

Selective Capture of Transcribed Sequences (SCOTS) of c in the chronic stage of disease reveals an HlyX-regulated autotransporter protein

Nina Baltes, Falk F.R. Buettner, Gerald-F. Gerlach

► To cite this version:

Nina Baltes, Falk F.R. Buettner, Gerald-F. Gerlach. Selective Capture of Transcribed Sequences (SCOTS) of c in the chronic stage of disease reveals an HlyX-regulated autotransporter protein. Veterinary Microbiology, 2007, 123 (1-3), pp.110. 10.1016/j.vetmic.2007.03.026 . hal-00532231

HAL Id: hal-00532231 https://hal.science/hal-00532231

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Selective Capture of Transcribed Sequences (SCOTS) of *Actinobacillus pleuropneumoniae* in the chronic stage of disease reveals an HlyX-regulated autotransporter protein

Authors: Nina Baltes, Falk F.R. Buettner, Gerald-F. Gerlach

PII:	S0378-1135(07)00142-3
DOI:	doi:10.1016/j.vetmic.2007.03.026
Reference:	VETMIC 3619
To appear in:	VETMIC
Received date:	18-9-2006
Revised date:	7-3-2007
Accepted date:	22-3-2007

Please cite this article as: Baltes, N., Buettner, F.F.R., Gerlach, G.-F., Selective Capture of Transcribed Sequences (SCOTS) of *Actinobacillus pleuropneumoniae* in the chronic stage of disease reveals an HlyX-regulated autotransporter protein, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.03.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Selective Capture of Transcribed Sequences (SCOTS) of Actinobacillus				
2	pleuropneumoniae in the chronic stage of disease reveals an HlyX-regulated				
3	autotransporter protein.				
4					
5	NINA BALTES ^{*)} , FALK F.R. B	UETTNER, AN	ND GERALD-F. GERLACH		
6					
7	Institute for Microbiology, Depa	rtment of Infec	tious Diseases, University of Veterinary		
8	Medicine Hannover, Foundation	, 30173 Hannov	ver, Germany		
9					
10	running title: SCOTS r	eveals HlyX-reg	gulated autotransporter of Actinobacillus		
11	pleuropne	rumoniae			
12	Keywords: Actinobacillus pleuro	opneumoniae, p	ersistence, autotransporter proteins		
13					
14	Address for correspondence:	Nina Balte	S		
15		Institut fue	r Mikrobiologie		
16		Zentrum fu	er Infektionsmedizin		
17		Stiftung Ti	erärztliche Hochschule Hannover		
18		Bischofsho	ler Damm 15		
19		30173 Han	nover		
20		Germany			
21		Phone:	+49 511 856-7595		
22		Fax:	+49 511 856-7697		
23		E-mail:	nbaltes@gmx.de		
24					

1 ABSTRACT

2 Actinobacillus (A.) pleuropneumoniae, an important respiratory pathogen in swine, is able to 3 persist in host tissues for extended periods of time. In the study presented here, Selective 4 Capture of Transcribed Sequences (SCOTS) analysis was used to identify genes expressed by 5 A. pleuropneumoniae in the chronic stage of the disease (21 days post infection). After isolation and reverse transcription of RNA from infected lungs as well as from culture-grown 6 7 A. pleuropneumoniae, transcribed A. pleuropneumoniae sequences were captured from 8 infected lung tissue and subjected to a subtractive hybridization procedure of lung-derived 9 against culture-derived A. pleuropneumoniae cDNA. 29 of the 36 genes that were identified 10 as in vivo-expressed are involved in transport or metabolic processes. We identified a surface-11 associated putative 104 kD subtilisin-like autotransporter serine protease, designated AasP, 12 which has not been described in A. pleuropneumoniae to date. The gene was shown to be 13 present in all 15 A. pleuropneumoniae serotypes. It is transcribed in porcine lung tissue on 14 days 7 and 21 post infection. Under anaerobic conditions in vitro, its expression depends on 15 the global anaerobic regulator HlyX. To our knowledge, this is the first report of an 16 autotransporter protein being regulated by a global anaerobic regulator.

1 INTRODUCTION

2 The ability of Actinobacillus (A.) pleuropneumoniae to persist in host tissues presents a major 3 challenge for the establishment of herds that are free of the pathogen (Fenwick and Henry, 4 1994, Haesebrouck et al., 1997, Chiers et al., 1998). The adaptive mechanisms employed by 5 A. pleuropneumoniae to ensure long term survival in the host are largely unknown to date. 6 While genes that are upregulated in A. pleuropneumoniae in vivo have been the target of 7 recent studies, so far these studies have focused on the acute stage of the disease (Fuller et al., 8 1999, Fuller et al., 2000, Sheehan et al., 2003, Baltes and Gerlach, 2004). 9 Selective capture of transcribed sequences (SCOTS) analysis has proved itself to be a useful 10 tool in studying bacterial gene expression directly in infected tissue, and has led to the 11 identification of hitherto undescribed autotransporter adhesins on day 7 post infection in A. 12 pleuropneumoniae (Baltes and Gerlach, 2004). 13 Autotransporter proteins associated with virulence have been identified in a number of 14 gramnegative bacteria. All of them share a common design in their protein sequence, 15 consisting of an amino-terminal signal sequence required for Sec-dependent transport through 16 the inner membrane, followed by the secreted portion of the protein termed the "passenger 17 domain", and finally, the "translocator domain" which inserts into the outer membrane, 18 forming a pore to mediate the passage of the passenger domain to the outside of the cell 19 (Henderson et al., 2004). Autotransporter proteins can perform a diverse array of functions, 20 among them adhesion (Hia, Hsf in Neisseria meningitidis; St Geme J.W.III et al., 1996, Yeo 21 et al., 2004) or toxicity (Pet enterotoxin in *Escherichia coli*; Eslava et al., 1998). 22 Autotransporter proteins containing a serine protease motif are involved in the processing of 23 other autotransporters (SphB1 in *Bordetella pertussis*; Coutte et al., 2001) or cleavage of host 24 immunoglobulins (IgA1 protease in *Neisseria meningitidis*; Vidarsson et al., 2005), but can 25 also exhibit toxin characteristics, such as the secreted autotransporter toxin, Sat, of E. coli 26 (Guignot et al., 2006).

3

1	In the study presented here, we describe the use of SCOTS analysis for studies of A.
2	pleuropneumoniae gene expression in the chronic stage of A. pleuropneumoniae infection,
3	and the identification of a putative autotransporter serine protease which is expressed by A.
4	pleuropneumoniae in the porcine lung on day 21 post infection, and which is regulated by the
5	global anaerobic regulator HlyX.
6	
7	MATERIALS AND METHODS
8	Bacterial strains, plasmids, and primers. The strains, plasmids, and primers used in this
9	work are listed in Table 1.
10	Media and growth conditions. E. coli strains were cultured in LB-medium supplemented
11	with ampicillin (100 µg/ml). A. pleuropneumoniae strains were routinely cultured in PPLO
12	medium (Difco GmbH, Augsburg, Germany) supplemented with nicotinamide dinucleotide
13	(NAD; 10 µg/ml; Merck, Darmstadt, Germany), L-glutamine (100 µg/ml; Serva, Heidelberg,
14	Germany), L-cysteine-hydrochloride (260 µg/ml; Sigma-Aldrich), L-cystine-dihydrochloride
15	(10 μ g/ml; Sigma-Aldrich), Dextrose (1 mg/ml), and Tween [®] 80 (0.1%) and harvested at an
16	OD ₆₀₀ of 0.4 or as indicated.
17	For anaerobic cultures, A. pleuropneumoniae from a fresh overnight culture was inoculated
18	1:10 in 50 ml of fresh medium and grown to an $OD_{600}=0.3$ before being inoculated 1:100 into
19	50 ml of PPLO medium that had been pre-incubated for 48 hours in an anaerobic chamber.
20	Anaerobic cultures were grown for 6 hours which corresponds to the late exponential phase.
21	Manipulation of DNA. DNA-modifying enzymes were purchased from New England
22	Biolabs (Bad Schwalbach, Germany) and used according to the manufacturer's instructions.
23	Taq polymerase was purchased from Gibco-BR Life Technologies (Karlsruhe, Germany).
24	Chromosomal DNA for PCR and Southern Blotting as well as plasmid DNA was prepared by
25	standard protocols (Sambrook et al., 1989). PCR, Southern Blotting, transformation and gel
26	electrophoresis were done by standard procedures (Sambrook et al., 1989).

1 Animal experiments

2 Tissue samples were obtained from five pigs from the wild type-infected control group of a

3 study investigating an *A. pleuropneumoniae* aspartase mutant (Jacobsen et al., 2005). The

4 animals had been infected with wild type *A. pleuropneumoniae* AP76 in an aerosol model.

5 Tissue samples were taken from necrotic lung tissue sections and immediately immersed in

6 RNAlater[®] solution (Ambion Inc., Houston, Texas).

7 Pigs were cared for in accordance with the principles outlined in the European Convention for

8 the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes

9 (European Treaty Series, no. 123: <u>http://conventions.coe.int/treaty/EN/Menuprincipal.htm</u>),

10 and the experiments were approved by an ethics committee.

11

12 Selective Capture of Transcribed Sequences

13 Selective Capture of Transcribed Sequences (SCOTS) was performed as described previously

14 (Baltes and Gerlach, 2004), using necrotic lung tissue samples collected at day 21 post A.

15 *pleuropneumonia e* infection containing at least 10⁶ bacteria per gram tissue. For RNA

16 isolation from tissues, 30 mg samples preserved in RNAlater[®] solution (Applied Biosciences,

17 Darmstadt, Germany) were used. Culture samples (6 ml OD₆₀₀=0.4) were chilled on ice and

18 centrifuged for 5 min at 7,000 x g to pellet bacteria. RNA was isolated using the FastRNA®

19 Blue Kit (QBiogene, Heidelberg, Germany), using A FastPrep[®] instrument (QBiogene). For

20 tissue samples, lysing matrix E (QBiogene) was used instead of the matrix supplied with the

21 FastRNA Blue kit. RNA integrity was verified by visualization on an agarose gel. For use in

22 subsequent experiments, RNA from five animals was pooled at equal proportions. RNA

23 samples were treated with TurboDNAse (Applied Biosciences, Darmstadt, Germany)

24 according to the manufacturer's instructions, and absence of genomic DNA was confirmed by

25 PCR using primers oRN5-1 and oRN5-2 which amplify a 180 bp fragment of the DMSO

26 reductase gene (Baltes et al., 2003). For subtraction, A. pleuropneumoniae AP76 RNA was

1	
1	prepared from liquid cultures that had been grown aerobically with shaking to an OD_{600} of
2	0.4. Lung-derived as well as A. pleuropneumoniae culture-derived RNA were subjected to
3	reverse transcription using primers oSCOTS-N9-1 or oSCOTS-N9-2 consisting of a defined
4	terminal sequence at the 5' end and a random 9mer at the 3' end (Table 1), according to the
5	descriptions of Daigle et al. (2001). Each cDNA population was subjected to three rounds of
6	normalization to reduce sequences transcribed in abundance (rRNA sequences in particular)
7	which would otherwise lead to false positives and/or loss of rare transcripts. One round of
8	normalization consists of hybridization of cDNA to biotinylated genomic A.
9	pleuropneumoniae AP76 DNA which has been preblocked with PCR products representing
10	16S and 23S A. pleuropneumoniae rRNA sequences (Table 1). For subsequent enrichment of
11	sequences preferentially transcribed or upregulated during growth in porcine lung tissue,
12	biotinylated genomic A. pleuropneumoniae AP76 DNA was then preblocked with rRNA PCR
13	products and culture-derived cDNA after three rounds of normalization. Three rounds of
14	capture hybridization with normalized lung-derived cDNA were then performed. Lung-
15	specific cDNA fragments were cloned using the TOPO® TA Cloning kit (Invitrogen,
16	Karlsruhe, Germany) and transformed into E. coli Top10 F' cells according to the
17	manufacturer's instructions. Cloned inserts were amplified by PCR using M13 forward and
18	reverse primers (Amersham Biosciences), spotted on nylon membranes, and subjected to
19	Southern dot blot analysis using ³² P-dCTP-labeled lung and culture specific cDNA pools
20	obtained after three rounds of normalization, respectively. Dot blots were washed with 3 x
21	SSC, 0.1% SDS at 60°C. In order to allow comparison of signal intensities in both blots, 1
22	and 0.1 µg of genomic A. pleuropneumoniae AP76 DNA spotted on nylon membranes were
23	used as positive controls and exposed alongside their corresponding SCOTS clone dot blots.
24	Clones showing weaker or no hybridization to the culture specific probe when compared to
25	the lung specific probe were analysed by nucleotide sequencing in a commercial laboratory
26	(SeqLab, Goettingen, Germany).

6

1	Sequence analyses
2	Sequence analyses were carried out using BLAST (Altschul et al., 1990) and MOTIFS
3	algorithms available in the HUSAR program package at the Deutsches
4	Krebsforschungszentrum (dkfz) in Heidelberg, Germany. Sequence data were also compared
5	to the database of the unfinished genomic sequence of A. pleuropneumoniae in a BLAST
6	search available at http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi. Promoter prediction
7	was performed using the Virtual Footprint promoter analysis tool (Munch et al., 2005)
8	available at http://prodoric.tu-bs.de/vfp/). Secondary structure predictions were carried out
9	using the PSIPRED structure prediction server (McGuffin et al., 2000,
10	http://bioinf.cs.ucl.ac.uk/psipred/).
11	RT-PCR
12	Aerobic <i>A. pleuropneumoniae</i> cultures were grown in a shaking incubator to $OD_{600} = 0.2, 0.4$,
13	0.6, 0.8 or 1.3.
14	For RT-PCR, RNA was prepared and DNAse treated as described above, and reverse
15	transcription was carried out using 5 μ g of RNA in the presence of 5 pmol of <i>aasP</i> -specific
16	reverse primers oSER2 and primer oRRN16-6 (internal positive control for 16S RNA gene)
17	together in the same reaction. Control reactions were set up without reverse transcriptase. The
18	cDNA template was then diluted 1:100 with ddH ₂ O for use in subsequent PCR. 30 cycles of
19	PCR were performed using primer pairs oSER1/oSER2 or oRRN16-3/oRRN16-6 in separate
20	vials, but from the same master mix, using 5 μ l of diluted cDNA as template. RT-PCR
21	experiments were performed at least three times.
22	Harvesting of anaerobic cultures and preparation of bacterial membranes for SDS
23	PAGE, and Q-TOF mass spectrometry
24	Cells were harvested by centrifugation (13,000 x g, 10 min, 4°C), washed once with a buffer
25	containing 10 mM Tris-HCl (pH 8.0) and 5 mM magnesium acetate. Pellets were resuspended
26	in 50 mM Tris-HCl (pH 7.3) and stored at -70° C overnight. Cells were thawed and then

1	ruptured using the FastPrep® Instrument (Qbiogene, Heidelberg, Germany) three times for 40
2	sec at intensity setting 5.0. Unbroken cells were removed by centrifugation (15,000 x g, 30
3	min).
4	The preparation of outer membranes was performed as previously described (Bolin et al.,
5	1982) with the following modifications: after ultracentrifugation of disrupted cells in an
6	SW55 Ti rotor at 45,000 rpm for 2 hours, the pellet containing the membranes was
7	resuspended in SM buffer (1 % sarkosyl, 1 mM β -mercaptoethanol) and incubated overnight
8	at 4°C. After a second round of ultracentrifugation, the pellet contained integral membrane
9	proteins as well as hydrophobic proteins and was resuspended in a buffer containing 30 mM
10	Tris pH 8.5, 2M thiourea, 7 M urea and 4 % CHAPS. Membrane proteins were separated on a
11	10.8 % SDS polyacrylamide gel at 15 mA for 12 hours.
12	Proteins in analytical gels were visualized by staining the gels with silver nitrate (Sigma-
13	Aldrich, Munich, Germany), preparative gels were stained with colloidal Coomassie G-250
14	(Candiano et al., 2004).
14 15	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was
14 15 16	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and
14 15 16 17	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril
14 15 16 17 18	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH ₄ HCO ₃ buffer containing 10
14 15 16 17 18 19	 (Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH₄HCO₃ buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma-
14 15 16 17 18 19 20	 (Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH₄HCO₃ buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma-Aldrich) in 100 mM NH₄HCO₃. Dehydration and rehydration were repeated, and dehydrated
14 15 16 17 18 19 20 21	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH ₄ HCO ₃ buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma- Aldrich) in 100 mM NH ₄ HCO ₃ . Dehydration and rehydration were repeated, and dehydrated gel pieces were rehydrated with buffer (50 mM NH ₄ HCO ₃) containing 20 ng/µl trypsin
 14 15 16 17 18 19 20 21 22 	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH ₄ HCO ₃ buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma- Aldrich) in 100 mM NH ₄ HCO ₃ . Dehydration and rehydration were repeated, and dehydrated gel pieces were rehydrated with buffer (50 mM NH ₄ HCO ₃) containing 20 ng/µl trypsin (sequencing grade; Promega, Mannheim, Germany) and incubated for 12-16 h at 37°C.
 14 15 16 17 18 19 20 21 22 23 	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH4HCO3 buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma- Aldrich) in 100 mM NH4HCO3. Dehydration and rehydration were repeated, and dehydrated gel pieces were rehydrated with buffer (50 mM NH4HCO3) containing 20 ng/µl trypsin (sequencing grade; Promega, Mannheim, Germany) and incubated for 12-16 h at 37°C. Peptides were extracted using 50 mM NH4HCO3 followed by extraction buffer containing
 14 15 16 17 18 19 20 21 22 23 24 	(Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH4HCO3 buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma- Aldrich) in 100 mM NH4HCO3. Dehydration and rehydration were repeated, and dehydrated gel pieces were rehydrated with buffer (50 mM NH4HCO3) containing 20 ng/µl trypsin (sequencing grade; Promega, Mannheim, Germany) and incubated for 12-16 h at 37°C. Peptides were extracted using 50 mM NH4HCO3 followed by extraction buffer containing 50% (vol/vol) acetonitril (Merck) and 5% (vol/vol) formic acid (Merck). The solution
 14 15 16 17 18 19 20 21 22 23 24 25 	 (Candiano et al., 2004). For Q-TOF analysis, protein bands were cut from a Coomassie-stained gel; the protein was trypsinated and extracted from the gel by using a slightly modified method by Wilm and Mann (Shevchenko et al., 1996). Briefly, the gel pieces were dehydrated with acetonitril (Merck, Darmstadt, Germany), rehydrated with a 100 mM NH4HCO3 buffer containing 10 mM DTT (Roth, Karlsruhe, Germany), and then treated with 100 mM iodoacetamide (Sigma-Aldrich) in 100 mM NH4HCO3. Dehydration and rehydration were repeated, and dehydrated gel pieces were rehydrated with buffer (50 mM NH4HCO3) containing 20 ng/µl trypsin (sequencing grade; Promega, Mannheim, Germany) and incubated for 12-16 h at 37°C. Peptides were extracted using 50 mM NH4HCO3 followed by extraction buffer containing 50% (vol/vol) acetonitril (Merck) and 5% (vol/vol) formic acid (Merck). The solution

1	Peptide sequences were determined from tandem mass spectrometry (MS/MS) fragmentation
2	data recorded on an electrospray injection quadrupole time of flight mass spectrometer (ESI
3	Q-ToF MS; Q-Tof Ultima, Waters, Milford, Massachusetts, USA). Proteins were identified
4	using the program ProteinLynx Globals Server (Version 2.1, Waters) by searching against the
5	National Centre for Biotechnology Information (NCBI) complete database
6	(ftp://ftp.ncbi.nlm.nih.gov./blast/db/FASTA/).
7	
/	
8	RESULTS
9	SCOTS analysis from day 21 post infection
10	Of 74 sequenced clones, 16 were found to contain rRNA sequences. The remaining 58 clones
11	contained 36 unique genes which are listed in Table 2. They can be divided into five
12	functional groups: cell surface, metabolism, regulatory, stress, and transport (Table 2).
13	The regulatory proteins identified were HlyX (clone 1E9), a global anaerobic regulator of A.
14	pleuropneumoniae resembling FNR of E. coli (Soltes and MacInnes, 1994) as well as two
15	proteins involved in transcription termination and antitermination, the Rho protein (clone
16	2B2) and NusA (clone 1A8)(Ciampi, 2006).
17	Among the transport proteins, general transport protein SecA was identified (clone 1A1), as
18	well as components of several amino acid or peptide ABC transporters (clones 1H3, 1E11,
19	2C5, 2D8). One protein involved in sugar transport, a xylose binding protein (clone 1C4), was
20	found. One identified protein is possibly involved in mercury ion transport (clone 1F11). For
21	one transport-related protein, no possible substrate could be identified (clone 1A7).
22	Three stress-related proteins were identified, namely a DNA or RNA helicase (clone 1B1),
23	elongation factor Tu (clone 1B8), and DnaK (clone 1D4).
24	The group of metabolic genes identified contains proteins involved in cell respiration and
25	production of energy such as ubiquinone reductase (clone 2G4) and ATP synthase (clone
26	1C12), and also proteins involved in nucleic acid and protein synthesis, like DNA primase
27	(clone1A10), RNA polymerase B (clone 1G3), and ribosomal proteins (clones 1H7 and 1D1).
28	Several proteins involved in the synthesis of cell components were identified, such as
29	dihydropteroate synthase (clone1G10), MreB (1G6) and n-acetylmannosamine-6-phosphate-
30	epimerase (1D9). Three antibiotic-modifying enzymes (for streptomycin, beta lactam

1	antibiotics, and tetracycline; clones 1A6, 2A6, and 2C7, respectively) were identified in this
2	group.
3	Three of the genes identified in this study were also found in a previous SCOTS analysis of A .
4	pleuropneumoniae investigating gene expression on day 7 after infection, namely EF-Tu
5	(clone 1B8), ubiquinone reductase (clone 2G4), and RNA polymerase B (clone 1G3).
6	A single cell surface associated gene was identified (clone 2E12), encoding a putative serine
7	protease autotransporter protein termed AasP. Since a serine protease autotransporter has not
8	been described in A. pleuropneumoniae to date, and since in other gramnegative bacteria,
9	autotransporter proteins have been implicated in pathogenesis (Henderson and Nataro, 2001),
10	this gene was chosen for more detailed analysis.
11	
12	Putative autotransporter serine protease AasP
13	Sequence analyses. The only gene predicted to encode a surface-associated protein that was
14	identified in this work was the putative subtilisin-like autotransporter serine protease gene
15	aasP, present in two sequenced clones. The fragment identified in SCOTS analysis was used
16	to search genomic data of A. pleuropneumoniae serotype 1. The obtained match
17	(ZP_00135639) was used to derive PCR primers for amplification and subsequent nucleotide
18	sequencing of the gene in A. pleuropneumoniae serotype 7, which was identical to the A.
19	pleuropneumoniae serotype 1 gene and designated aasP (GenBank accession no. DQ490067).
20	Using primers oSER1 and oSER2 in PCR analyses, the <i>aasP</i> gene could be detected in all A.
21	pleuropneumoniae reference strains (not shown).
22	The putative promoter region of <i>aasP</i> was found to contain a Shine-Dalgarno consensus
23	sequence (AGGAGA, centered at -10; Fig. 1). Using the Virtual Footprint promoter analysis
24	tool (Munch et al., 2005) to look for an aerobic regulator FNR binding sites up to 800 bp
25	upstream of the start codon, a single putative binding site for the FNR homolog HlyX was
26	identified. Its sequence is TTGAGATCAA and it is centered at position -78. It shows two
27	mismatches in comparison to the HlyX binding site of the A. pleuropneumoniae
28	dimethylsulfoxide reductase (TTGATATCAG, (Baltes et al., 2003) but only a single

10

1	mismatch in	comparison	to the pro	posed E. coli	consensus sea	uence for FNR binding

2 (TTGAT----ATCAA, (Guest et al., 1996, Fig. 1).

3 The 2799 bp *aasP* open reading frame (ORF) encodes a protein of 932 amino acids in length 4 (104 kDa) which is 58% identical to Ssa1, a surface antigen of *Mannheimia haemolvtica* (Lo 5 et al., 1991). Other similar proteins are SphB1 of Bordetella pertussis (24% identity, 43% 6 similarity; (Coutte et al., 2001) and AusP of Neisseria mengingitidis (32% identity, 43% 7 similarity; (Turner et al., 2002). Using the Signal Server, a predicted signal peptide cleavage site was identified between Ala²⁷ and Asp²⁸. 8 The PsiPred secondary structure prediction algorithm revealed a beta domain starting at His⁶⁶⁴ 9 and ending with Phe⁹³², resulting in a 31 kDa domain. The predicted beta domain is preceded 10 11 by a putative linker region, which is an alpha-helical domain spanning 49 amino acids (Tyr⁶¹⁴-Glu⁶⁶³). These findings are consistent with those for other autotransporter proteins, in which 12 13 the beta domain and liker region constitute the translocation unit (Maurer et al., 1999, Oliver 14 et al., 2003) 15 Similar to the subtilisin-like autotransporter serine proteases from *M. haemolytica* Ssa1, (Lo 16 et al., 1991), the SphB1 protein from B. pertussis (Coutte et al., 2001), and the AusP protein 17 from N. meningitidis (Turner et al., 2002), the A. pleuropneumoniae AasP protein sequence contains a subtilase motif (the active site for proteolytic activity), spanning from Gly³⁴⁹ to 18

19 Gly³⁵⁹ (Fig. 2).

Analysis of transcription. Transcription of *aasP* in vitro and in vivo was investigated by RTPCR analysis. Since *A. pleuropneumoniae* RNA content could not be determined in the
mixture of porcine and bacterial RNA obtained from the lung at day 21 post infection, reverse
transcription was carried out using 5 µg of total RNA from infected porcine lung tissue and
cultured bacteria, respectively. After 30 cycles of PCR, a serine protease product was
amplified from the 1:100 dilution of lung-derived cDNA, while culture-derived cDNA
yielded no product (Fig 3). The PCR product was verified by nucleotide sequencing.

In order to determine whether *aasP* transcription is dependent on oxygen levels and regulated

by the global anaerobic regulator HlyX, an RT-PCR experiment was set up using cDNA from

aerobic cultures of A. pleuropneumoniae AP76 harvested at $OD_{600} = 0.2, 0.4, 0.6, 0.8$ and 1.3,

(Fig. 4). The bands were excised from a Coomassie Blue stained gel and analyzed by Q-TOF mass spectrometry. A peptide mass fingerprint was calculated and entered in a database search using the MASCOT server (available at http://www.matrixscience.com/server.html), which identified the protein as AasP with 35% sequence coverage. In MS/MS mode, the protein was identified as AasP by de-novo sequencing with 4.6 % (aerobic) and 5.7 % (anaerobic) sequence coverage. In aerobic membrane preparations, the three individual peptides sequenced via Q-TOF MS/MS were N²⁶²-K²⁷⁴, F⁷⁰⁵-R⁷¹⁷ (oxidized form) and F⁸⁴⁷- R⁸⁶³. In the anaerobic cultures, a total of five peptides were sequenced. Two of these peptides were also identified in aerobic cultures, namely F⁷⁰⁵-R⁷¹⁷ and F⁸⁴⁷-R⁸⁶³; additionally, an oxidized form of F⁷⁰⁵-R⁷¹⁷ was identified, along with peptides D³⁷⁸-K³⁹⁰ and Y³⁹⁶-K⁴⁰⁵.

respectively, as well as from anaerobically grown *A. pleuropneumoniae* AP76 and from the
isogenic HlyX deletion mutant *A. pleuropneumoniae* Δ*hlyX*. In aerobic culture samples, the
transcript was not consistently detected every time the PCR was run. In anaerobic *A. pleuropneumoniae* AP76 samples, an *aasP* transcript was always detected after 30 cycles of
PCR, while it was always absent in the *hlyX* deletion mutant. 16S RNA transcripts were
consistently detected in all samples. (Fig. 3).
Analysis of protein expression. AasP protein expression and subcellular localization was

examined by SDS PAGE. A prominent band approximately 100 kDa in size was detected in

membrane preparations of A. pleuropneumoniae AP76 wild type grown under aerobic and

anaerobic conditions, and in the HlyX negative mutant A. pleuropneumoniae $\Delta hlyX$ under

aerobic conditions, but was absent in an HlyX negative mutant under anaerobic conditions

1 DISCUSSION

2 One way to elucidate the mechanisms responsible for persistence of A. pleuropneumoniae is 3 the identification of genes that are expressed by the pathogen in the host in the later stages of 4 the disease. The analysis of gene expression directly in host tissues should be a favoured 5 approach. Using SCOTS analysis to compare A. pleuropneumoniae gene expression in 6 necrotic lung tissue on day 21 post infection and in liquid culture, we were able to identify 36 7 putative in vivo expressed A. pleuropneumoniae genes. Three of these genes, namely those 8 coding for elongation factor EF-Tu (clone 1B8), ubiquinone reductase (clone 2G4), and RNA 9 polymerase B (clone 1G3) have previously been identified as *in vivo* expressed in a SCOTS 10 analysis using tissue from day 7 post A. pleuropneumoniae infection (Baltes and Gerlach, 11 2004). Ubiquinone reductase (clone 2G4) has also previously been identified as essential in 12 vivo for A. pleuropneumoniae through STM analysis, along with DnaK (clone 1D4) (Fuller et 13 al., 2000, Sheehan et al., 2003). A dihydropteroate synthase (clone 1G10) has been previously 14 identified by SCOTS analysis as in vivo expressed in avian pathogenic E. coli (Dozois et al., 15 2003). 16 The global anaerobic regulator HlyX (MacInnes et al., 1990) was identified in our analysis. 17 This is not surprising, as we can safely assume the inside of necrotic lung lesions to be 18 deprived of oxygen due to a lack of blood supply, which would lead to an upregulation of 19 anaerobically regulated genes and therefore an increased need for the HlyX protein itself. The 20 HlyX negative A. pleuropneumoniae mutant A. pleuropneumoniae $\Delta hlyX$ has previously been 21 shown to be impaired in its survival in sequestered lung tissue (Baltes et al., 2005); suggesting 22 that the observations made in infection experiments using the HlyX mutant result from an 23 insufficient ability to adapt its metabolism and transport mechanisms to anaerobic conditions. 24 The majority of genes identified in this study play roles in either nutrient transport, energy 25 metabolism, or synthesis of nucleic acids or cell components. This finding likely reflects the 26 differences between culture of the microorganism in nutrient broth and growth of a pathogen

13

1 within the host, however, even though these genes may not appear to be virulence or 2 persistence associated at first glance, they may be involved indirectly by sustaining basic cell 3 functions. For example, xylose has recently been shown to be a main component of biofilms 4 in *Bordetella bronchiseptica* (Irie et al., 2006), and a xylose transporter as identified here may 5 contribute to biofilm formation in A. pleuropneumoniae as well. 6 The gene we deemed most likely to have a more direct influence on A. pleuropneumoniae 7 pathogenesis was the only surface-associated gene we identified, a putative subtilisin-like 8 autotransporter protease termed AasP (GenBank accession no. DQ490067). Surprisingly, its 9 promoter region contains a putative HlyX binding site. Autotransporter proteins are usually 10 involved in pathogenesis (Henderson and Nataro, 2001), and deletions in several HlyX 11 regulated genes as well as in HlyX itself have been shown to have an attenuating effect on A. 12 pleuropneumoniae (Baltes et al., 2003, Jacobsen et al., 2005, Baltes et al., 2005). Subtilisin-13 like autotransporter proteases have not been described in *A. pleuropneumoniae* to date. 14 The AasP protein sequence contains a typical subtilase motif which constitutes a putative 15 active site, and AasP is very similar to a number of known bacterial autotransporter subtilases 16 such as SphB1 of *B pertussis*, which serves as a maturation protease for other autotransporters 17 (Coutte et al., 2001). 18 Since we suspected that *aasP* transcription was controlled by HlyX under anaerobic 19 conditions, we investigated *aasP* transcription in various stages of growth, in lung tissue, and 20 under anaerobic conditions. Using RT-PCR, we could demonstrate that the *aasP* gene is 21 transcribed in necrotic lung tissue and under aerobic and anaerobic conditions in vitro, but it 22 is not transcribed in an anaerobically grown HlyX deletion mutant. The inconsistencies in 23 transcript detection under aerobic conditions may hint at low transcript levels leading to 24 occasional detection failure. 25 On the protein level, we could show that under aerobic conditions, the AasP protein is present 26 in membrane preparations of A. pleuropneumoniae AP76 wild type and the A.

1 *pleuropneumoniae* $\Delta hlyX$ mutant. However, under anaerobic conditions, AasP is present only 2 in the A. pleuropneumoniae wild type and absent from the $\Delta h lyX$ mutant. These findings 3 confirm that expression of *aasP* transcription is HlyX dependent under anaerobic conditions. 4 The size of the identified protein shows that significant amounts of the protein remain 5 membrane associated. Under aerobic conditions, the protein expression levels do not 6 correspond well with the RT-PCR findings, therefore the regulation of AasP under aerobic 7 conditions remains to be investigated. The role of other regulatory proteins needs to be 8 examined; additionally, it is possible that posttranscriptional regulation rather than regulation 9 of transcript numbers plays a role in AasP expression under aerobic conditions. 10 As we show, *aasP* transcription does not occur in lung tissue exclusively (as the rationale 11 behind the SCOTS technique would suggest), but also under standard culturing conditions. 12 The same can be assumed for several other genes picked up in this SCOTS analysis, such as 13 HlyX, EF-Tu, and DnaK. These are most likely not only expressed in vivo, but are present 14 under standard culturing conditions as well. This can be explained by an *in vivo* increase in 15 transcription, leading to an abundance of transcripts in the *in vivo* cDNA pool, which could in 16 turn lead to incomplete removal of such transcripts from the cDNA pool during subtractive 17 hybridization, in spite of the excess of in vitro transcripts used for pre-blocking of 18 biotinylated DNA (Dozois et al., 2003). While such genes may still play a role for A. 19 pleuropneumoniae survival in sequestered lung tissue, in vivo expression and significance of 20 the genes identified in this study would have to be verified for each gene individually. 21 Likewise, the actual function of AasP remains to be determined, and it should be investigated 22 whether all of the protein remains membrane associated or whether it can also be cleaved to 23 release the passenger domain. The similarity of AasP to other autotransporter serine proteases 24 suggests a role in the processing of other autotransporters, namely adhesins, and thus, a 25 possible role in colonization, biofilm formation or persistence by A. pleuropneumoniae. 26 However, while other autotransporter proteins have been identified in A. pleuropneumoniae,

15

1 they have not yet been characterized. Therefore, their role as possible substrates for AasP is

2 unknown.

3 To our knowledge, this is the first report of an autotransporter protein whose transcription is

- 4 controlled by a global anaerobic regulator.
- 5
- 6

7 ACKNOWLEDGMENTS

- 8 This work was supported by Sonderforschungsbereich 587 (Project A4), the Dorothea
- 9 Erxleben Program from the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany, and
- 10 DFG project BA 3421/2-1. F.B. is a fellow of the graduate college 745 (project A1) of the

11 DFG.

1 FIGURE LEGENDS

2	Fig. 1: Promoter region of A. pleuropneumoniae aasP. SD indicates the position of the
3	Shine-Dalgarno consensus sequence.

- 4
- 5 Fig. 2: CLUSTAL alignment of autotransporter serine proteases of A. pleuropneumoniae

6 (AasP), Mannheimia haemolytica (Ssa1), Bordetella pertussis (SphB1), and Neisseria

7 *meningitidis* (AusP). Asterisks mark the subtilase motif.

8

- 9 Fig. 3: RT-PCR analysis of *aasP* transcription. *aasP*: primers oSER1 and oSER2 for
- amplification of serine protease gene fragment; rrn: primers oRRN16-3 and oRRN16-6 for

11 amplification of 16S rRNA gene fragment; cDNA templates: 1:100 dilutions. +: positive

- 12 controls for oSER and oRRN primers using AP76 DNA as template; A: transcription of *aasP*
- 13 under standard culturing conditions at $OD_{600}=0.4$ (lane 1) as well as in lung tissue at days 7
- and 21 post infection (lanes 2 and 3, respectively); **B:** transcription of *aasP* in vitro at
- 15 different stages of growth: aerobically grown A. pleuropneumoniae AP76 at OD₆₀₀=0.2 (lane

16 1), 0.4 (lane 2), 0.6 (lane 3), 0.8 (lane 4) and 1.3 (lane 5), anaerobically grown *A*.

17 *pleuropneumoniae* AP76 (lane 6), and anaerobically grown *A. pleuropneumoniae* $\Delta hlyX$ (lane

18 7).

19

20 Fig. 4: Protein expression analysis of A. pleuropneumoniae AasP in late exponential

- 21 phase. Silver stained SDS-PAGE gel of membrane preparations of A. pleuropneumoniae
- 22 AP76 (wt) and A. pleuropneumoniae $\Delta hlyX(\Delta)$ under aerobic (left) and anaerobic (right)
- 23 conditions. Arrows indicate bands identified as AasP by Q-TOF MS analysis.

1 **REFERENCES**

- 2
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., 1990. Basic local
 alignment search tool. J. Mol. Biol. 215, 403-410.
- 5 Baltes, N. and Gerlach, G. F., 2004. Identification of genes transcribed by Actinobacillus
- 6 *pleuropneumoniae* in necrotic porcine lung tissue by using selective capture of transcribed
- 7 sequences. Infect. Immun. 72, 6711-6716.
- 8 Baltes, N., Hennig-Pauka, I., Jacobsen, I., Gruber, A. D., and Gerlach, G. F., 2003.
- 9 Identification of dimethyl sulfoxide reductase in *Actinobacillus pleuropneumoniae* and its role
- 10 in infection. Infect. Immun. 71, 6784-6792.
- 11 Baltes, N., N'diaye, M., Jacobsen, I. D., Maas, A., Buettner, F. F., and Gerlach, G. F., 2005.
- 12 Deletion of the anaerobic regulator HlyX causes reduced colonization and persistence of
- 13 Actinobacillus pleuropneumoniae in the porcine respiratory tract. Infect. Immun. 73, 4614-

14 4619.

- 15 Bolin, I., Norlander, L., and Wolf-Watz, H., 1982. Temperature-inducible outer membrane
- 16 protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the
- 17 virulence plasmid. Infect. Immun. 37, 506-512.
- 18 Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B.,
- 19 Orecchia, P., Zardi, L., and Righetti, P. G., 2004. Blue silver: a very sensitive colloidal
- 20 Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327-1333.
- 21 Chiers, K., van Overbeke, I., De Laender, P., Ducatelle, R., Carel, S., and Haesebrouck, F.,
- 22 1998. Effects of endobronchial challenge with Actinobacillus pleuropneumoniae serotype 9 of
- 23 pigs vaccinated with inactivated vaccines containing the Apx toxins. Vet. Q. 20, 65-69.

1	Ciampi, M. S. 2006. Rho-dependent terminators and transcription termination. Microbiology
2	152, 2515-2528.

- 3 Coutte, L., Antoine, R., Drobecq, H., Locht, C., and Jacob-Dubuisson, F., 2001. Subtilisin-
- 4 like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J.

5 20, 5040-5048.

6 Daigle, F., Graham, J. E., and Curtiss, R., III, 2001. Identification of Salmonella typhi genes

7 expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol.
8 Microbiol. 41, 1211-1222.

9 Dozois, C. M., Daigle, F., and Curtiss, R., III, 2003. Identification of pathogen-specific and

10 conserved genes expressed in vivo by an avian pathogenic *Escherichia coli* strain. Proc. Natl.

- 11 Acad. Sci. U. S. A 100, 247-252.
- 12 Eslava, C., Navarro-Garcia, F., Czeczulin, J. R., Henderson, I. R., Cravioto, A., and Nataro, J.

P., 1998. Pet, an autotransporter enterotoxin from enteroaggregative *Escherichia coli*. Infect.
Immun. 66, 3155-3163.

- Fenwick, B. and Henry, S., 1994. Porcine pleuropneumonia. J. Am. Vet. Med. Assoc. 204,
 1334-1340.
- 17 Fuller, T. E., Martin, S., Teel, J. F., Alaniz, G. R., Kennedy, M. J., and Lowery, D. E., 2000.
- 18 Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged
- 19 mutagenesis in a swine infection model. Microb. Pathog. 29, 39-51.
- 20 Fuller, T. E., Shea, R. J., Thacker, B. J., and Mulks, M. H., 1999. Identification of in vivo
- 21 induced genes in *Actinobacillus pleuropneumoniae*. Microb. Pathog. 27, 311-327.

1	Guest, J. R., J. Green, A. S. Irvine, and S. Spiro. 1996., pp. 317-342. In: E. C. C. Lin and A.
2	S. Lynch (ed.), Regulation of Gene Expression in Escherichia coli, R.G. Landes & Co,
3	Austin, TX.
4	Guignot, J., Chaplais, C., Coconnier-Polter, M. H., and Servin, A. L., 2006. The secreted
5	autotransporter toxin, Sat, functions as a virulence factor in Afa/Dr diffusely adhering
6	Escherichia coli by promoting lesions in tight junction of polarized epithelial cells. Cell
7	Microbiol. 9, 204-221.
8	Haesebrouck, F., Chiers, K., van Overbeke, I., and Ducatelle, R., 1997. Actinobacillus
9	pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and
10	protection. Vet. Microbiol. 58, 239-249.
11	Henderson, I. R. and Nataro, J. P., 2001. Virulence functions of autotransporter proteins.
12	Infect. Immun. 69, 1231-1243.
13	Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C., and Ala'Aldeen, D.,
14	2004. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev.
15	68, 692-744.
16	Irie, Y., Preston, A., and Yuk, M. H., 2006. Expression of the primary carbohydrate
17	component of the Bordetella bronchiseptica biofilm matrix is dependent on growth phase but
18	independent of Bvg regulation. J. Bacteriol. 188, 6680-6687.
19	Jacobsen, I., Hennig-Pauka, I., Baltes, N., Trost, M., and Gerlach, G. F., 2005. Enzymes
20	Involved in Anaerobic Respiration Appear To Play a Role in Actinobacillus
21	pleuropneumonia e Virulence. Infect. Immun. 73, 226-234.

- 1 Lo, R. Y., Strathdee, C. A., Shewen, P. E., and Cooney, B. J., 1991. Molecular studies of
- 2 Ssa1, a serotype-specific antigen of *Pasteurella haemolytica* A1. Infect. Immun. 59, 33983 3406.
- 4 MacInnes, J. I., Kim, J. E., Lian, C. J., and Soltes, G. A., 1990. Actinobacillus
- 5 *pleuropneumoniae hlyX* gene homology with the *fnr* gene of *Escherichia coli*. J. Bacteriol.
- 6 172, 4587-4592.
- 7 Maurer, J., Jose, J., and Meyer, T. F., 1999. Characterization of the essential transport
- 8 function of the AIDA-I autotransporter and evidence supporting structural predictions. J.
- 9 Bacteriol. 181, 7014-7020.
- 10 McGuffin, L. J., Bryson, K., and Jones, D. T., 2000. The PSIPRED protein structure
- 11 prediction server. Bioinformatics. 16, 404-405.
- 12 Munch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., and Jahn, D., 2005.
- 13 Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in
- 14 prokaryotes. Bioinformatics. 21, 4187-4189.
- 15 Oliver, D. C., Huang, G., and Fernandez, R. C., 2003. Identification of secretion determinants
- 16 of the Bordetella pertussis Brk A autotransporter. J. Bacteriol. 185, 489-495.
- 17 Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989. Molecular cloning: a laboratory manual.
- 18 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y., USA.
- 19 Sheehan, B. J., Bosse, J. T., Beddek, A. J., Rycroft, A. N., Kroll, J. S., and Langford, P. R.,
- 20 2003. Identification of Actinobacillus pleuropneumoniae genes important for survival during
- 21 infection in its natural host. Infect. Immun. 71, 3960-3970.

1	Shevchenko, A., Wilm, M., Vorm, O., and Mann, M., 1996. Mass spectrometric sequencing
2	of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858.
3	Soltes, G. A. and MacInnes, J. I., 1994. Regulation of gene expression by the HlyX protein of
4	Actinobacillus pleuropneumoniae. Microbiology 140, 839-845.
5	St Geme J.W.III, Cutter, D., and Barenkamp, S. J., 1996. Characterization of the genetic locus
6	encoding Haemophilus influenzae type b surface fibrils. J. Bacteriol. 178, 6281-6287.
7	Turner, D. P., Wooldridge, K. G., and Ala'Aldeen, D. A., 2002. Autotransported serine
8	protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and
9	secreted protein. Infect. Immun. 70, 4447-4461.
10	Vidarsson, G., Overbeeke, N., Stemerding, A. M., van den, D. G., van Ulsen, P., van der, L.
11	P., Kilian, M., and van de Winkel, J. G., 2005. Working mechanism of immunoglobulin A1
12	(IgA1) protease: cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo
13	synthesis of IgA1 Protease. Infect. Immun. 73, 6721-6726.
14	Yeo, H. J., Cotter, S. E., Laarmann, S., Juehne, T., St Geme, J. W., and Waksman, G., 2004.
15	Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter.
16	ЕМВО Ј. 23, 1245-1256.
17	

Figure

ACCEPTED MANUSCRIPT

TCCATAAAAAACTTGAGGTAAATCAAAAAAGATGAGAACTA HIyX box TTTGCAATAATAGACATCGTAAGTATAATCCCATTTTTTTA TA<u>AGGAGA</u>CTATAAATGCTTGAAAAATATTATTTTAATAAA **SD** M L E K Y Y F N K M L E K Y Y F N K AasP ORF

ABSP GVSKNWCVAAPGNLALINALPDNKLKPQYSLDKEEGTSLAIPVVTGALAI	363
Ssal GASKNWCVAAPGDLHVLIGVADEHKKPQYGLTKEQGTSFSAPAITASLAV	363
SphB1GQAQQWCLAAPSTAYLPGLDKDNP-DSIHVEQGTSLSAPLVTGAAVIL	424
AusP GITAMWCLSAPYEASVRFTRTNP	423
AasP LKERFNYLVPTOIRDTLLTTATDLGEKGVDDKYGWGVINIAKAINGPSOF	413
Ssa1 LKERFDYLTATOIRDTLLTTATDLGEKGVDNVYGWGLINLKKAVNGPTOF	413
SphB1VODRFRWMDNDNLRTTLLTTAQDKGPYGVDPOYGWGVLDVGRAVDGPAOF	474
AusP LLQKYPWMSNDNLRTTLLTTAQDIGAVGVDSKFGWGLLDAGKAMNGPASF	473

aerobic

anaerobic

Table 1. Bacterial strains and primers

Strains and primers	characteristics	source	
		(references)	
Strains			
A. pleuropneumoniae	A. pleuropneumoniae serotype 7 field strain	diagnostic unit of	
AP76		the department	
A. pleuropneumoniae	A. pleuropneumoniae AP76 mutant lacking	(Baltes et al.,	
$\Delta h l y X$	HlyX	2005)	
Primers	S		
oSCOTS-N9-1	5' GTGGTACCGCTCTCCGTCCGA-N9 3'	(Daigle et al.,	
		2001)	
oSCOTS-N9-2	5' CGGGATCCAGCTTCTGACGCA-N9 3'	(Daigle et al.,	
		2001)	
oSCOTS1	5' GTGGTACCGCTCTCCGTCCGA 3'	(Daigle et al.,	
		2001)	
oSCOTS2	5' CGGGATCCAGCTTCTGACGCA 3'	(Daigle et al.,	
		2001)	
oRRN16-1	5' TGGGTCGTAGGTTCAAATCC 3'		
oRRN16-2	5' GCGTCAGTACATTCCCAAGG 3',	(Baltes and	
	Amplifies 5' end of 16s rRNA sequence, product	Gerlach, 2004)	
	size 990 bp		
oRRN16-3	5' TGTAGCGGTGAAATGCGTAG 3'		
oRRN16-4	5' ACTTGAACCACCGACCTCAC 3'	(Baltes and	
	Amplifies 3' end of 16s rRNA sequence, product	Gerlach, 2004)	
	size 1000 bp		
oRRN16-6	5' CGTTGCATCGAATTAAACCA 3'		
	upstream primer, amplifies a 262 bp fragment of	this work	
	16s rRNA with primer oRRN16-3		
oRRN23-1	5' TTGGAAACAAGCTGAAAACTGA 3'	(Baltes and	
oRRN23-2	5' GGACAGGAACCCTTGGTCTT 3'	Gerlach, 2004)	

	Amplifies 5' end of 23s rRNA sequence product		
	size 1480 bp		
oRRN23-3	5' TCAGAAGTGCGAATGCTGAC 3'		
oRRN23-4	5' CTGGCGAGACAACTGGTACA 3'		
	Amplifies 3' end of 23s rRNA sequence, product	(Baltes and	
	size 1466 bp	Gerlach, 2004)	
oSER1	5' AAAACCCGTCGAACAGAATG 3'		
oSER2	5' CATCTTTGGCAAGCTCATCA 3'	this work	
	Amplifies bp 294-565 of the <i>aasP</i> ORF, product		
	size 272 bp		

Table 1. Characteristics of bacterial strains and primers used in this study

1 Table 2. Genes identified by SCOTS analysis

ID ^a	Protein ^b	Id/Sim % ^c	Span ^d	accession no.
	Surface			
2E12	Subtilisin-like serine protease AasP			ZP_00135639
	Regulatory			
1E9	Global anaerobic regulator HlyX			P23619
2B2	Transcription termination factor Rho			CAA76933
1A8	Transcription termination-antitermination factor NusA			ZP_00133986
	Transport			
1A1	SecA			ZP_00135175
1C4	Periplasmic xylose binding protein			ZP_00134919
1H3	Peptide transport periplasmic protein SapA			ZP_00348295
1E11	sodium/glutamate symporter			ZP_00135045
205	ABC-type transport system involved in resistance to organic			ZP_00135102
203	solvents, ATPase component			21_00133102
2D8	ABC-type spermidine/putrescine transport system, permease			ZP_00133976
200	component II			ZI_00133770
1A7	Predicted membrane protein			ZP_00134961
1F11	Mercuric transport protein			ZP_00134482
	Stress			
1B1	Superfamily II DNA and RNA helicases			ZP_00134573
1B8	EF-Tu [*]			ZP_00134976
1D4	DnaK			ZP_00134922
	Metabolism			
1A6	Streptomycin phosphotransferase (<i>Pseudomonas syringae</i> pv. <i>actinidiae</i>)	98/100	54	AAS21309
2A6	Beta lactamase			AAB24384
1G10	Dihydropteroate synthase			ZP_00134464
2C7	Tetracycline resistance protein TetB			ABA71359
2G11	Glyceraldehyde-3-phosphate dehydrogenase (H. influenzae)	95/98	74	P44304
2G4	Na+-transporting NADH:ubiquinone oxidoreductase, subunit			ZP_00134697
1C10	Predicted permease			ZP_00135223
1A10	DNA primase			ZP_00134666
1B3	Acetyl-CoA carboxylase alpha subunit			ZP_00134950
1C12	F0F1-type ATP synthase subunit b			ZP_00134544
1H7	30 S ribosomal protein			031194
1D1	50 S ribosomal protein (<i>Haemophilus influenzae</i>)	92/98	44	P44344
1E7	TypA GTP binding protein (<i>Haemophilus influenzae</i>)	94/94	39	P44910
1D9	putative n-acetylmannosamine-6-phosphate 2-epimerase	5 11 5 1	57	ZP_00135289
1G3	RNA nolymerase B [*]			ZP_00134648
1 H4	tRNA pseudouridine synthase d			ZP_00204522
166	Actin-like ATPase involved in cell morphogenesis (MreB)			ZP_00134716
169	Triosenhosphate isomerase (Actinobacillus succinogenes)	85/92	30	ZP_00732017
2C1	MethionvLtRNA formyltransferase	03/72	57	ZP_00133763
201 2D1	Leucyl aminonentidase			ZP_0013/862
2101 2155	Glycosyl transferase (Actinobacillus actinomycatom comitans)	46/67	71	<u>R</u> Δ Δ 281/11
200	Giyeosyi u ansierase (Actinooucillus a clinomycelemcomuuns)	TU/U/	/1	DAA20141

- 1 asterisks denote genes also identified in a previous SCOTS analysis investigating A.
- pleuropneumoniae gene expression in the porcine lung on day 7 post infection (Baltes and 2
- 3 Gerlach, 2004)
- 4
- ^a clone number ^b protein as identified in *A. pleuropneumoniae*, or homologues in other species, where 5
- 6 indicated.
- ^c percentage of identity (Id) and similarity (Sim) on the amino acid level to proteins, given for 7
- 8
- sequences for which homologues were found in species other than *A. pleuropneumoniae* ^d number of amino acids from which the indicated percentage of identity and similarity was 9
- 10 derived.
- 11