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Introduction

The histogram is probably the oldest 1 and most widely used density estimator for the presentation and exploration of observed data. A histogram is Email addresses: kevin.loquin@lirmm.fr (Kevin Loquin), olivier.strauss@lirmm.fr (Olivier Strauss). 1 probably dating from the works of John Graunt in 1662. See [START_REF] Westergaard | Contributions to the History of Statistics[END_REF].
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constructed by partitioning a given reference interval (or domain) D of IR d (we will just focus on the univariate case d = 1) into p bins A k and counting the number Acc k of observations that belong to each cell A k .

Acc k = n i=1 1l A k (X i ), (1) 
From these counts, we can derive a consistent estimate fhist (x) of the underlying probability density function f (x) at any point x of A k , computed by: fhist (x) = Acc k nh .

(2)

However, the histogram estimate has some weaknesses and, particularly, the choice of reference interval and number of cells (or bin width) have a marked effect on the estimated density. In the last 5 years, some authors have suggested that the effect of partitioning arbitrariness can be reduced by replacing the crisp partition by a fuzzy partition [START_REF] Runkler | Fuzzy histograms and fuzzy chi-squared tests for independence[END_REF]; [START_REF] Van Den Berg | Probabilistic and statistical fuzzy set foundations of competitive exception learning[END_REF]; [START_REF] Strauss | Rough histograms for robust statistics[END_REF]; [START_REF] Strauss | Estimation modale par histogramme quasicontinu[END_REF]. In the present paper, we propose a density estimator based upon a fuzzy partition. We define this kind of partition in section 2 and present our estimator in section 3. The MSE consistency is demonstrated in section 4 and the optimal bandwidth for AIMSE minimization is provided in section 5.

Preliminary concepts

First, the classical subsets of IR can be generalized in fuzzy subsets of IR.

Definition 1 The fuzzy subset F is defined by its membership function

µ F : IR → L = [0, 1]
assigning the value µ F (x) ∈ L to each element x ∈ IR which is the membership degree of x in F .

The crisp partition, i.e. where A k are p classical subsets of IR, can then be generalized in a fuzzy partition, i.e. where A k are p fuzzy subsets of IR.

Definition 2 Let D = [a, b] ⊂ IR be the domain of the partition. Let m 1 < m 2 < ... < m p be p fixed nodes of D, such that m 1 = a and m p = b, with p ≥ 3,

and ∀k = p, m k+1 -m k = h = constant, so, m k = a+(k -1)h. Let m 0 := a-h and m p+1 := b + h. Let D = [m 0 , m p+1 ]
⊂ IR be the extended domain of the partition. We say that the set of the p fuzzy subsets A 1 ,A 2 ,...,A p , identified with their membership functions µ A 1 (x),µ A 2 (x),...,µ Ap (x) defined on D , form a strong uniform fuzzy partition of the universe, if they fulfil

(1) µ A k (m k ) = 1, (2) if x / ∈ [m k-1 , m k+1 ], µ A k (x) = 0, (3) µ A k (x) monotically increases on [m k-1 , m k ] and µ A k (x) monotically de- creases on [m k , m k+1 ], (4) ∀x ∈ D , ∃k, such that µ A k (x) > 0, (5) ∀x ∈ D, p k=1 µ A k (x) = 1 (strength condition), (6) ∀x ∈ [0, h] µ A k (m k -x) = µ A k (m k + x), (7) ∀x ∈ [m k , m k+1 ], µ A k (x) = µ A k-1 (x -h) and µ A k+1 (x) = µ A k (x -h). tended on D , then (1) ∀x ∈ D, ∃!k 0 ∈ {1, ..., p -1}, such that ∀k / ∈ {k 0 , k 0 + 1} , µ A k (x) = 0,
and µ A k 0 (x) + µ A k 0 +1 (x) = 1.
(

) for k = 1, ..., p, m k+1 m k-1 µ A k (x)dx = h. (3) ∃K A : [-1, 1] -→ [0, 1] even, such that, µ A k (x) = K A ( x-m k h )1l [m k-1 ,m k+1 ] and 1 -1 K A (u)du = 1. 2 
Table 1 provides ACCEPTED MANUSCRIPT [START_REF] Loquin | Fuzzy histograms and density estimation[END_REF] underlines this property of the fuzzy histogram.

Note that this approach is quite similar to the binned kernel density estimator approach [START_REF] Hardle | Smoothing in low and high dimensions by weighted averaging using rounded points[END_REF]; [START_REF] Scott | Kernel density estimation with binned data[END_REF].

Let (A k ) k=1,...,p be a strong uniform fuzzy partition of D, then the natural extension of expression (1) induces a distributed vote:

Acc k = n i=1 µ A k (X i ).
As far as the density estimator ( 2) is concerned, since A k is a fuzzy subset, expression (2) no longer holds for any x ∈ A k , but normalized accumulators 

f nh (x) = 1 nh p k=1 Acc k µ B k (x),
where (B k ) k=1,...,p is a strong uniform fuzzy partition defined on D.

It can easily be shown that f nh ≥ 0, and f nh (x)dx = 1 and that f nh goes through the p points (m k , Acc k nh ).

One way to evaluate f nh is via some measure of its local difference from f . One of the most common measures is the Mean Squared Error :

MSE(x) E f [f nh (x) -f (x)] 2 .
Besides, we have

MSE(x) = b 2 (x) + σ 2 (x)
, where b 2 (x) is the squared bias and σ 2 (x) is the variance of the estimator f nh in x. We will bound b 2 (x) and 

E f [µ p A k (X i )] = r m=1 h m f (m-1) (m ck ) 1 -1 K p A (u)(u - 1 2 ) m-1 du + O(h r+1 ), (3) E f [µ p A k+1 (X i )] = r m=1 h m f (m-1) (m ck ) 1 -1 K p A (u)(u + 1 2 ) m-1 du + O(h r+1 ), ( 4 
)
for f C r with bounded derivatives.

Squared bias bounding

f nh (x) = f nh (m k )µ B k (x) + f nh (m k+1 )µ B k+1 (x), with f nh (m k ) = Acc k nh and f nh (m k+1 ) = Acc k+1 nh .
The squared bias is given by

b 2 k (x) = (E f [f nh (x)] -f (x)) 2 . ( 5 
)
By implementing expressions ( 3) and ( 4) with p = 1 and r = 2 (see assumption 1), we get

E f [f nh (m k )] = n i=1 E f [µ A k (X i )] nh = f (m ck ) - h 2 f (m ck ) + O(h 2 ), E f [f nh (m k+1 )] = n i=1 E f [µ A k+1 (X i )] nh = f (m ck ) + h 2 f (m ck ) + O(h 2 ).
Therefore,

E f [f nh (x)] = f (m ck ) + h 2 f (m ck )(µ B k+1 (x) -µ B k (x)) + O(h 2 ). (6) Now, for x ∈ [m k , m k+1 ], f (x) can be approximated by f (x) = f (m ck ) + (x -m ck )f (m ck ) + O(h 2 ). ( 7 
)
Therefore, from expressions (5), ( 6) and ( 7),

b 2 k (x) = f (m ck ) 2 h 2 (µ B k+1 (x) -µ B k (x)) + (m ck -x) 2 + O(h 4 ).
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For x ∈ D, the squared bias is bounded by

b 2 (x) ≤ max k=1,..,p-1 f (m ck ) 2 h 2 (µ B k+1 (x) -µ B k (x) + 1) 2 , because m ck -x ≤ h 2 b 2 (x) ≤ max k=1,..,p-1 f (m ck ) 2 hµ B k+1 (x) 2 , because µ B k (x) + µ B k+1 (x) = 1 b 2 (x) ≤ max k=1,..,p-1 f (m ck ) 2 h 2 . ( 8 
)

Variance bounding

The variance of the estimator (4

), for x ∈ [m k , m k+1 ], is given by σ 2 k (x) = E f (f nh (x) -E f [f nh (x)]) 2 . Let's define η i,k = µ A k (X i ) -E f [µ A k (X i )]
. We can easily obtain:

σ 2 k (x) = 1 (nh) 2 E f (µ B k (x) n i=1 η i,k + µ B k+1 (x) n i=1 η i,k+1 ) 2 = 1 (nh) 2 µ 2 B k (x) n i=1 E f (η i,k ) 2 + 1 (nh) 2 2µ B k (x)µ B k+1 (x) n i=1 E f (η i,k η i,k+1 ) + 1 (nh) 2 µ 2 B k+1 (x) n i=1 E f (η i,k+1 ) 2
1), we get

E f (η i,k ) 2 = E f [µ A k (X i ) 2 ] -E f [µ A k (X i )] 2 , = hf (m c k ) 1 -1 K 2 A (u)du -h 2 f 2 (m c k ) + O(h 2 ), E f (η i,k+1 ) 2 = E f [µ A k+1 (X i ) 2 ] -E f [µ A k+1 (X i )] 2 , = hf (m c k ) 1 -1 K 2 A (u)du -h 2 f 2 (m c k ) + O(h 2 ), E f (η i,k η i,k+1 ) = E f [µ A k+1 (X i )µ A k (X i )] -E f [µ A k+1 (X i )]E f [µ A k (X i )], = hf (m c k ) 1 0 K A (u)K A (u -1)du -h 2 f 2 (m c k ) + O(h 2 ).
Which leads to

σ 2 k (x) = f (m c k ) nh [µ 2 B k (x) 1 -1 K 2 A (u)du + 2µ B k (x)µ B k+1 (x) 1 0 K A (u)K A (u -1)du + µ 2 B k+1 (x) 1 -1 K 2 A (u)du] - f 2 (m c k ) n + O( 1 n ).
According to Cauchy-Schwartz,

1 0 K A (u)K A (u -1)du ≤ 1 -1 K 2 A (u)du. There- fore σ 2 k (x) ≤ f (m c k ) nh 1 -1 K 2 A (u)du.
For x ∈ D, the variance is bounded by

σ 2 (x) ≤ max k=1,..,p-1 f (m c k ) nh 1 -1 K 2 A (u)du. (9) 

Conclusion

The following theorem summarizes inequalities (8) and (9).
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Theorem 2 Under assumptions 1 and 2,

MSE(x) ≤ max k=1,..,p-1 f (m ck ) 2 h 2 + max k=1,..,p-1 f (m c k ) nh 1 -1 K 2 A (u)du, hence, ∀x ∈ D, f nh (x) is consistent in the MSE, i.e.
h -→ 0 and nh -→ +∞ =⇒ MSE(x) -→ 0.

IMSE consistency and optimization

Optimization of our estimator consists of finding the bandwidth h * which minimizes the upper bound of the IMSE, given by IMSE = D MSE(x)dx.

We proved that this upper bound, called AIMSE for Asymptotic Integrated Mean Squared Error, is given by:

AIMSE = h 2 C 1 D f (x) 2 dx + C 2 nh , (10) 
with This AIMSE result (10), which you can find in a different form in [START_REF] Waltman | Fuzzy histograms: A statistical analysis[END_REF], is a generalization of the AIMSE of the classical histogram, which can be found in [START_REF] Scott | Multivariate Density Estimation[END_REF][START_REF] Scott | On optimal and data-based histograms[END_REF]. Indeed, with K A (x) = K B (x) = 1 2 1l [-1,1] (x), expression (10) becomes AIMSE = h 2 12 D f (x) 2 dx + 1 nh .

C 1 = 1 0 K 2 B (u)du 1 -1 K 2 A (u)du + 2 1 0 K B (u)K B (u -1)du 1 0 K A (u)K A (u -1)du + 0 -1 K 2 B (u)du 1 -1 K 2 A (u)

Conclusion

Here we have presented a histogram density estimator based upon a fuzzy partition. We have proved its consistency in MSE and obtained its optimal bin width for AIMSE minimization. The main advantage of this tool is that it improves the robustness of the histogram density estimator with respect to the partitioning arbitrariness. Illustrastions of this fuzzy histogram density estimator property are provided in [START_REF] Loquin | Fuzzy histograms and density estimation[END_REF].

  illustrative examples of membership functions of strong uniform fuzzy partitions that are obtainable by point (3) of Proposition 1. The first column contains the crisp partition, the second one, the cosine partition and the last column, a triangular fuzzy partition, formed by fuzzy triangular numbers. 3 Fuzzy-partition based histogram density estimator The accumulated value Acc k is the key feature of the histogram technique. It represents the number of observations in complete agreement with the label represented by the restriction of the real line to the interval (or bin) A k . As the partitioning is highly arbitrary, the histogram technique is known to be very sensitive to the choice of both reference interval and number of cells (or bin width). As mentioned before, the effect of this arbitrariness can be reduced by replacing the crisp partition by a fuzzy partition of the real line. The paper A C C E P T E D M A N U S C R I P T

  Acc k nh now have degrees of truth inherited from the fuzzy nature of A k . Then, the Acc k nh value is more true at m k than at any other point of D. We propose to once again use the concept of strong uniform fuzzy partition of p fuzzy subsets to provide an interpolation of the p points (m k , Acc k nh ) on D. Definition 3 The fuzzy histogram density estimator defined on D is given by

  σ 2 (x) under the following assumptions Assumption 1 f is a C 2 function with bounded derivatives, Assumption 2 K A and K B , as defined by point (3) of Proposition 1, are square integrable. Prior to bounding b 2 (x) and σ 2 (x), useful equalities are provided to easily approximate them. Let m ck be the center of [m k , m k+1 ]. Thanks to a change of variable u ← X i -m k h , point (3) of Proposition 1, and the Taylor expansion of f , we have

  B (y -1) -K B (y)) 2 dy + 2 1 0 K B (y)ydy -AIMSE * = O(n -2/3).
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