

Antiapoptotic activity of bovine herpesvirus type-1 (BHV-1) UL14 protein

L. de Martino, G. Marfe, M. Irno Consalvo, C. Di Stefano, U. Pagnini, P.

Sinibaldi-Salimei

► To cite this version:

L. de Martino, G. Marfe, M. Irno Consalvo, C. Di Stefano, U. Pagnini, et al.. Antiapoptotic activity of bovine herpesvirus type-1 (BHV-1) UL14 protein. Veterinary Microbiology, 2007, 123 (1-3), pp.210. 10.1016/j.vetmic.2007.02.026 . hal-00532219

HAL Id: hal-00532219 https://hal.science/hal-00532219

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Antiapoptotic activity of bovine herpesvirus type-1 (BHV-1) UL14 protein

Authors: L. De Martino, G. Marfe, M. Irno Consalvo, C. Di Stefano, U. Pagnini, P. Sinibaldi-Salimei

PII:	\$0378-1135(07)00107-1
DOI:	doi:10.1016/j.vetmic.2007.02.026
Reference:	VETMIC 3605
To appear in:	VETMIC

 Received date:
 28-12-2006

 Revised date:
 14-2-2007

 Accepted date:
 21-2-2007

Please cite this article as: De Martino, L., Marfe, G., Consalvo, M.I., Di Stefano, C., Pagnini, U., Sinibaldi-Salimei, P., Antiapoptotic activity of bovine herpesvirus type-1 (BHV-1) UL14 protein, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.02.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Research

2	Title: Antiapoptotic activity of bovine herpesvirus type-1 (BHV-1) UL14 protein.
3	L. De Martino ^{a*} , G. Marfe ^b , M Irno Consalvo ^c , C. Di Stefano ^b , U. Pagnini ^a , P. Sinibaldi-Salimei ^b .
4	
5	^a Department of Pathology and Animal Health, Infectious Diseases, Medicine Veterinary School,
6	University of Naples "Federico II", Via F. Delpino, 1 – 80137 Naples, Italy.
7	^b Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor
8	Vergata", Via Montpellier 1 – 00133 Rome, Italy.
9	^c Department of Biopatologia e Diagnostica per Immagini, University of Rome "Tor Vergata", Via
10	Montpellier 1 – 00133 Rome, Italy.
11	
12	
13	
14	
15	
16	Corresponding author: Luisa De Martino PhD
17	Department of Pathology and Animal Health, Infectious Diseases, Medicine Veterinary School,
18	University of Naples "Federico II", Via F. Delpino, 1 – 80137 Naples, Italy.
19	Tel.: +39 081 2536178 – FAX: +39 081 2536179
20	email: luisa.demartino@unina.it;
21	luisa_demartino@libero.it

1

Abstract

2 Viruses have evolved different strategies to interfere with apoptotic pathways in order to halt 3 cellular responses to infection. One previous study showed that transient transfection of bovine 4 herpesvirus type-1 (BHV-1) UL14 protein is efficient in protecting Madin Darby kidney (MDBK) 5 and human chronic myelogenous leukemia (K562) cells from sorbitol-induced apoptosis. This 6 protein corresponds to a putative protein of BHV-1, which shares aminoacid sequence with a part 7 of the peptide-binding domain conserved in human heat shock protein (HSP70) family. The pBK-8 CMV-UL14 plasmid transfected MDBK cells treated with sorbitol did not show caspase-3 and 9 caspase-9 activation with respect to non-transfected MDBK cells (UL14 negative). Furthermore, 10 we report that the expression of the full length sequence of BHV-1 UL14 is evident after 7 h of 11 infection of BHV-1 on MDBK cells which were then treated with sorbitol. These results indicate 12 that UL14 gene product has important implications to enhance cell survival in response to apoptotic 13 stimuli.

14

15 Key words: BHV-1, UL14, caspase-3, caspase-9

16

17 **1. Introduction**

Inhibition of apoptosis is a common strategy of viral pathogenesis that favors virus replication and may contribute to oncogenesis (Thomson, 2001). Bovine herpesvirus 1 (BHV-1) codes for a variety of proteins that cooperate in blocking apoptosis triggered by virus infection, non specific stress agents such as osmotic shock (Geiser and Jones, 2005).

The genome of the Cooper strain of BHV-1, which has been completely sequenced, is 135,301 bp in length and contains an estimated 73 genes (GenBank accession number AJ004801). The genome consists of two unique sequences, long or UL (103-kb L segment) and short or US (32kb S segment), comprising a 10-kb unique region flanked by 11-kb internal and terminal inverted

repeats (IR and TR). This arrangement corresponds to the D-type herpesviral genome (McGeoch
 and Davison, 1999).

3 UL14 is located in a gene cluster also containing genes UL13, UL12, and UL11 which share 4 a common polyadenylation signal downstream of UL11. The product of UL14 gene of herpes 5 simplex virus type 1 (HSV-1) has been described as a minor protein of the tegument of 32 kDa 6 which is expressed late in infection (Cunningham et al., 2000).

7 It has been suggested that HSV-2 and HSV-1 UL14 protein shared some characteristics of
8 heat shock proteins (HSPs) or molecular chaperones, such as nuclear translocation upon heat shock,
9 ATP deprivation and osmotic shock (Yamauchi et al., 2002).

Virus-induced cell death plays an important role in the pathogenesis of virus infection. Many viruses have been demonstrated to elicit or inhibit apoptosis either directly or indirectly during their replication cycles (Roulston et al., 1999). Therefore, several viruses have developed specific gene activation programs to inhibit premature death of the infected cells, so as to complete the viral progeny. This extremely complex phenomenon probably involves many genes which need to be characterized. HSV-1 has been extensively studied and several genes with antiapoptotic activity are evidenced (Benetti and Roizman, 2004; Perkins et al., 2003).

17 Apoptosis is a cell suicide mechanism invoked in different situations to remove redundant, 18 damaged, or infected cells. An essential component of the apoptotic machinery, the caspase family, 19 consists of a group of intracellular cysteine proteases with at least 14 members (Weil et al., 1997; 20 Rathmell and Thompson, 2002; Philchenkov, 2004). They can be divided into initiator or upstream 21 caspases (caspases-2, -8, -9, and -10), which go on to activate the downstream or effector caspases 22 (caspases-3, -6 and -7) (Thornberry and Lazebnik, 1998; Slee et al., 1999). Cleavage of a select 23 group of substrates by effector caspases is responsible for dismantling of essential cell components, 24 which results in morphological and biochemical changes that characterize apoptotic cell death: 25 cytoskeletal rearrangement, cell membrane blebbing, nuclear condensation and DNA fragmentation. 26 Using a pBK-CMV-UL14 transfected cell line with inducible expression, we show that UL14

alone is sufficient to inhibit apoptosis induced by stress agent, and that it prevents the activation of caspase-3 and caspase-9 in sorbitol-induced apoptosis. These results point to a strategy for viral inhibition of apoptosis based on functional inactivation of a critical component of the cellular death machinery.

5

6 2. Materials and methods

7 2.1. Virus

8 The reference BHV-1 Cooper strain was used in this study (De Martino et al., 2003). 9 Madin-Darby bovine kidney (MDBK) cells were used for viral propagation. When cytopathic 10 effects were observed, cells were frozen and thawed three times, and the supernatant was used to 11 titre the virus. Virus stocks with titres of 2×10^7 TCID₅₀ ml⁻¹ were stored in liquid nitrogen until use.

12

13 2.2. Cells and culture conditions

14 MDBK cells were cultured in DMEM supplemented with 2 mM L-glutamine, 5% pre-15 screened and heat-inactivated foetal calf serum (FCS) (Eurobio), 100 IU of penicillin, and 100 mg 16 of streptomycin per ml (both antibiotics from Bio-Whittaker), in a 5% CO₂ incubator. This cell line 17 was maintained free of mycoplasma and of bovine viral diarrhoea virus. Monolayers of MDBK 18 cells were either mock infected with medium alone or infected with BHV-1 Cooper at a multiplicity 19 of infection of 10 TICD₅₀/cell in DMEM without serum. Virus inoculum was allowed to proceed 20 for 1 h at room temperature. After removal of the inoculum, the monolayers were overlaid with pre-21 warmed medium (DMEM containing 2 mM L-glutamine and 2% FCS) and incubated at 37°C in a 22 5% CO₂ incubator. At the end of various incubation times, one group of monolayers was incubated 23 in medium containing 1 M sorbitol for 1 h at 37°C, rinsed once in DMEM, and then reincubated for 24 an additional 2 h in fresh DMEM containing 2 mM L-glutamine and 2% FCS.

25

26 2.3. Plasmid construction and establishment of inducible UL14-expressing cell line

1 The UL14 region of BHV-1 was amplified by polymerase chain reaction (PCR) using the 2 following primer pairs: forward 5'-ATGGCGACGGCGGC-3' and reverse 3 TGCTGTGGGGGGGGC-3'. The amplified fragment was cloned into the FLAG epitope containing 4 pBK-CMV vector (Stratagene). The resulting pBK-CMV-UL14 expresses the UL14 gene as an N-5 terminal Met-FLAG (MDYKDDDDK) fusion protein under the control of cytomegalovirus 6 immediate-early promoter (Marfe et al., 2006; Cartier et al., 2003).

7

8 2.4. Extraction of genomic DNA

9 pBK-CMV-UL14 plasmid transfected MDBK cells (UL14 positive), empty vector 10 transfected MDBK cells, and non-transfected MDBK cells (UL14 negative) were washed twice 11 with phosphate-buffered saline (PBS) and lysed by addition of an extraction buffer containing 5 12 mM ethylene diaminetetra-acetic acid (EDTA), 10 mM Tris-HCl (pH 8.0), 50 mM NaCl, 1% 13 sodium dodecylsulfate (SDS) and 400 µg/ml proteinase K (20 mg/ml) (Sigma Aldrich Co.), 14 incubated at 37°C overnight. Then, DNA samples were digested with 10 mg/ml RNase A for 1 hr at 15 37°C and purified through consecutive TE (10 mM Tris-HCl and 0.1 mM EDTA, pH 8.0)-saturated 16 phenol, phenol-chloroform (1:1 v/v) and chloroform extractions. Finally, DNA samples were 17 precipitated with 0.3 M sodium acetate at pH 5.2 and 2.5 volumes of cold ethanol, centrifuged for 18 30 min at maximum speed at 4°C, washed in 70% cold ethanol and resuspended in sterile water.

19

20 2.5. DNA fragmentation assay

21 To analyze the time dependency of apoptotic DNA fragmentation after the treatment with 22 sorbitol, pBK-CMV-UL14 plasmid transfected MDBK cells (UL14 positive), empty vector 23 transfected MDBK cells, and non-transfected/not-treated MDBK cells (UL14 negative) were 24 washed twice with PBS and lysed by addition of a hypotonic solution (50 mM Tris-HCl pH 7.5, 20 25 mM EDTA, 1% NP-40). After centrifugation, supernatants were treated with 1 % SDS and RNase 26 A (final concentration 5 μ g/ μ l) for 2 h at 56°C, followed by digestion with proteinase K (final

5

5'-

concentration 2.5 μ g/ μ l) at 45°C for at least 6 h. Before hydrolysis a further cleaning of DNA was performed by phenol-chloroform extraction. Pellets were dried for 30 min and resuspended in 200 μ l Tris-EDTA pH 8.0 (Herrmann et al., 1994). Aliquots of 20 μ l containing 10 μ g DNA were analyzed by electrophoresis on 1.8% ethidium bromide-containing agarose gels and visualized and quantitated under UV transillumination of apparatus BioRad Gel Doc 1000 (BioRad) with the program Quantity One (Herrmann et al., 1994).

7

8 2.6. Caspase-3 and 9 assay

To measure caspase-3 and -9 activity, 1×10^6 both transfected cells (UL14 positive) and 9 10 non-transfected MDBK cells (UL14 negative) were used. These cells were incubated for 1 h at 11 37°C with sorbitol (1 M), and following 2 h in fresh medium without sorbitol. As further control, 12 we used non-transfected MDBK cells (UL14 negative) incubated in fresh medium without sorbitol 13 throughout the experiment. The samples were washed in PBS, pelleted in a microcentrifuge, and 14 resuspended in 50 µl PBS. The appropriate peptide substrate [DEVD-7-amido-4-methylcoumarin 15 (AMC) for caspase-3 and LEHD-AMC for caspase-9] was added according to instructions from the 16 manufacturer (Calbiochem). Fluorescence was measured in a FACSCalibur Becton Dickinson.

17

18 2.7. Southern blot analysis

The DNA samples were separated on a 1,2% agarose gel, and transferred onto a nylon membrane. A 669 kb DNA fragment was used as a template The ³²P-dCTP Prime-it II kit (Stratagene) was used for random priming. Hybridization was carried out at 42°C in UltraHyb hybridization buffer. Probe used were cDNA generated by RT-PCR with the following primer pairs: forward 5'-ATGGCGACGGCGGC-3' and reverse 5'-TGCTGTGGGGGGGGC-3'. In order to verify the presence of the UL14 construct in MDBK cells Southern Blot analysis was performed.

1 2.8. RNA isolation and Northern blot

2	Total RNAs of control cells, infected MDBK cells (treated with sorbitol) at different times
3	of 1 up to 13 h p.i. were isolated using Tri Reagent (Sigma-Aldrich Chemie GmbH, Taufkirchen,
4	Germany). Aliquots (10 μ g) of RNA were electrophoresed on 1% agarose formaldehyde gels and
5	subsequently blotted onto nylon membranes (Hybond N, Amersham, Braunschweig, Germany). The
6	membrane was then UV cross-linked, and hybridized to ³² P-labelled probe.

Hybridization was carried out at 42°C in UltraHyb hybridization buffer. We used the probe
obtained by PCR with the following primer pairs: forward 5'-ATGGCGACGGCGGC-3' and
reverse 5'-TGCTGTGGGGGCGGC-3'.

10

11 2.9. Statistical analysis

12 The results are presented as mean ± SD of three independent experiments. One-way 13 ANOVA with Turkey's post test was performed using GraphPad InStat Version 3.00 for Windows 14 95 (GraphPad Software, San Diego, California). An error probability with P<0.05 was selected as 15 significant.

16

17 **3. Results**

18 *3.1. Evaluation of antiapoptotic activity of UL14 gene product*

In order to investigate the role of UL14 in BHV-1-induced antiapoptotic responses, MDBK
cells were transfected with the pBK-CMV-UL14 plasmid that expresses UL14 as an N terminal
FLAG fusion protein. Then, we have performed a Southern Blot analysis in order to verify the
presence of the UL14 construct in transfected MDBK cells (Fig. 1A)

The effect of UL14 on apoptosis induced by exogenous stimuli was investigated in cells treated with sorbitol. UL14 expression rendered transfected MDBK cells resistant to apoptosis

induced by sorbitol treatment as measured by the suppression of DNA fragmentation (Fig. 1B).
This inhibitory effect was observed neither in non-transfected MDBK cells (UL14 negative) nor in
MDBK cells that were transfected with vector only, both treated with sorbitol (Fig. 1B, lane 2 and
3, respectively), confirming that UL14 is required for the antiapoptotic activity.

5

6 3.2. Caspase-9 and 3 activity

Induction of apoptosis results in the activation of caspases. We have tested whether UL14
affects the activation of caspase-3 and -9 in sorbitol-treated cells. Caspases activation was evident
in non-transfected MDBK cells (UL14 negative) treated with sorbitol, while activation was
suppressed when pBK-CMV-UL14 plasmid transfected MDBK cells (UL14-positive) were treated
with sorbitol (Fig. 2).

12 As shown in Fig. 2A, we have measured the activity of caspase-3 of the not-transfected 13 MDBK cells (UL14 negative) and pBK-CMV-UL14 plasmid transfected MDBK cells (UL14-14 positive) after 1 h sorbitol treatment and following 2 h in fresh medium. Caspase-3 activity was 15 significantly increased after 1 h of treatment with sorbitol in non-transfected MDBK cells (UL14 16 negative), while did not alter the caspase-3 activity in transfected MDBK cells (UL14-positive), 17 compared with non-transfected/non-treated MDBK cells (UL14 negative) (Fig. 2A). Because 18 caspase-3 is activated by partially different pathways, it was relevant to investigate the effect of 19 sorbitol on caspase-9 as well. The results presented in Fig. 2B show that also the caspase-9 activity 20 was increased by sorbitol in non-transfected MDBK cells (UL14 negative), but not in transfected 21 MDBK cells (UL14-positive). Thus, expression of UL14 appears to be important for the inhibition 22 of caspase activation.

23

24 3.3. Expression of sorbitol-induced apoptosis-related UL14 gene in BHV-1-infected MDBK cells

To examine the role of the UL14 gene in BHV-1-infected MDBK cells and treated with sorbitol at different time of post infection (1 up to 13 h p.i.), we investigated of mRNA expression

of this gene by a semi-quantitative RT-PCR method. Extraction of RNAs from MDBK monolayers
was performed after 1 h of incubation with 1 M sorbitol and following 2 h of incubation in fresh
medium. As shown in Fig. 3, UL14 gene expression appeared at 7 h p.i. and β-actin DNA band
was distributed at similar levels in all samples.

5 In order to confirm this result a Northern Blot was performed. Using this technique the 6 detection of UL14 gene expression was observed after 7 h p.i. and further remarkably increased at 7 11 h p.i. (Fig. 4).

8 This result could suggest that UL14-BHV-1 protein in a late phase of infection inhibits the 9 activity of key molecules acting at the execution phase of apoptosis in order to prevent cell death. 10

11 4. Discussion

12 Several BHV-1-encoded proteins that are dispensable for virus replication and growth in 13 tissue cultures play important roles in the interaction between the virus and the infected cell.

Our previous study indicated that BHV-1 is able to suppresses sorbitol-induced apoptosis (De Martino et al., 2003). More recently, we have identify a novel gene of BHV-1, using the CODEHOP (COnsensus DEgenerate Hybrid Oligonucleotide Primers) strategy, whose sequence was well overlapped to the DNA sequence of BHV-1 Cooper strain in UL14 (Marfe et al., 2006).

In this study, we have investigated the mechanism by which UL14 alters apoptotic responses using a transfectant with inducible UL14 expression. We have demonstrated that expression of UL14 is sufficient for blocking DNA fragmentation and caspases activation induced by sorbitol. UL14 expression rendered cell line resistant to apoptosis induced by sorbitol treatment as measured by the suppression of the DNA fragmentation. This inhibitory effect was observed in neither non-transfected MDBK cells (UL14 negative) nor empty vector transfected MDBK cells, confirming that UL14 is required for the apoptotic activity.

In this study, we used an UL14-inducible expression system that allowed to directly determine the involvement of caspase-9 and 3 in the induction of apoptosis. The results demonstrate that UL14 gene is able to inhibit caspase-9 and 3 activation during the treatment with sorbitol.

Caspases, found in mammalian cells as inactive protease precursors, are grouped into upstream initiator caspases and downstream effector caspases. Inactive initiator caspases (caspases-8 and -9) are first activated in response to apoptotic stimuli and are responsible for processing and activation of effector caspases, such as caspase-3, -6, or -7. Activated effector caspases, subsequently, execute apoptosis by cleaving various cellular substrates that are vital for cell survival (Shi, 2002).

In our experiment the inhibition of caspase-3 was seen after 1 h treatment with sorbitol in transfected cells. As well as the mitochondria-dependent caspase-9 were inhibited after 1 h in transfected cells, but not when the non-transfected MDBK cells (UL14 negative) were treated with sorbitol.

The BHV-1 UL14 protein, such as herpes simplex virus UL14 protein (Yamauchi et al., 2003), is able to blocks apoptosis in the late phase of infection to maintain nuclear integrity needed for efficient egress. The block age of apoptosis may also be important in the late phase when egress take place. Since we have also found that transient transfections with pBK-CMV-UL14 plasmid rendered the MDBK cells resistant to sorbitol-induced apoptosis, in the current study we show that the full length sequence of BHV-1 UL14 at 7 h of p.i. was mainly detected with respect to early times of p.i.

The final interesting finding of the present work is the identification of UL-14 gene, which appears to inhibit apoptosis by mimicking or hijacking a cellular antiapoptotic response. On the basis of such results, further work needs to analyze the antiapoptotic properties and subcellular localization of the BHV-1 UL14 protein during the infection in order to clarify the precise role of this gene.

1 References:

2 Benetti, L., Roizman, B., 2004. Herpes simplex virus protein kinase US3 activates and functionally 3 overlaps protein kinase A to block apoptosis. Proc. Natl. Acad. Sci. USA 101, 9411-9416. Cartier, A., Broberg, E., Komai, T., Henriksson, M., Masucci, M., G., 2003. The herpes simplex 4 5 virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by 6 granzyme B. Cell Death Differ. 10, 1320–1328. 7 Cunningham, C., Davison, A.J., MacLean, A.R., Taus, N.S., Baines, J.D., 2000. Herpes simplex 8 virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein. J. 9 Virol. 74, 33-41. 10 De Martino, L., Marfe, G., Di Stefano, C., Pagnini, U., Florio, S., Crispino, L., Iovane, G., 11 Macaluso, M., Giordano, A., 2003. Interference of bovine herpesvirus 1 (BHV-1) in sorbitol-12 induced apoptosis. J. Cell. Biochem. 89, 373-380. 13 .Geiser V., Jones C., 2005. Localization of sequences within the latency-related gene of bovine 14 herpesvirus 1 that inhibit mammalian cell growth. J. Neurovirol. 11, 563-570. 15 Herrmann, M., Lorenz, H.M., Voll, R., Grunke, M., Woith, W., Kalden, J.R., 1994. A rapid and 16 simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. 22, 5506-5507. 17 Marfe, G., De Martino, L., Filomeni, G., Di Stefano, C., Giganti, M.G., Pagnini, U., Napoletano, F., 18 19 Iovane, G., Ciriolo, M.R., Sinibaldi Salimei, P., 2006. Degenerate PCR method for 20 identification of an antiapoptotic gene in BHV-1. J. Cell. Biochem. 97, 813-823. McGeoch, D.J., Davison, A.J., 1999. The molecular evolutionary history of the herpesviruses, 21 22 p.441. In E. Domingo, R. Webster and J. Holland (ed.), Origin and evolution of viruses. 23 Academic Press, London, England. 24 Perkins, D., Pereira, E.F., Aurelian, L., 2003. The herpes simplex virus type 2 R1 protein kinase 25 (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving

1	activation of the ERK survival pathway and upregulation of the antiapoptotic protein Ba	ag-1. J.
2	Virol. 77, 1292-1305.	

- Philchenkov, A., 2004. Caspases: potential targets for regulating cell death. J. Cell. Mol. Med. 8,
 432–444.
- 5 Rathmell, J.C., Thompson, C.B., 2002. Pathways of apoptosis in lymphocyte development,
 6 homeostasis, and disease. Cell. 109, 97-107.
- Roulston, A., Marcellus, R.C., Branton., P. E., 1999. Virus and apoptosis. Annu. Rev. Microbiol.
 53, 577–628.
- 9 Shi Y., 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 45910 470.
- 11 Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.G.,
- 12 Reed, J.C., Nicholson, D.W., Alnemri, E.S., Green, D.R., Martin, S.J., 1999. Ordering the
- 13 cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -

14 10 in a caspase-9-dependent manner. J. Cell. Biol. 144, 281-292.

- 15 Thomson, B.J., 2001. Viruses and apoptosis, Int. J. Exp. Pathol. 82, 65–76.
- 16 Thornberry, N.A., Lazebnik, Y., 1998. Caspases: enemies within. Science 281, 1312–1316.
- 17 Weil, M., Jacobson, M.D., Raff, M.C., 1997. Is programmed cell death required for neural tube
- 18 closure? Curr. Biol. 1, 281-284.
- Yamauchi, Y., Daikoku, T., Goshima, F., Nishiyama, Y., 2003. Herpes Simplex virus UL14
 protein blocks apoptosis. Microbiol. Immunol. 47, 685-689.
- 21 Yamauchi, Y., Wada, K., Goshima, F., Daikoku, T., Ohtsuka, K., Nishiyama, Y., 2002. Herpes
- simplex virus type 2 UL14 gene product has heat shock protein (HSP)-like functions. J. Cell
- 23 Science 115, 2517-2527.

1 Legends

2 Figure 1.

A. Southern Blot analysis of genomic DNAs extracted by pBK-CMV-UL14 plasmid transfected
MDBK cells (UL14 positive) (Lane 5), empty vector transfected MDBK cells (Lane 3), and
non-transfected MDBK cells (UL14 negative) (Lane 2). Ladder (Lane 1).

6 .B. Time course study of sorbitol-induced fragmentation of cellular DNA in empty vector 7 transfected and pBK-CMV-UL14 transfected MDBK cells. Extracted DNAs were 8 electrophoresed on 2% agarose gel. Lane 1 and 2 indicate DNAs extracted from non-9 transfected MDBK cells (UL14 negative), not treated with sorbitol, and sorbitol treated not-10 transfected MDBK cells (UL14 negative), respectively. Lanes 3 and 4 indicate DNAs extracted 11 from empty vector transfected and pBK-CMV-UL14 transfected MDBK cells both treated with 12 sorbitol.

13

14 Figure 2.

Effect of sorbitol on caspases activity. The activity of caspases 3, and 9 was measured in nontrasfected MDBK cells, not treated with sorbitol (UL14 neg), pBK-CMV-UL14 transfected MDBK cells treated with sorbitol (UL14 p+s) and non-transfected MDBK cells treated with sorbitol (UL14 n-s), using caspase-specific fluorogenic substrates. The results are normalised to the activity levels in not treated controls. A) histogram displaying the caspase-3 activity in our experimental conditions. B) histogram displaying the caspase-9 activity in our experimental conditions. One representative experiment out of three is shown.

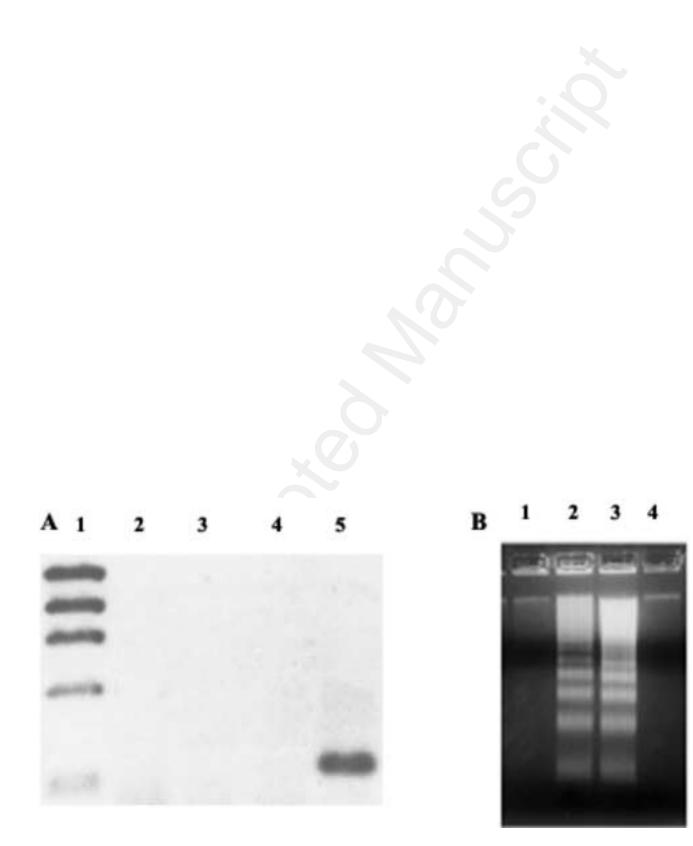
22

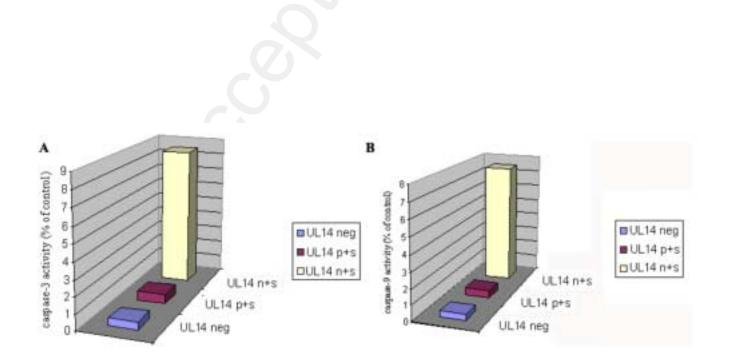
Figure 3.

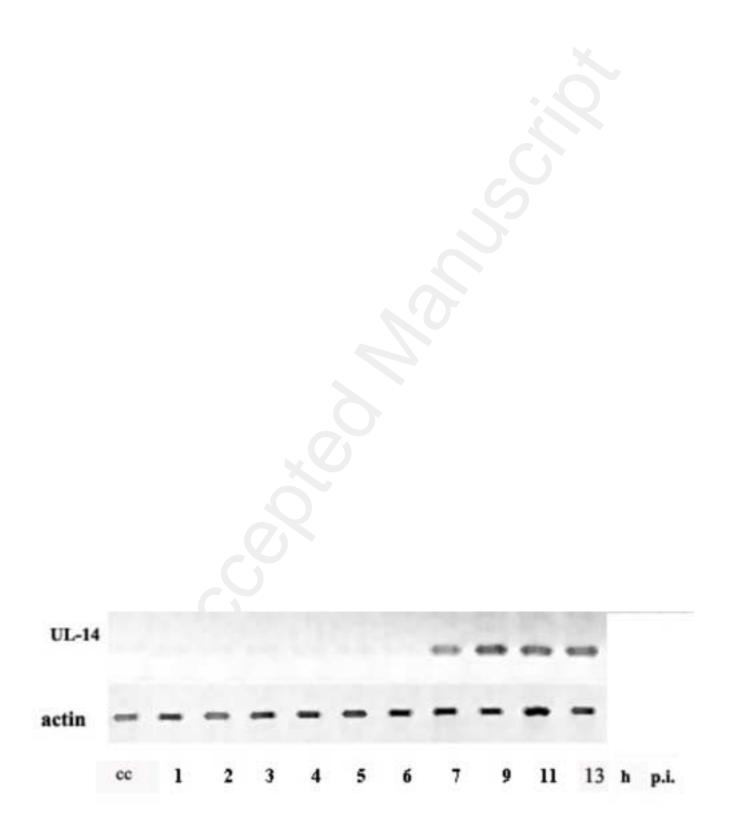
Southern Blot of PCR amplification. Effect of sorbitol on the steady state levels of UL14 cDNAs in
 MDBK cells at different times of BHV-1 post infection. Cultures were incubated either with

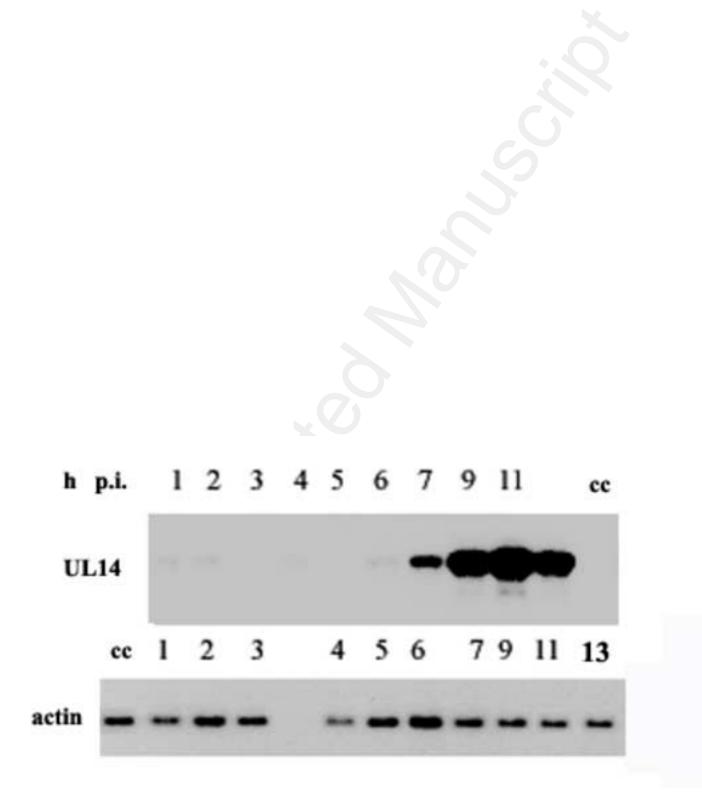
1 culture medium (control) or treated with sorbitol at the indicated times of BHV-1 post infection

2 (1, 2, 3, 4, 5, 6, 7, 9, 11 and 13 h p.i.).


3 Figure 4.


4 Northern Blotting. Effect of sorbitol on the steady state levels of UL14 mRNA in MDBK cells at


5 different times of BHV-1 post infection. Cultures were incubated either with culture medium


6 (control) or treated with sorbitol at the indicated intervals of BHV-1 post infection (1, 3, 5, 7, 9,

7 11 and 13 h p.i.).

