet composition on PWD ignoring the F4R status

229

Five animals out of 96 (5.2 %) were found dead during the experiment. One animal died at 230 day 5, due to hernia diafragmatica. The other 4 deaths were associated with PWD, and were 231 found in the control group (1) at day 8, 13, 14, and one in the SDIPP group at day 12. Weight 232 of the animals at the start of the experiment was  $8.04 \pm 0.16$  kg (n = 91), and no significant 233 234 differences were found concerning box or diet. Faecal %DM of all three diets was  $29.0 \pm 0.8$ 235 pre-infection (day 1-6). ADG did not significantly differ between diets on days 1-6. 236 After inoculation with ETEC, control animals (n = 29) excreted high numbers of ETEC (Fig 237 1). Feeding SDPP (n = 32) did lower ETEC excretion, but not significantly. SDIPP (n = 30) did lower faecal ETEC counts compared to both control and SDPP. Concerning %DM, the 238 lowest % was found in the control group. Feeding SDPP improved this significantly, and 239 SDIPP improved it even further, being significantly different from both control and the SDPP 240 241 group. Concerning ADG no significant differences (p > 0.05) were found between the diets, 242 nor for ADFI ( $0.278 \pm 0.023$  kg/day in the control group, increasing to 0.316 kg/day in SDPP, and 0.326 kg/day in SDIPP). FCR did not differ between diets during the entire experiment 243 244 (results not shown).

245

246 3.4. The effect of diet composition on PWD taking the F4R status into account

| 248 | In the brush border adhesion assay, 30% tested F4R+, no ambiguous results were seen. The    |
|-----|---------------------------------------------------------------------------------------------|
| 249 | F4R distribution varied between the different treatments, F4R+ vs F4R- was in the control   |
| 250 | group 10 vs 19, in the SDPP group 10 vs 22, and in the SDIPP group 8 vs 22. There was a     |
| 251 | significant interaction of FEED x F4R. No significant differences between F4R- animals were |
| 252 | found in all three treatments. In the control animals, F4R status dependent significant     |
| 253 | differences were found for all three parameters, F4R- animals excreted less E. coli, had a  |
| 254 | higher faecal %DM, and a higher ADG. Concerning E. coli excretion, feeding SDPP did not     |
| 255 | have a significant effect on the difference between F4R+ and F4R- animals. Feeding SDIPP    |
| 256 | significantly lowered E. coli excretion in F4R+ animals compared to F4R+ animals in both    |
| 257 | the control and the SDPP group. Concerning faecal %DM, in F4R- animals, feeding SDPP        |
| 258 | gave a significant improvement compared to controls, and SDIPP was significantly better     |
| 259 | than both the control and SDPP. Both SDPP and SDIPP significantly improved ADG in F4R+      |
| 260 | animals compared to the controls, no significant difference was found between SDPP and      |
| 261 | SDIPP. ADFI and FCR did not differ between diets during the entire experiment (results not  |
| 262 | shown).                                                                                     |

263

#### 264 3.5. Anti-F4 and anti-LT antibodies in piglet plasma

265

Plasma of all piglets contained antibodies to both F4 and LT, in varying titres. No significant
relationship was found with diet, box, pen, litter, *E. coli* excretion, faecal %DM, ADFI, FCR
or F4R status (results not shown), consistent with maternal colostrum derived antibodies.

269

270 Discussion

272 In the present study, we set out to determine whether SDPP has indeed beneficial 273 properties, with particular attention to the role of specific antibodies. We have used a relatively cheap and readily available source of SDPP, and compared it with immune plasma 274 275 SDIPP, in our model of post-weaning diarrhoea (PWD). Both SDPP and SDIPP were included in pelleted feed in order to work as realistic as possible. Processing may seriously 276 affect bioactivity. As judged by anti-F4 titre in SDIPP, the most critical step in the production 277 278 process is spray-drying at which not more than 30 % of the activity is lost. Further processing to pellets does not lead to appreciable losses. 279

We have demonstrated that both SDPP and SDIPP do improve performance and health, 280 similar to what has been shown in neonatal diarrhoea using egg yolk or SDPP derived 281 antibodies (Yokoyama et al., 1992, Owusu-Asiedu et al., 2002). We also show that this 282 283 happens in a F4R status dependent way. SDIPP protected against PWD, and this could be attributed to the presence of both anti-LT and anti-F4 antibodies. SDPP protected only 284 285 significantly against diarrhea, which is consistent with the presence of anti-LT antibodies only. The unanticipated presence of anti-LT antibodies in SDPP probably reflects natural 286 exposure to pathogens, similar to what has been found in normal bovine colostrum (Rump et 287 al., 1992). The absence of anti-F4 antibodies is consistent with the absence of significant 288 colonization inhibition by SDPP as is particularly evident in F4R+ piglets. Our SDPP did not 289 290 contain anti-F4 activity as opposed to the commercial preparation used by Owusu-Asiedu et al., 2002. It is reasonable to assume that batch differences in natural antibodies is one of the 291 possible causes for variation in results obtained with SDPP. Another source of variation could 292 293 be the differences in prevalence of F4R-status of the herds used in the various experiments. In most studies, piglet F4R status is not mentioned. Here we found that E. coli F4 can maintain 294 itself at relatively high levels (up to  $10^{5}/g$  faeces on a given day) in F4R- animals in an 295 apparent F4R independent manner. This level is affected by the presence of sufficient number 296

| 297 | of F4R+ animals which maintain a high infection pressure by excreting high levels of bacteria   |
|-----|-------------------------------------------------------------------------------------------------|
| 298 | (Geenen et al., 2005).                                                                          |
| 299 | Our findings confirm that SDPP reduces PWD because it contains specific antibodies, in          |
| 300 | our case anti-LT antibodies. Comparing SDPP and SDIPP it is evident that the latter not only    |
| 301 | protects against diarrhoea, but also reduces ETEC excretion, which will reduce transmission     |
| 302 | within a herd (Geenen et al., 2005). Finally, these positive results were obtained in a herd in |
| 303 | which a relatively low percentage (30%) of pigs was F4R+. It is clear that a much larger        |
| 304 | effect can be expected in higher F4R+ prevalence herds.                                         |
| 305 |                                                                                                 |
| 306 | Acknowledgements                                                                                |
| 307 |                                                                                                 |
| 308 | This study was supported by the Dutch Ministry of Economic Affairs project number               |
| 309 | BTS97014. The technical assistance of Gert Jan de Graaf, Arie Hoogendoorn, Suzan van der        |
| 310 | Hoven, and Daphne Oostenrijk is greatly appreciated. We thank Dr. Frans Josef van der Staay     |
| 311 | for his expert assistance with the statistical analysis.                                        |
| 312 |                                                                                                 |
| 313 | References                                                                                      |
| 314 |                                                                                                 |
| 315 | Bergstrom, J.R., Nelssen, J.L., Tokach, M.D., Goodband, R.D., Dritz, S.S., Owen, K.Q.,          |
| 316 | Nessmith, W.B. 1997. Evaluation of spray-dried animal plasma and select menhaden fish           |
| 317 | meal in transition diets of pigs weaned at 12 to 14 days of age and reared in different         |
| 318 | production systems. J. Anim. Sci. 75: 3004-3009.                                                |
| 319 | Coffey, R.D., Cromwell, G.L. 1995. The impact of environment and antimicrobial agents on        |
| 320 | the growth response of early-weaned pigs to spray-dried porcine plasma. J. Anim. Sci. 73:       |
| 321 | 2532-2539.                                                                                      |

- 322 Debouck P., Pensaert, M. 1979. Experimental infection of pigs with Belgian isolates of the
- 323 porcine rotavirus. Zbl. Vet. Med. B. 26: 517-526.
- 324 De Geus B., Harmsen M., van Zijderveld, F. 1998. Prevention of diarrhoea using pathogen
- 325 specific monoclonal antibodies in an experimental enterotoxigenic *Escherichia coli*
- infection in germfree piglets. Vet. Quart. 20: S87-S89.
- 327 Francis, D.H., Willgohs, J.A. 1991. Evaluation of a live avirulent *Escherichia coli* vaccine
- for K88+, LT+ enterotoxigenic colibacillosis in weaned pigs. Am. J. Vet. Res. 52: 1051-
- 329 1055.
- 330 Gaastra W., de Graaf, F.K. 1982. Host-specific fimbrial adhesins of noninvasive
- enterotoxigenic *Escherichia coli* strains. Microbiol. Rev. 46:129-61.
- 332 Geenen, P.L., Döpfer, D., Van der Meulen, J., De Jong, M.C.M. 2005. Transmission of F4+
- *E.coli* in groups of early weaned piglets. Epidem. Infect. 133: 459-468..
- Harmsen, M.M., van Solt, C.B., Hoogendoorn, A., van Zijderveld, F.G., Niewold, T.A., van
- der Meulen, J. 2005. Escherichia coli F4 fimbriae specific llama single-domain antibody
- 336 fragments effectively inhibit bacterial adhesion in vitro but poorly protect against
- diarrhoea. Vet. Microbiol. 111: 89-98.
- 338 Lauterslager, T.G.M., Florack, D.E.A., van der Wal, T.J., Molthoff, J.W., Langeveld, J.P.M.,
- 339 Bosch, D., Boersma, W.J.A., Hilgers, L.A.T. 2001. Oral immunisation of naive and primed
- animals with transgenic potato tubers expressing LT-B. Vaccine 19: 2749-2755.
- 341 Nabuurs, M.J.A., Hoogendoorn, A., van Zijderveld, F.G., van der Klis, J.D. 1993. A long-
- term perfusion test to measure net absorption in the small intestine of weaned pigs.
- 343 Res. Vet. Sci. 55: 108-14.
- 344 Owusu-Asiedu, A., Baidoo, S.K., Nyachoti, C.M., Marquardt, R.R. 2002. Response of early-
- 345 weaned pigs to spray-dried porcine plasma-based diets supplemented with egg-yolk
- antibodies against enterotoxigenic *Escherichia coli*. J. Anim. Sci. 80: 2895-2903.

- 347 Owusu-Asiedu, A., Nyachoti., C.M., Baidoo., S.K., Marquardt, R.R., Yang, X. 2003.
- Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge
- 349 when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk
- antibody. J. Anim. Sci. 81: 1781-1789.
- 351 Rump, J.A., Arndt, R., Arnold, A., Bendick, C., Dichtelmuller, H., Franke, M., Helm, E;B.,
- Jager, H., Kampmann, B., Kolb P. 1992. Treatment of diarrhoea in human
- immunodeficiency virus-infected patients with immunoglobulins from bovine colostrum.
- 354 Clin. Investig. 70: 588-594.
- 355 Sellwood, R., Gibbons, R.A., Jones, G.W., Rutter, J.M. 1975. Adhesion of enteropathogenic
- *Escherichia coli* to pig intestinal brush borders: the existence of two pig phenotypes. J.
- 357 Med. Microbiol. 8: 405-411.
- 358 Speirs, J.I., Stavric S., Konowalchuk, J. 1977. Assay of Escherichia coli heat-labile toxin with
- 359 Vero cells. Inf. Immun. 16: 617-622.
- 360 Van Dijk, A.J., Everts, H., Nabuurs, M.J.A., Margry, R.J.C.F., Beynen, A.C., 2001. Growth
- performance of weanling pigs fed spray-dried animal plasma: a review. Livest. Prod. Sci.
  68: 263-274.
- 363 Van Dijk, A.J., Enthoven, P.M., Van den Hoven, S.G., Van Laarhoven, M.M., Niewold, T.A.,
- Nabuurs, M.J., Beynen, A.C. 2002. The effect of dietary spray-dried porcine plasma on
- 365 clinical response in weaned piglets challenged with a pathogenic *Escherichia coli*. Vet.
- 366 Microbiol. 84: 207-18.
- 367 Van Zijderveld, F.G., Anakotta, J., Brouwers, R.A.M., Van Zijderveld, A.M., Bakker, D., de
- 368 Graaf, F.K. 1990. Epitope analysis of the F4 (K88) fimbrial antigen complex of
- 369 enterotoxigenic *Escherichia coli* by using monoclonal antibodies. Inf. Immun. 58: 1870-
- 370 1878.

| 371 | Yokoyama, H., Peralta, R.C. Diaz R, Sendo S, Ikemori Y, Kodama Y. 1992. Passive             |
|-----|---------------------------------------------------------------------------------------------|
| 372 | protective effect of chicken egg yolk immunoglobulins against experimental                  |
| 373 | enterotoxigenic Escherichia coli infection in neonatal piglets. Inf. Immun. 60: 998-1007.   |
| 374 |                                                                                             |
| 375 | Figure 1. The effect of SDPP and SDIPP on ETEC excretion, (in log CFU/g faeces),            |
| 376 | diarrhoea as % DM, and performance (ADG). Left panel with shaded bars represent results     |
| 377 | obtained without taking the F4R status into account. In the right panel, the results per    |
| 378 | treatment for F4R+ (open bars), and F4R- (black bars), respectively are shown.              |
| 379 | Data are mean $\pm$ s.e.m. Significant differences (p < 0.05) between groups/treatments are |
| 380 | indicated with lines and asterisks.                                                         |



0.0

\*

control

SDPP

0.0

control SDPP SDIPP

SDIPP

|             | Control | SDPP | SDPIP |
|-------------|---------|------|-------|
| Fat         | 5.7     | 4.6  | 4.7   |
| Crude fibre | 3.6     | 3.3  | 3.7   |
| Moisture    | 10.9    | 9.7  | 9.3   |
| Ash         | 6.3     | 4.9  | 4.9   |
| Starch      | 34.8    | 40.4 | 41.7  |
| Protein     | 17.8    | 17.6 | 17.9  |
| IgG         | n.d.    | 1.7  | 1.8   |

n.d.: not detectable

| T11 0 D 1 /            | · · ·        | 1              | 1 1 ° CODDD        | 1 CDDID   |
|------------------------|--------------|----------------|--------------------|-----------|
| Table 2: Production of | porcine plas | ma powder, and | d analysis of SDPP | and SDPIP |

| A. Yield                             |                             |            |
|--------------------------------------|-----------------------------|------------|
|                                      | SDPP                        | SDPIP      |
| Blood (L)                            | 1029                        | 924        |
| Plasma (L)                           | 587                         | 504        |
| Plasma/blood (%)                     | 57                          | 55         |
| Powder (kg)                          | 20.4                        | 20.3       |
|                                      |                             |            |
| B. Composition                       |                             |            |
|                                      | SDPP                        | SDPIP      |
| Total bacterial count (log)/g        | 2.5                         | <2.0       |
| Enterobacteriaceae (log)/g           | <1.0                        | <1.0       |
| Salmonella.spp/ 25g                  | 0                           | 0          |
| Protein (%)                          | 84.3                        | 85.1       |
| Dry matter (%)                       | 96.7                        | 97.2       |
| Solubility (%)                       | 93.9                        | 96.5       |
| Antimicrobial residue                | negative                    | negative   |
| Immunoglobulin (g/kg)                | 231                         | 253        |
|                                      |                             |            |
| C: Anti-F4 immunoreactivity in SDPIP |                             |            |
| (n=2) in the production process      |                             |            |
|                                      | Reciprocal titer $\pm$ s.d. | % Activity |
| Plasma (50%)                         | $42,130 \pm 3,649$          | 100        |
| Plasma powder (100%)                 | $59,780 \pm 2,086$          | 71         |
| Pellet (8%)                          | $4,908 \pm 86$              | 73         |
|                                      |                             |            |