

Genetic characterization of maedi-visna virus (MVV) detected in Finland

Ilona Laamanen, Miia Jakava-Viljanen, Liisa Sihvonen

▶ To cite this version:

Ilona Laamanen, Miia Jakava-Viljanen, Liisa Sihvonen. Genetic characterization of maedivisna virus (MVV) detected in Finland. Veterinary Microbiology, 2007, 122 (3-4), pp.357. 10.1016/j.vetmic.2007.02.002 . hal-00532205

HAL Id: hal-00532205 https://hal.science/hal-00532205

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Genetic characterization of maedi-visna virus (MVV) detected in Finland

Authors: Ilona Laamanen, Miia Jakava-Viljanen, Liisa Sihvonen

PII:	S0378-1135(07)00069-7
DOI:	doi:10.1016/j.vetmic.2007.02.002
Reference:	VETMIC 3586
To appear in:	VETMIC
Received date:	3-11-2005
Revised date:	26-1-2007
Accepted date:	2-2-2007

Please cite this article as: Laamanen, I., Jakava-Viljanen, M., Sihvonen, L., Genetic characterization of maedi-visna virus (MVV) detected in Finland, *Veterinary Microbiology* (2007), doi:10.1016/j.vetmic.2007.02.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	
3	
4	
5	
6	
7	Genetic characterization of maedi-visna virus (MVV) detected in Finland
8	
9	
10	
11	Ilona Laamanen, Miia Jakava-Viljanen and Liisa Sihvonen
12	
13	Finnish Food Safety Authority Evira, Animal Disease and Food Research Department, Virology, Mustialankatu
14	3, FI-00790 Helsinki, Finland
15	
16	
17	
18	
19	Author for correspondence: Ilona Laamanen. Fax +358 20 7724 363. e-mail ilona.laamanen@evira.fi

1

1 Abstract

2 The aim of the study was to characterize the small-ruminant lentiviruses (SRLVs) detected in Finland by 3 defining their phylogenetic relationships and by studying the evolution of the virus based on a well-known epidemiology. The study material comprised lung tissue samples of 20 sheep from five different farms, a cell-4 5 cultured virus from one of the original sheep lung samples, and a blood sample of a goat. The sheep were 6 identified as positive during seroepidemiologic screenings in 1994-1996 and the goat in 2001. Initial 7 classification of a 251 nt nucleotide sequence within gag gene amplified from the uncultured samples as well 8 as from the cell-cultured virus showed that the SRLVs were genetically close and that they were more closely 9 related to the prototype ovine maedi-visna viruses (MVVs) than to the caprine arthritis-encephalitis virus 10 (CAEV). The lentivirus detected from the goat aligned within the cluster of the Finnish ovine viruses, 11 demonstrating a natural sheep-to-goat transmission. Further phylogenetic analysis of the proviral gag, pol and 12 env sequences confirmed the initial classification and showed that they constituted a new subtype within the 13 diverse MVV group. The sequence analyses also showed that the virus had remained genetically relatively 14 stable, in spite of the time given for virus evolution, an estimated 20 years, and in spite of the virus crossing

15 the host species barrier.

16 Keywords: Small-ruminant lentivirus; MVV; Sheep; Goat; Phylogenetic relationships

17

18 1. Introduction

19 Maedi-visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) are small-ruminant lentiviruses 20 (SRLVs) that cause persistent inflammatory infections in sheep and goats (reviewed by Pépin et al., 1998). The 21 phylogenetic relationships of the SRLVs were first defined with full-length genome sequences of the MVV 22 prototype strains (Sonigo et al., 1985; Querat et al., 1990; Sargan et al., 1991), and the CAEV type strain 23 (Saltarelli et al., 1990). These sequences indicated, along with the first partial genomic data that MVV of sheep 24 and CAEV of goat are related but distinct viruses. Subsequent studies based on partial regions within gag, pol 25 and env genes showed, however, that viruses of ovine and caprine origin are interspersed in the phylogenetic 26 tree irrespective of the host, suggesting that interspecies infections had occurred between the host animals 27 (Leroux et al., 1997; Zanoni, 1998; Rolland et al., 2002). According to a recently proposed nomenclature based

on 1.8 kb *gag-pol* and 1.2 kb *pol* sequences, the SRLVs are classified into four equidistantly related groups,
A-D (Shah et al., 2004a). Group A can be further divided into at least seven subtypes, A1 to A7, where the
subtype A1 is identified by the genetically and geographically heterogeneous MVVs and group B refers to the
CAEV type and comprises only two distinct subtypes, B1 and B2. Groups C and D are represented by few
isolates or recognized only by *pol* sequence (Shah et al., 2004a). Recently, direct evidence for natural sheepto-goat and goat-to-sheep transmissions of particular subtypes (A4 and B1) of the virus has been shown (Shah
et al., 2004b; Pisoni et al., 2005).

In Finland, the presence of a SRLV infection was first revealed among sheep during a serological survey conducted in 1994, and it had spread into thirteen sheep farms until detected in the survey (Sihvonen et al., 10 1999, 2000). Maedi-visna has a notifiable disease status in Finland which provides for official restrictive measures to which all infected herds are subject. In 1995, a voluntary MVV/CAEV control programme for both sheep and goats was initiated to extend the official control efforts, and since 2001 the programme has been compulsory for all flocks of more than 20 ewes and/or she-goats. In 2001, a goat from a newly established goat farm was detected as seropositive.

This study was started with an aim to genetically characterize the small-ruminant lentiviruses of sheep and goat screened seropositive and thereby to develop a molecular based method for direct virus identification. A further aim of this study was to determine the position of our viruses in the current taxonomic classification (Shah et al., 2004a) and to study the evolution of the virus. The genetic analysis was performed on the basis of different PCR amplifications of *gag*, *pol* and *env* gene regions of the Finnish viruses.

20

21 2. Materials and methods

22 2.1. Virological samples

Lung tissue samples from 20 sheep identified as seropositive for a SRLV were available for this study. The sheep originated from five different farms known to be epidemiologically linked (coded B, C6, D4, D5 and E, according to Sihvonen et al., 1999, 2000) (Fig. 1). A cell-cultured virus (coded B S604 substrain 1) originally isolated from one of the sheep lung samples (farm B sheep 604) was passaged once in sheep choroid plexus (SCP) cells and included in the study. In addition, a blood sample from a seropositive goat (named Lotta)

obtained during the MVV/CAEV control programme in 2001 was included in the study. From the goat, 10 ml of heparin-anticoagulated blood was drawn by venipuncture. PBMCs were isolated by the standard protocol of NH₄Cl treatment followed by centrifugation. SRLV strain M88 (a gift from Dr. G. Pétursson, Institute for Experimental Pathology, Iceland), originally isolated from a maedi-affected sheep lung in Iceland in 1961 (Gudnadóttir and Pálsson, 1967) and with a passage history including nine rounds in SCP cells in our laboratory, was included as a positive control in the study.

7 2.2. DNA extraction, PCR and sequencing

Proviral DNA was extracted from 25 mg of sheep lung tissue, 50 µl aliquot of the goat PBMC pellet or from 8 9 200 µl of the virus infected cell culture by DNeasy Tissue Kit (QIAGEN GmbH, Hilden, Germany), according 10 to the manufacturer's instructions. Oligonucleotide primers were selected from the conserved sites found when 11 prototype MVVs (strains K1514, SAOMVV and EV1) and CAEV prototype strain Cork were compared. A 12 251 nt gag region (nt 1026-1276; numbering according to the MVV K1514 strain; Sonigo et al., 1985) coding 13 for the highly conserved N-terminal part of the capsid (CA) protein was obtained using primers gag5 (sense; 14 5'AGCATGGACTTGTGTCCGAGGA) and gag4 (antisense; 5'ACGCTGTTATTACCCACTGCA). An 15 extended 853 nt gag region (nt 612-1464) covering 307 nt of the C-terminal part of the matrix (MA) protein 16 followed by 546 nt of the N-terminal part of the CA protein was constructed from two overlapping amplicons 17 flanked by primer pairs gag1 (sense; 5'CTTGACAGAAGGGAATTGTCTATG [nt 588-611]) / gag2 18 (antisense; 5'TGTGCTCTATTCCCAGGCATCAT [nt 1115-1093]) and gag5 / gag6 (antisense; 19 5'CTTTTGACAGTCTGTGCTAGCATT [nt 1488-1465]). A 514-517 env region (nt 7450-7951) of the viral 20 genome covering 487-490 nt of the C-terminal region of the surface glycoprotein (SU) and the adjacent 27 nt of 21 the N-terminus of the transmembrane glycoprotein (TM) was amplified using primers env1 (sense; 22 5'ACAAATTGGGATGGATGTAA 7409-7428]) nt and env4 (antisense; 23 5'GCAGCAGTTGCGTTAGCAAG nt 8058-8039]) for primary PCR and (sense; env7 24 5'CTGTACAAGGTCAGGAAATCA [nt 7429-7449]) and env2 (antisense; 25 5'GCAGCGATTATTGCCATGAT [nt 7971-7952]) for nested PCR. Oligonucleotide primers for a nested 26 PCR, specific for the gag-pol and the pol gene region and designed by Shah et al. (2004a), were used to 27 amplify a 1.8 kb and a 1.2 kb sequence, respectively. Uniform PCR conditions were used; 5 µl of the sample

1 DNA and 50 pmol of the primers were added to the reaction mixture containing 10 mM Tris-HCl (pH 8.3), 50 2 mM KCl, 2.5 mM MgCl₂, 0.5 mM of each dNTP and 2.5 units of AmpliTaq Gold DNA polymerase (Applied 3 Biosystems, Foster City, CA, USA) in a final volume of 100 μ l. The PCR amplification was started with an 4 initial denaturation for 10 min at 95°C. The tubes were subjected to 40 amplification cycles, each consisting of 5 1 min denaturation at 95°C. 1 min annealing at 55°C and 1 min extension at 72°C. Within *env* region, three 6 specimens (B S23, C6 S1 and D4 S1) that could not be amplified in the first round of PCR were subjected to 7 nested PCR, using cycling conditions identical to the primary PCR. The PCR products were purified using 8 either the MicroSpin S-400 Columns (Amersham Pharmacia Biotech, Piscataway, NJ, USA) or, if non-specific 9 products were seen in the gel electrophoresis, the QIAquick Gel Extraction Kit (QIAGEN) for the excised gel 10 fragments. The DNA was sequenced with the PCR primers using dye-terminator chemistry (Applied 11 Biosystems). Capillary electrophoresis was carried out on an ABI PRISM 3100 Avant Genetic Analyzer 12 (Applied Biosystems). The final sequence data was generated by repeatedly sequencing the amplification 13 products of several independent PCR assays. Ambiguous positions resulting from a mixture of lentiviral 14 sequence forms were entered using the IUPAC-IUB codes. The GenBank/EMBL accession numbers of the 15 sequences obtained in this study are AM084187-AM084209, AM084215-AM084220 and xxxxxx-xxxxxx.

16 2.3. Analysis of the sequence data

17 Sequence editing was performed using the program EditSeq of the LASERGENE software package 18 (DNASTAR Inc., Madison, WI, USA), and the pairwise sequence divergences were calculated using the 19 MegAlign program of LASERGENE, with default settings. Alignments of nucleotide sequences were 20 performed with CLUSTAL X (Thompson et al., 1997), and later edited manually. All positions with ambiguous 21 codes or alignment gaps were excluded from the analyses. Phylogenetic analyses were conducted using MEGA 22 version 3.1 (Kumar et al., 2004). Pairwise nucleotide distances were estimated with Kimura's two-parameter 23 model with a transition/transversion ratio 2, and phylogenetic trees were constructed from the distance matrices 24 with the neighbor-joining algorithm; the robustness of the trees was evaluated by bootstrap analysis on 1,000 25 repeats.

All the 20 sheep lung samples, the cell-cultured isolate (B S604 substrain 1), the goat blood sample (Lotta) and
the Icelandic SRLV strain M88 were used in sequence analysis of the 251 nt gag CA region, whereas six

samples (B S23, B S604, C6 S1, D4 S1, D5 S4 and E S1) representing five different sheep farms and Lotta
from the goat farm were selected for a further phylogenetic analysis of the 853 nt region of *gag* MA/CA and
the 514-517 nt region of *env* SU/TM. In constructing the phylogenetic tree within the *env* SU region a 411-414
nt (nt position 7450-7842 in MVV K1514) was used to match the new sequences to the published sequences in
the databases. For phylogenetic comparison with the recently published Swiss sequences (Shah et al., 2004a),
PCR amplifications of the 1.8 kb *gag-pol* and 1.2 kb *pol* gene regions were carried out with B S604 substrain 1
representing the Finnish virus type.

8

9 3. Results

A 251 nt *gag* CA sequence was successfully amplified directly from the 20 sheep lung samples and from the goat PBMCs as well as from the cell-cultured B S604 substrain 1 and the Icelandic strain M88. The *gag* MA/CA sequence was obtained from all of the seven samples tested (B S23, B S604, C6 S1, D4 S1, D5 S4, E S1 and Lotta). Within the *env* SU/TM region, viral sequences were obtained after the first round of amplification from four (B S604, D5 S4, E S1 and Lotta) out of the seven samples tested. Two specimens (C6 S1 and D4 S1) which failed to react with the first combination of *env* primers were amplified using the nested primers, whereas no amplification product was obtained from one sample (B S23).

Nucleotide sequences were first obtained from the 251 nt *gag* CA region from all the viruses included in this study and compared with the SRLV sequences previously identified elsewhere (Fig. 2). In the phylogenetic tree, a group identified by the prototype MVVs was clearly distinguished from the CAEVs with a high bootstrap value (87%). The Finnish viruses formed a cluster of identical or highly related sequences within the genetically and geographically heterogeneous MVV group. The virus found in a goat flock (Lotta) aligned with the ovine viruses detected several years earlier. The analysis also showed a close relationship between the two Icelandic MVVs, the prototype strain K1514 and the strain M88 (Fig. 2).

24 The pairwise nucleotide divergences among the Finnish viruses varied from 0.2 to 3.9% in the gag MA/CA

25 region and from 3.3 to 8.0% in the env SU/TM region, and the variation between the Finnish viruses and the

- 26 prototype MVVs (strains K1514, SAOMVV and EV1) was 17% and 28%, respectively. At the amino acid
- 27 level, the divergences among the Finnish viruses varied from 1.1 to 4.4% (284 aa) in the MA/CA region and in

1 the SU/TM region from 6.7 to 16.3% (171-172 aa), and the variation between the Finnish viruses and the 2 MVVs was 11% and 25%, respectively. The deduced amino acid sequences of MA/CA and SU/TM proteins 3 of the Finnish MVVs and the prototype MVV/CAEVs were aligned (the most variable site of SU/TM alignment 4 is shown in Fig. 3). In the MA/CA region, the alignment revealed a difference in the sequence variability when 5 comparing the MA and CA regions. In the MA region (102 aa) the Finnish viruses varied in 15 positions, eight 6 of which were biochemically conservative, whereas the variation in CA region (182 aa) was limited to five 7 conservative substitutions. When comparing the Finnish sheep and goat viruses with each other and with the 8 ovine MVV prototypes, no insertions or deletions were present. The comparison with the CAEV prototype, 9 however, showed an insertion of the size of 7 amino acids (aa 181-187 in MVV strain K1514) at the C-terminus 10 of MA and a deletion of 2 amino acids (between aa 283 and 284) at the adjacent N-terminal part of CA. In the 11 SU/TM region, the amino acid differences between the Finnish viruses were concentrated in a variable region 12 identified as V4 by Valas et al. (2000), whereas only a few substitutions were seen at or near the variable 13 region identified as V5 (Fig. 3). The RKKR sequence, which has been hypothesized to be the proteolytic site 14 between SU and TM, was fully conserved among the viruses. Amino acid changes were especially seen in a 15 short stretch (deleted in strain K1514) positioned within a region previously defined in MVV as the major 16 neutralization epitope (aa 566-598 in strain K1514) by Skraban et al. (1999). Within this peptide site, the goat 17 virus (Lotta) had an additional amino acid in comparison with the sheep viruses (B S604, C6 S1, D4 S1, D5 S4 18 and ES1).

19 To analyse further the genetic relationships between Finnish MVVs, prototype MVV/CAEVs and other small-20 ruminant lentiviruses, phylogenetic trees were constructed from alignments of the gag MA/CA and env SU 21 regions (Fig. 4a and b). The results show that the Finnish viruses formed a highly supported cluster (100%) and 22 grouped with the prototype MVVs, which was consistent with the results obtained in the analysis of the 23 relatively short (251 nt) gag fragment. However, as could be expected from the highly variable nature of the C-24 terminus of the SU protein, the viruses seemed more diverged in the env analysis than in the gag analyses. In 25 the phylogenetic trees constructed according to the classification proposed by Shah et al. (2004a) (Fig. 4c and 26 d), the closest relatives of the Finnish virus type was found either in the A1 subtype (19% nucleotide 27 divergence in gag-pol) or with a virus recently isolated in Switzerland (subtype A5, 19.5% nucleotide

- divergence in *pol*). Since these associations were not supported by high bootstrap values, the Finnish virus type
 can be best described as forming a new subtype in the diverse group A.
- 3

4 4. Discussion

5 The aim of the study was to characterize the small-ruminant lentiviruses detected in Finland by defining their 6 phylogenetic relationships and by studying the evolution of the virus based on a well-known epidemiology. 7 The suitability of the highly conserved gag region for direct virus identification is also considered. The 8 nucleotide sequences were first obtained and the phylogenetic relationships defined using a relatively short 251 9 nt gag gene region coding for the highly conserved N-terminal part of the CA protein. Despite the high 10 conservation at the protein level, the nucleotide sequence analysis allowed the initial classification of the 11 Finnish SRLVs into the group of the prototype MVVs (Fig. 2). We analysed an extended 853 nt gag MA/CA 12 region as well as the env SU region from samples selected from each flock in order to confirm the phylogenetic 13 result obtained from the 251 nt gag CA alignment. Similar results were obtained from all the studied regions: 14 the small-ruminant lentiviruses found in Finland formed a cluster of highly related viruses positioning closer to 15 the prototypic ovine MVVs than to the CAEVs (Fig. 4a and b). The clustering obtained among the predicted amino acid sequences of the MA/CA and SU regions further confirmed the phylogenetic result (data not 16 17 shown). According to the taxonomic classification proposed by Shah et al. (2004a) the Finnish virus type 18 identified in this study formed a new subtype in the already diverse group A. The phylogenetic analyses also 19 showed that the subtype A1 is genetically too heterogeneous to form a well supported subtype. The high 20 genetic heterogeneity seen among the SRLVs, as well as the possibility of cross-infections between the host 21 animals, which can cause host-specific changes, show that more extensive analyses of different isolates are 22 needed to understand the genetic relationships between and within the genetic clusters.

In this study, the phylogenetic analyses showed that the similarity between the Finnish MVVs and the prototype MVVs and, on the other hand, the difference between the MVVs and the CAEVs could most clearly be demonstrated in the analyses based on *gag* region (Figs. 2 and 4a). This observation was supported by the result obtained from the paired comparisons as well as by the presence of the two highly conserved insertion/deletion sites in the *gag* alignment (an insertion of the size of 7 amino acids at the C-terminus of MA

1 and a deletion of 2 amino acids at the adjacent N-terminal part of CA). These results suggest that the gag2 region could reflect a long-term evolution of the MVV/CAEV-specific division of the virus. Especially in the 3 gag MA region, the differences between the MVVs and the CAEVs were remarkable, with pairwise sequence 4 divergences varying from 51 to 53% at the nucleotide level and from 63 to 70% at the amino acid level. 5 Previous studies have indicated that the variable V4 and V5 regions of SU glycoprotein are important 6 determinants for SRLV infection (Skraban et al., 1999; Valas et al., 2000). A type-specific, conformational 7 neutralization domain has been mapped within the V4 region, and moreover, it has been suggested that this 8 region defines a binding site for a cellular receptor or a coreceptor for MVV (Skraban et al., 1999). In our 9 study, the analysis showed that the amino acid changes of the Finnish viruses were concentrated within the V4 10 region, whereas only a few changes were seen at or near the variable region, V5, located at the C-terminus of 11 SU (Fig. 3). Moreover, within V4, the changes could especially be seen in a short 3 amino acid stretch 12 positioned at the proposed lower linear epitope of the conformational domain. Within this peptide site the virus 13 detected from the Finnish goat had an additional amino acid in comparison with the ovine viruses. The same 14 insertion could be seen in viral sequences of all the studied organs of the goat (data not shown) suggesting that 15 the insertion could be a consequence of the cross-species transmission of the virus.

16 The virus found in a newly established goat flock in 2001 aligned with the Finnish ovine viruses detected 17 several years earlier demonstrating a natural sheep-to-goat transmission of a new SRLV subtype. Our further 18 study indeed showed an epidemiological link between the goat and a sheep flock (D1) found infected in 1996, 19 and thus, the infection could be traced back to one importation of sheep from Sweden in 1981 (Fig. 1). The 20 results obtained from gag and env regions showed that the virus had remained genetically relatively stable, in 21 spite of the time given for virus evolution, an estimated 20 years, and in spite of the virus crossing the host 22 species barrier. The highest degree of nucleotide and especially amino acid variation was seen in the env 23 region and could be due to the location of important antigenic determinants at the C-terminus of env SU. As a 24 result of the variability, the studied env region provided more detailed information for the epidemiological 25 study than the other genomic regions. The maximum nucleotide divergences of 8% and amino acid divergences 26 of 16% were seen between the most distant sequences of the infection-chain, whereas the direct transmission of 27 the virus between two farms showed the lowest divergences (data not shown).

1 In conclusion, the virus responsible for the small-ruminant lentivirus infection in Finland could uniformly be 2 classified as MVV in phylogenetic analyses based on distinct regions (gag, pol and env) of the viral genome. 3 Analysis of the Finnish MVVs showed a correlation between molecular and epidemiological data confirming a 4 close linkage between the infected farms and supporting the idea of one importation as a source of infection. 5 Moreover, this study provides an overview of molecular evolution of the MVV in Finland. 6 7 Acknowledgements 8 We would like to thank Mrs Tiina Peltonen and Mrs Mervi Kaapola for their excellent technical assistance. 9 This study was supported by the grant from the Finnish Ministry of Agriculture and Forestry. This work is a 10 part of EU Cost Action 834. 11 12 References 13 Gudnadóttir, M., Pálsson, P.A., 1967. Transmission of maedi by inoculation of a virus grown in tissue culture 14 from maedi-affected lungs. J. Infect. Dis. 117, 1-6. 15 Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics 16 Analysis and sequence alignment. Brief. Bioinform. 5,150-163. 17 Leroux, C., Chastang, J., Greenland, T., Mornex, J.F., 1997. Genomic heterogeneity of small ruminant 18 lentiviruses: existence of heterogeneous populations in sheep and of the same lentiviral genotypes in sheep and 19 goats. Arch. Virol. 142, 1125-1137. 20 Pépin, M., Vitu, C., Russo, P., Mornex, J.-F., Peterhans, E., 1998. Maedi-visna virus infection in sheep: a 21 review. Vet. Res. 29, 341-367. 22 Pisoni, G., Quasso, A., Moroni, P. 2005. Phylogenetic analysis of small-ruminant lentivirus subtype B1 in 23 mixed flocks: Evidence for natural transmission from goats to sheep. Virology 339, 147-152. 24 Ouerat, G., Audoly, G., Sonigo, P., Vigne, R., 1990. Nucleotide sequence analysis of SA-OMVV, a visna-25 related ovine lentivirus: phylogenetic history of lentiviruses. Virology 175, 434-447. 26 Rolland, M., Mooney, J., Valas, S., Perrin, G., Mamoun, R.Z., 2002. Characterisation of an Irish caprine 27 lentivirus strain-SRLV phylogeny revisited. Virus Res. 85, 29-39.

- 1 Saltarelli, M., Querat, G., Konings, D.A.M., Vigne, R., Clements, J.E., 1990. Nucleotide sequence and 2 transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179, 347-364. 3 Sargan, D.R., Bennet, I.D., Cousens, C., Roy D.J., Blacklaws, B.A., Dalziel, R.G., Watt, N.J., McConnell, I., 4 1991. Nucleotide sequence of EV1, a British isolate of maedi-visna virus. J. Gen. Virol. 72, 1893-1903. 5 Shah, C., Böni, J., Huder, J.B., Vogt, H.R., Mühlherr, J., Zanoni, R., Miserez, R., Lutz, H., Schüpbach, J., 6 2004a. Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: 7 evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology 8 319, 12-26. 9 Shah, C., Huder, J.B., Böni, J., Schönmann, M., Mühlherr, J., Lutz, H., Schüpbach, J., 2004b. Direct evidence 10 for natural transmission of small-ruminant lentiviruses of subtype A4 from goats to sheep and vice versa. J. 11 Virol. 78, 7518-7522. 12 Sihvonen, L., Hirvelä-Koski, V., Nuotio, L., Kokkonen, U.-M., 1999. Serological survey and epidemiological 13 investigation of maedi-visna in sheep in Finland. Vet. Microbiol. 65, 265-270. 14 Sihvonen, L., Nuotio, L., Rikula, U., Hirvelä-Koski, V., Kokkonen, U.-M., 2000. Preventing the spread of 15 maedi-visna in sheep through a voluntary control programme in Finland. Prev. Vet. Med. 47, 213-220. 16 Skraban, R., Matthíasdóttir, S., Torsteinsdóttir, S., Agnarsdóttir, G., Gudmundsson, B., Georgsson, G., Meloen, 17 R.H., Andrésson, O.S., Staskus, K.A., Thormar, H., Andrésdóttir, V., 1999. Naturally occurring mutations 18 within 39 amino acids in the envelope glycoprotein of maedi-visna virus alter the neutralization phenotype. J. 19 Virol. 73, 8064-8072. 20 Sonigo, P., Alizon, M., Staskus, K., Klatzmann, D., Cole, S., Danos, O., Retzel, E., Tiollais, P., Haase, A., 21 Wain-Hobson, S., 1985. Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42, 22 369-382. 23 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL X windows 24 interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids
- **25** Res. 25, 4876-4882.
- 26 Valas, S., Benoit, C., Baudry, C., Perrin, G., Mamoun, R.Z., 2000. Variability and immunogenicity of caprine
- arthritis-encephalitis virus surface glycoprotein. J. Virol. 74, 6178-6185.

10

1 Zanoni, R.G., 1998. Phylogenetic analysis of small ruminant lentiviruses. J. Gen. Virol. 79, 1951-1961.

Fig. 1. Schematic representation of transmission of the MVV infection in Finland. Only the farms included in the present study are shown. The infection transmitted from the primary infection farm A to the secondary infection farms B and E, and further from farm B to all the rest of the infected farms (C6, D1, D4, D5). The epidemiological linkage to the goat farm (goat named Lotta) is demonstrated. The year of the serological detection is shown. The year of introduction of the virus to a farm, if known, is shown in parenthesis.

Fig. 2. Phylogenetic tree based on analysis of a 251 nt fragment at the CA protein coding region of *gag* (nt 1026-1276; numbering according to MVV K1514 strain; Sonigo et al., 1985) of the studied SRLVs. The Finnish ovine lentiviruses are indicated by flock code (B, C6, D4, D5 or E) followed by sheep (S) number and the Finnish caprine lentivirus by the name Lotta. The cell culture isolate representing the Finnish virus type is indicated B S604 substrain 1 by the specimen of origin. The prototype MVV strains K1514, SAOMVV and EV1, and the prototype CAEV strain Cork (bold) together with selected representatives of SRLVs were included in the analysis, and indicated by GenBank accession numbers. Bootstrap probabilities for the major clusters are indicated. Country abbreviations: BRA, Brazil; FIN, Finland; FRA, France; GBR, Great Britain; ISL, Iceland; NED, The Netherlands; NOR, Norway; POR, Portugal; RSA, South Africa; SUI, Switzerland; USA, United States of America.

Fig. 3. Alignment of partial *env* SU/TM precursor amino acid sequences of the studied Finnish viruses (B S604, C6 S1, D4 S1, D5 S4, E S1 and Lotta) and the SRLV prototypes (MVV strains K1514, SAOMVV and EV1, and CAEV Cork). Dots represent amino acid residues identical to those of the consensus sequence (Cons) while dashes indicate gaps. Previously identified (Valas et al., 2000) variable regions, V4 (a) and V5 (b), are delineated by overlines. The positions of the two spatially important cysteine residues at the neutralization domain (Skraban et al., 1999) are underscored and the sites of the proposed linear epitopes of the neutralization domain are shaded. The highly variable peptide site (3 aa) found in this study is boxed and the additional amino acid (N, Asn) in the goat sequence (Lotta) is indicated by an arrow. X indicates ambiguous amino acids in the consensus sequence and amino acids K, E, N or D in the sequence of B S604.

*, conserved cysteine residue; - - -, conserved potential N-linked glycosylation site.

Fig. 4. Neighbor-joining trees constructed from parts of the MA and CA coding regions of *gag* (nt 612-1464; numbering according to MVV K1514 strain; Sonigo et al., 1985) (a) and part of the SU coding region of *env* (nt 7450-7842) (b) of the studied SRLVs. The Finnish ovine lentiviruses are indicated by flock code (B, C6, D4, D5 or E) followed by sheep (S) number and the Finnish caprine lentivirus by the name Lotta. No amplicon was obtained from sample B S23 in the analysis of the *env* region. Neighbor-joining trees constructed from the 1.8 kb *gag-pol* region (almost-complete, nt 1114-2669) (c) and the 1.2 kb *pol* region (nt 3724-4853) (d). The cell culture isolate representing the Finnish virus type is indicated B S604 substrain 1. The prototype MVV strains K1514, SAOMVV and EV1 and the prototype CAEV strain Cork (bold) together with selected representatives of SRLVs were included in the analysis, and indicated by GenBank accession numbers. Bootstrap probabilities for the genetic distances is indicated. Previously published full-length sequences of MVV K1514 (M10608), SAOMVV (M31646) and EV1 (S51392) strains, CAEV Cork strain (M33677), PIOLV (AF479638) and G4668 (AY445885) were used in the comparisons. Country abbreviations: BRA, Brazil; FIN, Finland; FRA, France; GBR, Great Britain; ISL, Iceland; NOR, Norway; POR, Portugal; RSA, South Africa; SUI, Switzerland; USA, United States of America.

Fig. 1.

E S1	^T ^T ^T .G _{S.E}	Q. P
	A K I E	L L QEP
B S604	ETER	Qxx ^N
	GS	- T
C6 S1	SETTD	Q.KRDG
D4 S1	KIG.GK	E
		TK BGG
D5 S4	EITR	A N . KED
T	av T N K	
Lotta	SM	0 G
		~
MVV K1514	NI.QR.N.SS.DS	N.LKRSNKSQ
MVV SAOMV	VGIE.K.SDD	N.1
MAA FA-T	E1SSD.1	

 $\texttt{CAEV} \ \texttt{Cork} \ \ldots \ldots \texttt{.GI} \ldots \texttt{.A..DN} \ldots \texttt{.E....G.A.K} \ldots \texttt{.K..SN} \ldots \texttt{.P.Q} \texttt{--RDG}.\texttt{T} \ldots$

(b)	V5
Cons	636. SU >< TM 672. GVVDMPKSYAENKRKTTALTQKRKKRGIGLVIVLA
E S1 B S604 C6 S1 D4 S1	NSGD
D5 S4 Lotta MVV K1514	

MVV	SAOMVV		
MVV	EV-1	.EQL.KN.RNAFKKE	

CAEV Cork ... IE. . EN. . KTRIIN. . KRE. SH. V. . . . M. V

Fig. 4.