

High Prevalence of Methicillin Resistant in Pigs

A.J. de Neeling, M.J.M. van den Broek, E.C. Spalburg, M.G. van Santen-Verheuvel, W.D.C. Dam-Deisz, H.C. Boshuizen, A.W. van de Giessen, E. van Duijkeren, X.W. Huijsdens

▶ To cite this version:

A.J. de Neeling, M.J.M. van den Broek, E.C. Spalburg, M.G. van Santen-Verheuvel, W.D.C. Dam-Deisz, et al.. High Prevalence of Methicillin Resistant in Pigs. Veterinary Microbiology, 2007, 122 (3-4), pp.366. 10.1016/j.vetmic.2007.01.027 . hal-00532202

HAL Id: hal-00532202

https://hal.science/hal-00532202

Submitted on 4 Nov 2010

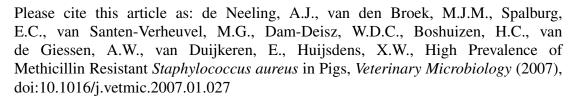
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: High Prevalence of Methicillin Resistant *Staphylococcus aureus* in Pigs

Authors: A.J. de Neeling, M.J.M. van den Broek, E.C. Spalburg, M.G. van Santen-Verheuvel, W.D.C. Dam-Deisz, H.C. Boshuizen, A.W. van de Giessen, E. van Duijkeren, X.W. Huijsdens


PII: \$0378-1135(07)00065-X

DOI: doi:10.1016/j.vetmic.2007.01.027

Reference: VETMIC 3582

To appear in: *VETMIC*

Received date: 17-11-2006 Revised date: 25-1-2007 Accepted date: 26-1-2007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	High Prevalence of Methicillin Resistant Staphylococcus aureus in Pigs
2	
3	A.J. de Neeling ^{1*} , M.J.M. van den Broek ² , E.C. Spalburg ¹ , M.G. van Santen-Verheuvel ¹
4	W.D.C. Dam-Deisz ¹ , H.C. Boshuizen ¹ , A.W. van de Giessen ¹ , E. van Duijkeren ³ , X.W.
5	Huijsdens ¹
6	
7	¹ National Institute for Public Health and the Environment, Bilthoven, the Netherlands
8	² Food and Consumer Product Safety Authority, Zutphen, the Netherlands
9	³ Veterinary Faculty, Utrecht University, Utrecht, the Netherlands
10	
11	*Corresponding author:
12	A.J. de Neeling, National Institute for Public Health and the Environment (RIVM),
13	Diagnostic Laboratory for Infectious Diseases and Perinatal Screening, pb 22
14	Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
15	Phone: (+31) 30 2742729
16	Fax: (+31) 30 2744418
17	E-mail: Han.de.Neeling@rivm.nl

18	Abstract
19	Recently methicillin resistant Staphylococcus aureus (MRSA) was isolated from pigs
20	and pig farmers in the Netherlands. In order to assess the dissemination of MRSA in the
21	Dutch pig population, we screened 540 pigs in 9 slaughterhouses, where a representative
22	portion of Dutch pigs (63%) was slaughtered in 2005. We found 209 (39%) of the pigs to
23	carry MRSA in their nares. Forty-four of 54 groups of 10 consecutive pigs (81%), each
24	group from a different farm, and all slaughterhouses were affected.
25	All MRSA isolates belonged to 1 clonal group, showing Multi-Locus Sequence Type
26	398 and closely related spa types (mainly t011, t108 and t1254). Three types of the
27	Staphylococcal Chromosome Cassette (SCCmec) were found: III (3%), IVa (39%) and V
28	(57%). All 44 tested isolates (1 isolate per group) were resistant to tetracycline, reflecting the
29	high and predominant use of tetracyclines in pig husbandry. Twenty-three percent of the
30	isolates were resistant to both erythromycin and clindamycin and 36% to kanamycin,
31	gentamicin and tobramycin but only a single isolate was resistant to co-trimoxazole and none
32	to ciprofloxacin and several other antibiotics.
33	The percentage of MRSA positive pigs was significantly different among
34	slaughterhouses and among groups within slaughterhouses, indicating a high prevalence of
35	MRSA in pigs delivered from the farms as well as cross contamination in the
36	slaughterhouses.
37	
20	Varmands
38	Keywords
39	Swine microbiology, <i>Staphylococcus aureus</i> , methicillin resistance, tetracycline resistance, genetics,
40	Netherlands
41	

12	Introduction
13	Methicillin resistant Staphylococcus aureus (MRSA) in humans is still rare in the
14	Netherlands. Last year 2% of the S. aureus isolates from hospitals were resistant to oxacillin
15	(SWAB, 2006) and only a small proportion (0.03%) of patients admitted to hospitals carried
16	MRSA (Wertheim et al., 2004). Occasionally MRSA has been cultured from dogs, cats and
17	diseased horses, but no MRSA was found in a survey of 200 healthy horses in the
18	Netherlands (Busscher et al., 2006).
19	Recently Voss et al. (2005) isolated MRSA from 3 patients who had contact with
50	pigs. These authors also tested 26 pig farmers. Six of them (23%) carried MRSA.
51	Subsequently MRSA was isolated from several members of a family living on a pig farm and
52	8 out of 10 pigs at the same farm carried MRSA (Huijsdens et al., 2006). All MRSA-isolates
53	from human and porcine origin in these investigations were non-typeable by standard
54	Pulsed-Field Gel Electrophoresis (PFGE) using the Smal restriction enzyme (NT). The NT
55	MRSA contain a restriction modification enzyme which methylates the SmaI-recognition
56	sequence (Bens et al., 2006).
57	These observations prompted us to determine the prevalence of MRSA in healthy
58	pigs in 9 Dutch slaughterhouses. We further analyzed the porcine MRSA by molecular
59	typing and susceptibility testing.
60	
61	Materials and Methods
62	
63	Survey in nine slaughterhouses
64	From November 2005 to January 2006 in each of 9 slaughterhouses all over the
65	Netherlands 6 groups, 10 pigs per group, 540 pigs in total, were screened. In 2005 63% of
66	the pigs raised in the Netherlands were slaughtered in the nine investigated slaughterhouses.

67	In the Netherlands each slaughterhouse buys pigs from a broad range of farms, with few
68	exclusive contracts between a slaughterhouse and the farms supplying pigs. So we are
69	confident that we have screened a representative sample of the pigs in the Dutch
70	slaughterlines. A group consisted of 10 consecutive pigs in the slaughterline, each group
71	from a different farm, except 1 group which was composed of pigs from 3 farms and 2
72	groups which were both from 1 farm.
73	A swab (Medical Wire & Equipment Co. (Bath) Ltd. Corsham, Wiltshire, no.
74	MW102) was taken from the nares of the pigs just after stunning, by officials of the Dutch
75	Food and Consumer Product Safety Authority (VWA). Within 5 hours after sampling, swabs
76	were transferred into tubes containing 5 ml Phenol Red Mannitol Broth (Brunschwig
77	Chemie, Amsterdam) with 4 mg/L oxacillin (Sigma) and 75 mg/L aztreonam (ICN). After 18
78	h incubation at 35°C, the bacteria from each tube were plated onto sheep blood agar and 3
79	selective agar media: MRSA Select Agar (BioRad, Veenendaal), Oxacillin Resistance
80	Screening Agar and Chromogenic MRSA Agar (Oxoid, Haarlem).
81	After 18 h incubation at 35°C, suspected colonies were plated onto sheep blood agar
82	and incubated for 18 h. Colonies suspect of being MRSA were tested by PCR for the S.
83	aureus specific DNA-fragment (Martineau et al., 1998), the mecA gene (De Neeling et al.,
84	1998), and the Panton-Valentine Leucocidin toxin genes (Lina et al., 1999).
85	
86	Typing of MRSA
87	MRSA-isolates were typed by PFGE using SmaI as restriction enzyme according to
88	the Harmony protocol (Murchan et al., 2003). A sample of 104 MRSA isolates from pigs (1
89	to 3 per group) were typed by spa-typing (Harmsen et al., 2003) and 1 isolate per group was
90	subjected to Multi-Locus Sequence Typing (MLST) (Enright et al., 2000). Typing of the

91	Staphylococcal Chromosome Cassette (SCCmec) was performed by PCR (Zhang et al.,
92	2005).
93	
94	Susceptibility testing
95	The susceptibility to antimicrobials of 1 isolate per group was tested by agar dilution
96	using Mueller Hinton Agar (BBL) and multipoint inoculation (Clinical and Laboratory
97	Standards Institute, 2006). The antibiotics tested were clindamycin (Pharmacia), teicoplanin
98	(Aventis Pharma), mupirocin (Glaxo SmithKline), linezolid (Pfizer), chloramphenicol,
99	ciprofloxacin, doxycycline, erythromycin, fusidic acid, gentamicin, kanamycin, neomycin,
100	oxacillin, rifampicin, tetracycline, tobramycin, trimethoprim-sulfamethoxazole (co-
101	trimoxazole), and vancomycin (MP Biomedicals). S. aureus ATCC 43300 and S. aureus
102	ATCC 29213 were used as reference strains.
103	
104	Statistic al analysis
105	Statistical analyses were performed in GAUSS (Aptech Systems, Inc. Black
106	Diamond, WA, USA). A 2 level logistic-normal model was used, assuming a normal
107	distribution both of the log(odds) among groups within slaughterhouses, and of the log(odds)
108	among slaughterhouses. Fitting was by maximum likelihood and profile likelihood was used
109	to obtain confidence bounds of the variance parameters.
110	
111	Results
112	
113	Prevalence of MRSA in pigs

114	MRSA was found in 209 (39%) of the 540 screened pigs. At least 1 of the 10
115	sampled pigs carried MRSA in 44 (81%) of the 54 investigated groups. The number of
116	MRSA-carrying animals per group of 10 pigs is given in table 1.
117	The log(odds) of MRSA carrying pigs differed significantly among groups (p <
118	0.0001) and among slaughterhouses (p < 0.0001). The normal logistic model showed a
119	variance of the log(odds) among groups of 2.2 (95% CI 1.0 to 4.5), and an almost equally
120	large variance among slaughterhouses of 2.1 (95% CI 0.65 to 7.5). The geographic location
121	of the farmers who supplied the groups of pigs appeared representative for the distribution of
122	pigs over the Netherlands. Groups with a high number of MRSA carrying pigs did not cluster
123	regionally.
124	Swabs taken from the nares of pigs in the slaughterhouses were incubated in an
125	enrichment broth containing mannitol and the pH indicator phenol red. The enrichment broth
126	turned yellow in nearly all tubes during incubation indicating growth of mannitol fermenting
127	organisms. However, the subsequent MRSA-selective agar media and the PCR showed only
128	a minority of these bacteria to be MRSA. We did not systematically subculture or identify
129	the other bacteria. Some were oxacillin resistant Staphylococcus lentus, Staphylococcus
130	sciuri and Enterococcus faecalis and oxacillin sensitive S. aureus, Staphylococcus
131	chromogenes and Staphylococcus simulans.
132	
133	Molecular typing
134	The predominant spa types of the NT MRSA from the pigs were t011, t108 and
135	t1254, whereas spa types t1255, t567, t034 and t943 were found sporadically (table 2). All
136	spa types were closely related. Type t1254 was found only in slaughterhouse 5, where 13 of
137	the 14 selected MRSA in 5 of the 6 groups belonged to this spa type. Spa type t1254 differs
138	by only 1 base substitution (G to C) in the first repeat from spa type t011.

139	All isolates showed ST 398. SCCmec types IVa (n=41) and V (n=59) were most
140	prevalent, whereas type III was present in only 4 isolates. We did not detect the genes of
141	Panton-Valentine Leucocidin in any isolate.
142	
143	Susceptibility testing
144	The oxacillin MICs of the NT MRSA from pigs were relatively low (table 3). All
145	strains were intermediate or resistant to doxycycline and resistant to tetracycline. The 10
146	isolates (23%) resistant to erythromycin were cross-resistant to clindamycin.
147	All 16 strains (36%) resistant to kanamycin were cross-resistant to gentamicin and all
148	but 1 were cross-resistant to tobramycin. Nearly all tested isolates were susceptible to
149	ciprofloxacin, co-trimoxazole, rifampicin, teicoplanin, vancomycin, linezolid, amikacin,
150	chloramphenicol, fusidic acid and mupirocin.
151	
152	Discussion
153	We found an unexpected high prevalence of MRSA in healthy pigs originating from
154	more than 50 different farms in the Netherlands. In our country the prevalence of MRSA in
155	companion animals and horses is low. However, we detected MRSA in 39% of the 540 pigs,
156	in 81% of the 54 groups of 10 pigs and in all 9 slaughterhouses. All of the MRSA isolated
157	from the pigs were non-typeable by PFGE using SmaI macrorestriction. We conclude that
158	NT MRSA has widely spread in the Dutch pig population. These results are in line with the
159	earlier isolation of NT MRSA from pigs and humans on the same farm (Huijsdens et al.,
160	2006).
161	However, it is likely that the number of positive groups was raised considerably by
162	transmission of the NT MRSA in the lairages of the slaughterhouses. We found a significant
163	difference in the prevalence of MRSA-positive pigs among slaughterhouses. Thirteen of 14

164	tested pigs delivered to slaughterhouse no. 5 had the same spa type which differed from the
165	main spa type t011 in one nucleotide. Two delivering farms did not obtain pigs from
166	elsewhere and four had received pigs from several rearing farms. So the aberrant dominant
167	spa type in slaughterhouse no. 5 was probably due to transmission of this particular MRSA
168	strain among groups of pigs from different farms in that slaughterhouse.
169	The origin of the NT MRSA in the pigs remains unclear. In the Netherlands, there are
170	3 types of pig farms: breeding farms, rearing or reproduction farms and fattening farms.
171	Farmers may rear piglets at the same farm or they buy piglets for fattening (finishing pigs) at
172	rearing farms. To date, we do not know if the pigs get infected at the fattening farms or if
173	they have already been infected when they arrive on these farms. If the pigs on the breeding
174	farms or rearing farms are colonized with MRSA, finishing pigs will be contaminated too.
175	Possible sources of the mecA gene are coagulase negative staphylococci belonging to
176	the normal microflora of the pig, which may have transmitted the mecA gene to a methicillin
177	susceptible S. aureus strain. Alternatively, the MRSA strain as such may have been
178	transmitted to pigs from another source. Perhaps pigs are just a good host for this special
179	MRSA strain which originated from another host or possibly feed. In household contacts
180	humans may infect companion animals with MRSA and vice versa. A similar phenomenon
181	may have been the initial cause of the emergence of the NT MRSA in pigs.
182	MRSA may also be disseminated from contaminated feed and dust. Tetracycline
183	resistant S. aureus might survive or even thrive in feed medicated with tetracyclines. Gibbs
184	et al. (2004) detected resistant S. aureus inside and downwind of swine confinement facilities
185	in levels which they considered a potential human health hazard. They found S. aureus to be
186	the predominant bacterium in the air within a swine barn, being present at 10 ⁴ CFU/m ³ , and
187	concluded that swine facilities should be placed at least 200 m from residential areas to avoid
188	detrimental effects on human health (Green et al., 2006). According to these authors, pig

189	farmers should wear particle respirators and should change clothes and shower prior to
190	leaving the barn to prevent exposure of vulnerable populations (children, elderly,
191	immunocompromized individuals) to bacteria from the swine barn adhering to their clothes
192	and skin.
193	The significant difference in the prevalence of MRSA-positive pigs among groups
194	may have been due to transmission among pigs within groups and to differences in risk
195	factors among the farms or farm compartments where the pigs were raised, particularly the
196	use of tetracyclines which may select bacteria which are resistant to tetracycline. In 2004 the
197	use of tetracyclines as group medication in breeding and fattening facilities for pigs was 10
198	resp. 9 Daily Doses per animal year, which may have been an underestimation (MARAN-
199	2004). Other antibiotics were used in at least 10-fold lower amounts. In contrast sows and
200	piglets in breeding facilities received much more penicillins and aminoglycosides as
201	compared to pigs for fattening. So the resistance to the former antibiotics may have been due
202	to selection in breeding facilities.
203	The selection effect of the considerable and predominant use of tetracyclines in pigs
204	is supported by the finding that nearly all MRSA isolates from pigs were susceptible or
205	intermediate to ciprofloxacin, co-trimoxazole and several other antibiotics. Resistance to
206	erythromycin, clindamycin and the aminoglycosides kanamycin, gentamicin, tobramycin and
207	neomycin was around 30%. Gentamicin MICs of the resistant strains were higher than the
208	MICs of tobramycin and no correlation with neomycin-resistance was observed. These
209	observations suggest the presence of the $aac(6')$ -aph(2'') aminoglycoside-modifying enzyme
210	(Vanhoof et al., 1994; Ida et al., 2001). The gene for this enzyme might be present on
211	SCCmec type IVa because all kanamycin resistant strains contained SCCmec type IVa,
212	whereas the strains which were susceptible or intermediate to kanamycin had SCCmec type
213	III or V.

Our survey in pigs and the earlier isolation of NT MRSA from humans (Voss et al.,
2005) indicate that MRSA could be much more frequent among persons having contact with
pigs than among other persons outside hospitals (Wertheim et al., 2004). Persons at risk
include pig farmers, transporters of pigs, personnel of slaughterhouses and veterinarians. A
higher prevalence of S. aureus carriership among pig farmers was noted earlier in France and
5 of 50 S. aureus isolates in that study were resistant to methicillin. These 5 MRSA isolates
showed 4 different MLSTs and only 1 had ST 398 (Armand-Lefevre et al., 2005). In contrast
to the French findings, our MRSA isolates from pigs all had ST 398. All the NT MRSA from
pigs may have descended recently from a common ancestor by deletions or insertions of 1 or
more repeats as shown by the alignment of their spa types (table 2). In contrast to our
findings in pigs, MRSA from companion animals in the Netherlands are typeable by the
standard PFGE method and show a wide variety of different PFGE-, spa- and MLST types
which are also common in humans (Van Duijkeren et al., 2006).
In conclusion we observed a high prevalence of MRSA in pigs in Dutch
slaughterhouses. Further research into causes and effects is needed.
Acknowledgements
We thank M.E.O.C. Heck, G.N. Pluister and L. de Heer for PFGE analyses, and dr. P.J. van
der Wolf and ir. H. Rang for their comments on the manuscript.

233	
234 235	References
236	Armand-Lefevre, L., Ruimy, R., Andremont, A., 2005. Clonal comparison of Staphylococcus aureus
237	isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 11, 711-714.
238	Bens, C.C., Voss, A., Klaassen, C.H., 2006. Presence of a novel DNA methylation enzyme in
239	methicillin-resistant Staphylococcus aureus isolates associated with pig farming leads to
240	uninterpretable results in standard pulsed-field gel electrophoresis analysis. J. Clin.
241	Microbiol. 44, 1875-1876.
242	Busscher, J.F., van Duijkeren, E., Sloet van Oldruitenborgh-Oosterbaan MM, 2006. The prevalence
243	of methicillin-resistant staphylococci in healthy horses in the Netherlands. Vet. Microbiol.
244	113, 131-136.
245	Clinical and Laboratory Standards Institute, 2006. Methods for dilution antimicrobial susceptibility
246	tests for bacteria that grow aerobically 7th Ed. Document M7-A7.
247	De Neeling, A.J., van Leeuwen, W.J., Schouls, L.M., Schot, C.S., van Veen Rutgers, A., Beunders,
248	A.J., Buiting, A.G., Hol, C., Ligtvoet, E.E., Petit, P.L., Sabbe, L.J., van Griethuysen, A.J.,
249	van Embden, J.D., 1998. Resistance of staphylococci in The Netherlands: surveillance by an
250	electronic network during 1989-1995. J. Antimicrob. Chemother. 41, 93-101.
251	Enright, M.C., Day, N.P., Davies, C.E., Peacock, S.J., Spratt, B.G., 2000. Multilocus sequence typing
252	for characterization of methicillin-resistant and methicillin-susceptible clones of
253	Staphylococcus aureus. J. Clin. Microbiol. 38, 1008-1015.
254	Gibbs, S.G., Green, C.F., Tarwater, P.M., Scarpino, P.V., 2004. Airborne antibiotic resistant and
255	nonresistant bacteria and fungi recovered from two swine herd confined animal feeding
256	operations. J. Occup. Environ. Hyg. 1, 699-706.
257	Green, C.F., Gibbs, S.G., Tarwater, P.M., Mota, L.C., Scarpino, P.V., 2006. Bacterial plume
258	emanating from the air surrounding swine confinement operations. J. Occup. Environ. Hyg.
259	3,9-15.

260	Harmsen, D., Claus, H., Witte, W., Rothganger, J., Claus, H., Turnwald, D., Vogel, U., 2003. Typing
261	of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel
262	software for spa repeat determination and database management. J. Clin. Microbiol. 41,
263	5442-5448.
264	Huijsdens, X.W., Van Dijke, B.J., Spalburg, E., van Santen-Verheuvel, M.G., Heck, M.E.O.C.,
265	Pluister, G.N., Voss, A., Wannet, W.J.B., De Neeling, A.J., 2006. Community-acquired
266	MRSA and pig-farming. Annals of Clinical Microbiology and Antimicrobials 5, 26.
267	Ida, T., Okamoto, R., Shimauchi, C., Okubo, T., Kuga, A., Inoue, M., 2001. Identification of
268	aminoglycoside-modifying enzymes by susceptibility testing: epidemiology of methicillin-
269	resistant Staphylococcus aureus in Japan. J. Clin. Microbiol. 39, 3115-3121.
270	Lina, G., Piemont, Y., Godail-Gamot, F., Bes, M., Peter, M.O., Gauduchon, V., Vandenesch, F.,
271	Etienne, J., 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus
272	aureus in primary skin infections and pneumonia. Clin. In fect. Dis. 29, 1128-1132.
273	MAR AN-2004. Monitoring of antimicrobial resistance and antibiotic usage in animals in the
274	Netherlands in 2004, p. 22.
275	Martineau, F., Picard, F.J., Roy, P.H., Ouellette, M., Bergeron, M.G., 1998. Species-specific and
276	ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J. Clin.
277	Microbiol. 36, 618-623.
278	Murchan, S., Kaufmann, M.E., Deplano, A., de Ryck, R., Struelens, M., Zinn, C.E., Fussing, V.,
279	Salmenlinna, S., Vuopio-Varkila, J., El Solh, N., Cuny, C., Witte, W., Tassios, P.T., Legakis,
280	N., van Leeuwen, W., van Belkum, A., Vindel, A., Laconcha, I., Garaizar, J., Haeggman, S.,
281	Olsson-Liljequist, B., Ransjo, U., Coombes, G., Cookson, B., 2003. Harmonization of
282	pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-
283	resistant Staphylococcus aureus: a single approach developed by consensus in 10 European
284	laboratories and its application for tracing the spread of related strains. J. Clin. Microbiol. 41,
285	1574-1585.
286	SWAB, 2006. NethMap 2006. Consumption of antimicrobial agents and antimicrobial resistance
287	among medically important bacteria in the Netherlands.

288	Van Duijkeren, E., Jansen, M., Wannet, W.J.B., Heck, M.E., Fluit, A.C., 2006. Increasing prevalence
289	of infections with methicillin-resistant Staphylococci in animals. Abstract. Ned. Tijdschr.
290	Med. Micr. 14(suppl), S24.
291	Vanhoof, R., Godard, C., Content, J., Nyssen, H.J., Hannecart-Pokorni, E., 1994. Detection by
292	polymerase chain reaction of genes encoding amino glycoside-modifying enzymes in
293	methicillin-resistant Staphylococcus aureus isolates of epidemic phage types. Belgian Study
294	Group of Hospital Infections (GDEPIH/GOSPIZ). J. Med. Microbiol. 41, 282-290.
295	Voss, A., Loeffen, F., Bakker, J., Klaassen, C., Wulf, M., 2005. Methicillin-resistant Staphylococcus
296	aureus in pig farming. Emerg. Infect. Dis. 11, 1965-1966.
297	Wertheim, H.F., Vos, M.C., Boelens, H.A., Voss, A., Vandenbroucke-Grauls, C.M., Meester, M.H.,
298	Kluytmans, J.A., van Keulen, P.H., Verbrugh, H.A., 2004. Low prevalence of methicillin-
299	resistant Staphylococcus aureus (MRSA) at hospital admission in the Netherlands: the value
300	of search and destroy and restrictive antibiotic use. J. Hosp. Infect. 56, 321-325.
301	Zhang, K., McClure, J.A., Elsayed, S., Louie, T., Conly, J.M., 2005. Novel multiplex PCR assay for
302	characterization and concomitant subtyping of staphylococcal cassette chromosome mec
303	types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 43, 5026-
304	5033.
305	

Table 1. Number of NT MRSA carrying pigs in 6 groups of 10 pigs in each of 9 slaughterhouses.

				Grou	p			Total
Slaughterhouse no.	Date	1	2	3	4	5	6	
1	08-11-05	7	5	5	0	1	1	19
2	14-11-05	0	1	1	1 .	2	0	5
3	21-11-05	0	0	2	0	2	1	5
4	28-11-05	0	0	8	7	9	2	26
5	05-12-05	5	8	9	1	4	1	28
6	12-12-05	5	2	6	7	6	4	30
7	19-12-05	10	10	8	6	6	10	50
8	09-01-06	6	1	8	10	9	4	38
9	16-01-06	1	4	1	0	2	0	8
Total								209

Table 2. Spa types of NT MRSA from pigs.

310

Spa type	Tandem repeats	Number
t011	008-16-02-2534-24-25	43
t108	008-16-02-2524-25	39
t1254	106-16-02-2534-24-25	13
t1255	008-1634-24-25	4
t567	00802-2524-25	3
t943	008-16-02-252524-25	1
t034	008-16-02-25-02-25-34-24-25	1
Total		104

Table 3. Minimum inhibitory concentrations of antibiotics (mg/L) for NT MRSA from pigs (44 groups tested, 1 isolate per group). - = no growth; *) no CLSI breakpoints. Vertical lines are breakpoints. Antibiotic <u>≤</u>0.25 0.5 <u>≥</u>128 Oxacillin Tetracycline Doxycycline Erythromycin Clindamycin Ciprofloxacin Co-trimoxazole Rifampicin Teicoplanin Vancomycin Linezolid Kanamycin Neomycin*) Gentamicin Tobramycin Amikacin Chloramphenicol

Fusidic acid*)

Mupirocin*)