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Abstract

We present here an updated compilation of crustaarpeters beneath the Iberian
Peninsula and surrounding waters, inferred froneresive deep seismic exploration
performed in the last three decades. Firstly, tbeemelevant experiments developed in
both terrestrial and marine domains are revisitedether with the corresponding
seismic velocity-depth models published that revkalcharacteristics of the different
tectonic domains sampled, including oceanic zooestinental margins, orogenic and
rift belts. The results are summarized in threestalu transects sketched along
representative directions. Secondly, we compiled Moho depths along all the
available seismic profiles to produce a geo-retkdatabase. This database has then
been interpolated using kriging algorithms to abtaicontinuous Moho depth model, in
the form of a regular grid file. This integrativeoklo map for a key area in the Western

Mediterranean documenting the interaction betweerofiean and African plates can
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contribute to constrain further regional studiather at crustal, lithospheric or mantle

scales.

Keywords

Iberia, Crustal model, Moho depth

Introduction

Since the early 70s, the crustal structure bendla¢h Iberian Peninsula and its
continental margins has been explored by a highuainof controlled-source seismic
experiments, which provided information about tleésic wave velocities and the
geometry and depth of the main crustal interfagls. purpose of this contribution is to
revisit those results, with a special emphasisomgiling the crustal depths, to provide
a regional Moho-depth model of the whole area. Evanformation about physical

properties of the crust can be achieved after abeunof geophysical techniques
(tomography, receiver functions, potential fieldealysis, etc.), the wide-angle
reflection/refraction seismic profiles appear to the most reliable technique to
constrain the velocity-depth distribution and Mathepth, as the position of the main
interfaces and the seismic velocity values areireaaferred from the data through

modelling with determinable uncertainties. Firstmpilations of seismic crustal

parameters in the Iberian Peninsula were attemipyelanda et al. (1983) and Banda
(1988), but since then a lot of subsequent expertisneave been carried out, mainly in
the northern part of the Peninsula, the Valenceu@h, the Betics, the Gulf of Cadiz

and the Iberian Massif. Compilations available labgl or continental-european scales
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(Meissner, 1986, Dezés and Ziegler, 2001, Laska. &001) do not resolve significant
regional features of this key area of the Westeraditérranean, which deserves
particular attention in present-day integrated aede initiatives in European
geosciences. These researches would certainly ibdre@h the existence of large,
upgraded geo-referred databases, and the contirMiohs depth model we infer here
can contribute to constrain the lithospheric fezdurn the interaction domains between

European and African plates.

The main tectonic domains in the lberian Peninani@d its surrounding waters that will
be considered in revisiting the seismic datasetsarThe Iberian Massif, extending at
the central and western part of Iberia, where tleecyhian basement outcrops or is
covered by almost undeformed Tertiary sedimentsh®)areas strongly affected by the
Alpine orogenesis: i) the Pyrenees, extending frin@ Mediterranean sea to the
Cantabrian Mountains, ii) the Iberian Chain, anaacé Mesozoic cover deformed
during the Alpine compression, iii) The Betics Ghaielated to the complex tectonics
of the Gibraltar Arc System; c) the Valencia Troughbasin developed during the
Neogene as part of the general Cenozoic rift systemestern Europe, d) the Atlantic
Margins, that can be subdivided into three broategothe Gulf of Cadiz, an active area
with strong sedimentary cover and significant s&gyn the Western Atlantic, a
classical example of passive margin, and the CaataMargin, characterised by a very

abrupt topography.

Outline of Iberian seismic exploration experiments

Page 3 of 46



75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

-4 -

In order to compile the crustal parameters, we Hi@serevisited more than 50 research
projects developed during the last 30 years irestrial and marine domains around
Iberia. We selected those experiments focusecdeinvtivle crustal structure, carried out
in most cases by academic institutions, and diccoosider the high resolution profiles
performed by oil prospecting companies, mainly &smlin the sedimentary features.
Figure 1 summarizes the location of the compilddantion/wide-angle reflection and

the multichannel reflection profiles. An enormousaant of publications have resulted
from these experiments, and only significant, keferences are listed here on the
bibliography, but which may allow the interestedder to found most of the published
works. A more exhaustive compilation of publicatois presented in Gallart et al.

(2006).

The pioneer seismic experiments around Iberia wesene refraction investigations,
using a small number of OBS or sonobuoys, carriatlio the Valencia Trough-
Balearic domains (Fahlquist, 1963, Hinz, 1973) amdhe Atlantic Margin (Purdy,
1975). The first seismic experiments on land whExdormed during the early 70’s in
the Algarve region (S Portugal) by an internationedm leaded by the Zurich
University (Mueller et al., 1973, Sousa Moreiraakt 1978), extending soon afterwards
to Southern Spain (Udias 1975). In particular, @ @ long terrestrial profile through
the Betics (Banda and Ansorge, 1980) and 3 linessamg the Alboran Sea where
recorded using a limited number of analogical stetj shifted between repeated shots
at a same point to densify the profile (Working Gydor Deep Seismic Sounding in
Alboran 1974, 1978). During the late 70’s, new fyesf where acquired in Southern
Spain, sampling the Gulf of Cadiz, the Gibraltaeagrthe Iberian System and the

Balearic Islands (Udias, 1980, Medialdea et al§6l®Barranco et al., 1990, Zeyen et
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al., 1985, Banda et al., 1980). The central patheflberian Massif was also sampled in

the late 70’s, using quarry blasts as energy ssui@anda et al., 1981).

The Pyrenees were exhaustively explored by deemseprofiles during the late 70’s.
Two E-W profiles throughout the northern and sowthéomains of the chain were
recorded (Daigniéres et al., 1981, Gallart et #81), as well as a N-S transect and
multiple complementary profiles in the eastern Rges (Gallart et al., 1980). Up to 64
analogical instruments and near to 20 explosion® weed, reaching station spacing
between 3 and 5 km. In 1984, the French “Etude téroéntinentale et Oceéanique par
Réflexion et réfraction Sismique” (ECORS) programaoguired a 300 km long, N-S
oriented multichannel marine profile in the BayRi§cay (Marillier et al., 1988, Bois
and Gariel, 1997). In the following years, the EC33Ryrenees Team carried out the
first academic deep multichannel seismic profile land implemented partially in
Iberia, that crossed the Pyrenees in a NNE-SSWetibre and provided high-quality
data to constrain the Pyrenean orogenesis (ECORS&ss Team, 1988, Choukroune
1989). Complementary wide-angle profiles were asquired along the same line
(Surinach et al., 1993, Daignieres et al., 1998)l.i8 the ECORS framework, another
transect was recorded later on in the Western ege(ECORS-Arzacq, Daigniéres et

al., 1994, Damotte, 1998).

In the early 80s the seismic exploration activity land was focused in the Iberian
Massif. The NW corner of Iberia was studied in @egipread survey, involving inter-
station distances of 1 to 2.5 km. (Coérdoba et1887, 1988). Those profiles provide
one of the few examples of direct modelization efe&/e velocities (Téllez et al., 1993,

Téllez and Cérdoba, 1998). Some complementary Ipsofivhere fired in N Portugal
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(Mendes-Victor et al., 1988) and additional oneserghrecorded in central Spain
(Surifiach and Vegas, 1988). During the same tinmoghethe DSDP consortium
decided to establish drill holes near the limitiestn the Galicia Bank and the Atlantic
abyssal plain, and a preliminary multichannel s@ssarvey was performed over this
zone, acquiring a number of deep penetration g®fihainly oriented E-W (Groupe
Galice, 1979, Mauffret and Montardert, 1988). Thefifing activity in the Atlantic
Margin continued in 1986-87 by a British wide-anfiefraction survey in the Tagus
Abyssal Plain (Whitmarsh et al., 1990, Pinheiraakt 1992) and by the Reframarge
experiment, using the same technique to explordirtiiebetween the Galicia Bank and
the lberian abyssal plain (Whitmarsh et al., 1996ter on, in 1990, the Lusigal
experiment sampled again the Tagus Plain usindhi; ¢ase multichannel seismic

profiles (Beslier et al., 1993).

In 1988 the Valencia Trough was largely explorethimi the VALSIS experiment. Up
to 200 km of multichannel seismics were acquireat/uding common deep point,
common offset point and expanding spread profi®atfs et al., 1990, Torné et al.,
1992, Pascal et al., 1992). The shots from soméhese profiles where recorded
onshore by portable seismic stations, providingfits ‘onshore-offshore’ transects in
Iberia (Gallart et al., 1990). The same geograplaoaa, between the Balearic islands
and NE Iberia, was explored in 1989 in a wide-angkperiment, using explosive
sources recorded by 110 land stations and 10 OR8dReitia et al., 1992) to constrain

the velocity-depth structure.

In the late 80s, the large scale “Iberian Lithosfhéleterogeneity and Anisotropy”

(ILIHA) experiment provided relevant information@li the crustal and upper mantle
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structure beneath Iberia, including evidences efghesence of seismic anisotropy in
the uppermost mantle. Up to 6800 km of profilesssiag the Peninsula along different
azimuths where recorded with station spacing obiaddkm (Diaz et al., 1993a, 1993b).
In the same period, a number of new profiles cnagtie Eastern Betics where acquired

with higher station density (Banda et al., 1993).

In the early nineties, the focus of activity shifte® multichannel reflection profiles, in
the framework of the Spanish “Estructura SismicalaleCorteza Ibérica” (ESCI)
Program that allowed to record up to 450 km ofetstnial and 1325 km of offshore
seismic profiles in southern, eastern and northiegena. On land, an NW-SE oriented
profile was acquired in the Betics (Garcia-Duefasalk, 1994), a short profile
connecting the ECORS line to the Mediterranean tcaas implemented across the
Catalan Coastal Range (Gallart et al., 1994a),taod\-S and E-W profiles were shot
in the in Cantabrian Mountains (Pérez-Estaun, 194gar et al. 1996, Gallastegui et
al., 1997). Offshore, two seismic profiles werewred in southern Spain, one sampling
the northern part of the Alboran Sea in a NNE-SSWéction and the second one,
oriented approximately E-W, connecting to the SudB@c basin (Booth-Rea et al.,
2007). The first profile was also recorded on lagda few seismic stations (Gallart et
al., 1995). The Alboran Sea was explored again9821by a set of short (50 km)
refraction profiles in its NW part recorded on laoygl up to 24 stations (Gallart et al.,
1994b) and by the larger scale CONRAD experimeat tacorded five multichannel
seismic profiles oriented approximately N-S crogsthe whole basin (Watts et al.,

1993).
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The marine component of the ESCI Programme incladgal the acquisition of another
multichannel profile in the Valencia Trough, oriedtNW-SE, between Tarragona coast
and S of Mallorca island, recorded also onshordlg@Gaet al., 1995), and allowing in
this way to complete a 700 km-long seismic tran$emh the Pyrenees to the South
Balearic Basin (Vidal et al., 1998). The ESCI Pesgme was completed in 1993 with
the acquisition of two profiles in the North-lIberidargin, one oriented E-W sampling
the Hercynian structures and the other oriented, Ne8ending northwards the
previously acquired land profile to obtain a trariserthogonal to the main structures
(Alvarez-Marrén et al., 1996, Ayarza et al., 199B).both cases the profiles were
recorded by land stations to obtain wide-angle da& control the velocity structure
(Fernandez-Viejo et al., 1998; Gallastegui et20)Q2). Extensive exploration on land of
the northern part of Iberia was also performedhm $0s within two research projects
that recorded a large E-W refraction/wide-angldextion profile covering a total of
960 km from Galicia to the Pyrenees Chain, as aslla set of transverse profiles
sampling the transition between the Duero BasintaadCantabrian Mountains (Pulgar

et al. 1996; Fernandez-Viejo et al., 2000, Pededira., 2003).

In the mid-nineties, the French project LISA sardptifferent areas of the western
Mediterranean from seismic multichannel profiliddauffret et al., 2001, Nercessian et
al., 2001). Five of the acquired profiles were shotthe vicinity of the eastern

termination of the Pyrenees and were recorded hy ktations to investigate the
transition between the areas affected by the Almginmpression and the Neogene
extension (Gallart et al., 2001). However, mostoduisition activity was focused on
the marine seismic exploration of the Atlantic masgpf Iberia, in the framework of the

large scale “Iberian Atlantic Margins” (IAM) Europe project. Up to 3500 km of
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multichannel profiles were acquired in the Nortlerian and Atlantic margins, the
Gorringe bank and the Gulf of Cadiz (Banda et1#195). Profiles IAM12, oriented N-S

along the La Coruiia longitude, IAM11 oriented E-W front the central coast of
Portugal and IAM3, oriented NE-SW in front of CaBan Vicente were recorded on
land, providing images of the continent-oceaniogition (Fernandez-Viejo et al., 1998,
Gonzalez et al., 1996; Gonzalez et al.,, 1999). rAftee IAM project, additional

experiments were implemented in Atlantic Margins, bietter constrain the seismic
velocity structure. A wide-angle profile, includitige deployment of up to 16 OBS, was
shot in the same position of the previously acauifev9 line (Chian et al., 1999, Dean
et al., 2000), exploring the structure of the oeeantinent transition. The northern part
of the Atlantic margin was investigated in the ISE&periment that acquired more
than 4000 km of multichannel seismics, recorded alg a network of OBS and land
stations (Pérez-Gussinye et al., 2003, Henning Sadyer, 2004). In 1998, the
BIGSETS project sampled the epicentral area oflffe5 Lisbon earthquake by up to

2700 km of multichannel seismic profiles.

The seismic exploration activity in the 21th ceptstarted with the investigation of the
tectonic evolution of the Gulf of Cadiz, where twwin E-W oriented multichannel
seismic profiles were acquired in the frameworkh®d TASYO project (Medialdea et
al., 2004). The same area was investigated in py0the VOLTAIRE project, which
allowed the acquisition of more than 1000 km of tiabhlannel seismic profiles (Zitellini
et al.,, 2004). The TECALB experiment, carried oot 2004, provided a set of
multichannel seismic profiles sampling the Eastdboran Sea (Comas et al., 2004). In
2006, the West-Med experiment, allowed the acdaisibf wide-angle data in the

Alboran Sea and the transition to the South Batdaaisin, using a network of OBS and
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land stations (Galvé et al., 2007). The same aasablken investigated in 2006 by the
MARSIBAL cruise, using in this case multichannelssdic profiling (Comas et al.,

2007).

After the sinking, in late 2002, of the “Prestigaf-tanker at about 250 km NW of the
Galician coasts, an emergency multidisciplinaryestigation was launched over the
sinking area, located in the limit between the GaliBank and the Iberian Abyssal
Plain. In this framework, a seismic experimentuigithg multichannel seismic profiles
and OBS was carried out on in 2003 (Diaz et alQ820At the same year, the
MARCONI large scale project investigated the detepcsure of the eastern half of the
Bay of Biscay. Up to 1800 km of multichannel seismprofiles were acquired and the
signals were recorded by 24 OBS and by a netwo@6dand stations to constrain the
velocity structure of the area (Ruiz, 2007). StilR003, a seismic transect on land was
acquired beneath the central part of the IberiaailCto investigate the presence of a

crustal root (Gallart et al., 2004).

On land, the IBERSEIS experiment, carried out i®1220provided a high resolution
image of the SW lberian Massif, using both multiwhel and wide-angle methods. In
the wide-angle profile up to 690 seismic statiomere deployed, providing a resolution
of 150 to 400 m, that is clearly an order of magphét higher than all previous
experiments (Simancas et al, 2003, Carbonell et2804). In 2007, the ALCUDIA

project has allowed to extend 300 km towards thetidast the previously acquired
IBERSEIS line, providing a complete transect frdra Gulf of Cadiz to the Hercynian

domain of the Spanish Meseta (Carbonell et al.7200
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Seismic structure beneath the Iberian Peninsula andurrounding waters

Iberian Massif

A large part of central and western Iberia is cedeby the Iberian Massif, affected by
the Variscan orogeny and mostly undeformed sin@n.tiThe crust is seismically
differentiated in three layers and shows a strecsimilar to other Variscan domains in
Europe. The basement has a thickness of 8-12 kmvelodities ranging from 5.9 to 6.1
km/s (Banda et al., 1980). Some authors have intredi a low velocity at the bottom of
this layer, even if recent high resolution expemitsecan not confirm such a structure
(Palomeras et al., 2008). The intermediate cruayar, with velocities of 6.2-6.4 km/s
reaches depths of 23-25 km. A lower crust, withogiies of 6.7-6.8 km/s is defined
above the Moho discontinuity, located at 30-33 Kntrustal root seems to be present
beneath the Central System, where the crustal deptihes 34 km as a consequence of
a thickening of the middle crust layer (Surifiacd &®egas, 1982). Beneath the Atlantic
coast of Iberia, the crust displays thicknesse&7e29 km and starts thinning toward the
oceanic domain (Diaz et al., 1993a). In SW Portubal crust has been modelled with a
strong gradient in the upper crust and a pronouhd& (Mueller et al., 1973, Sousa
Moreira et al., 1978). However, an alternative riptetation assuming a model closer to
the one obtained for central Iberia can also erpthe data (Gonzélez et al., 1998).
Multichannel seismic profiling across the Varischelt in SW Iberia revealed the
existence of a mid-crustal reflective body, 140lkmg and of variable thickness (up to
5 km), that has been interpreted as an Early Cédvons mantle derived intrusion

(Carbonell et al., 2004). Wide-angle modelling gldhe same profile shows a 31-34
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km thick crust, with the lower crust thickeningtte center of Iberia (Palomeras et al.,

2008).

Alpine Chains

The presence of a more or less pronounced rootroedth the areas that underwent
significant deformation during the Alpine orogengshbecome apparent since the first
seismic investigations in Iberia. In the early 83s crust beneath the Pyrenean chain
was modelled with a sedimentary layer on top ofselment with seismic velocities of
6.1-6.2 km/s that overlays an undifferentiated toider crust below 11-14 km depth
where the velocities reach 6.3-6.4 km/s. The clusiakness beneath the Pyrenean
axial zone reaches 45-50 km, while the northerrofean crust does not exceed 30 km
depth (Daignieres et al., 1981, Gallart et al.,1998his image was confirmed by the
ECORS multichannel seismic profile, which showslwlefined reflectors in the entire
crust with an overall fan-shape geometry, and akewhrcrustal thickening from the
southern Pyrenean domain towards the Axial zongjcteg an imbrication of the
Iberian crust beneath the European one (Choukretiak, 1990). No evidences for the
persistence of a crustal root eastwards, towariinditerranean Sea have been inferred
either from the land refraction profiles (Gallatt &., 1980) or from the onshore-
offshore experiments in the eastern terminatiothef Pyrenees (Gallart et al., 2001).
The important differences in Moho depths betweem Hberian and the European
domains observed in the central and western Pysesmeenot present in this area, which
is marked by a continued thinning seaward, the M&aching 25 km depth in front of

Cap de Creus.

Page 12 of 46



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

-13 -

A remarkable result derived from the extensiversgsexploration in the northern part
of Iberia is that all the profiles sampling areffie@ed by the Alpine orogeny show a

crustal structure similar to that inferred for fhgrenean Chain (Fernandez-Viejo et al.,

1998; Pedreira et al., 2003). A quasi-continuoustal root is hence depicted along the

strike of the Pyrenean-Cantabrian range where Migmhs reach 46-48 km, with a
local, relative thinning to 40 km depth beneath Mesozoic sediments of the Basque-
Cantabrian Basin. Seismic and gravity modellingha whole area shows consistent
images of a crustal indentation and wedging betwibenlberian and the European-
Cantabrian Margin crusts (Fernandez-Viejo et a@98 Gallastegui et al., 2000;
Pedreira et al., 2003; 2007). A 10 km-thick loweustal layer of 6.6-6.8 km/s is
modelled on top of the Moho. The presence of higloaity bodies embedded at mid-
crustal levels has also been inferred from thenseisdata, and they have been
interpreted as intrusions from the European-Cargab¥argin lower crust indenting
southward the Iberian crust (Pedreira et al., 2@08,7). A significant thinning of the
crust to the westernmost part of the Cantabrian meins, where Moho depths are
about 30 km, depicts the transition to the zonetheflberian Massif which had not

been significantly reworked by the Alpine orogeny.

The seismic profiles exploring the other major Aidomain in Iberia, the Betics
Chain, have evidenced the differences betweenbieah Massif and the external and
internal Betic domains. In the transition zonehe internal Betics, the crust thins first
to 32 km and then thickens to 37-38 km. The abserficdifferentiated lower crust

beneath the external Betics has been related Withviesozoic rifting episode of the
South-lberian passive margin (Banda et al.,, 1988)an East-West direction, the

Palomares-Alhama de Murcia fault system seemsnti two crustal blocks; to the
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East, the crust is only of 23 km thick, and hadgh lvelocity body (6.9 km/s) in the
lower levels. West of this fault system, the preseof a LVZ 5.4 km/s at depths of 7 to
12 km has been inferred from the data. The crukteknesses vary strongly, between
the 38 km reached beneath Granada and the 24 keatheAdra, close to the Alboran
sea (Banda and Ansorge, 1980). SW of Mélaga seidat& evidences an anomalous
structure that could be explained by a thin crashassive presence of peridotites or a
combination of both features (Banda et al., 1988)he Westernmost Betics Chain, the
upper, middle and lower crusts are evidenced, wétbcities of 6.1, 6.4 and 7.0 km/s
underlying a sedimentary cover that has importaitkhess variations. The crustal
depth varies from 25 km under the inner arc ofBkécs to 31 km in the coast west of
Gibraltar (Medialdea et al., 1986). Towards the okim Sea, the velocity-depth
distribution is poorly constrained from the pub&shdatasets. The crust seems to
quickly get thinner, reaching depths of about 15 I without showing features of
oceanic crust. It overlies an uppermost mantle wagparently low velocities (Hatzfeld

and Bensari, 1977; Working Group for DSS in thedkdin Sea 1974, 1978).

The results available for the Iberian Chain, armareMesozoic cover deformed during
the Alpine compression, show an average crusteknigiss of 30-32 km for most of the
chain, similar to the values in the Central Ibefigassif. However, a local thickening of
a few kilometers has been detected in the centréhern part of the chain (Zeyen et al.,
1985). A similar crustal root has also been obskrfagther south, along a refraction

profile oriented NE-SW where the Moho reaches 40diepth (Gallart et al., 2004).

Valencia Trough
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The transition between the NE Iberian Peninsula #uedValencia Trough, a basin
developed during the Neogene as part of the ge@=abzoic rift system of western
Europe, is marked by a strong thinning of the ¢raisanging from 35 km inland to 15-
18 km in the center of the basin. The crust thiskagain to the SE beneath the Balearic
promontory, reaching 30 km beneath Mallorca islafide basement shows seismic
velocities of 6.0 - 6.1 km/s, while in the loweust, where must of the crustal thinning
is accommodated, the velocities are of 6.4-6.5 kiffie uppermost mantle beneath the
axial zone is characterized by a low velocity ofoatb 7.8 km/s, interpreted as
consequence of the rifting process that affectaesl éinea. To the SE, in the South
Balearic basin, the crust becomes very thin (6 &ng has probably an oceanic origin

(Banda et al., 1980, Dafiobeitia et al., 1992, €okit al., 1994, Vidal et al., 1998).

Atlantic and Cantabrian Margins

In the Atlantic Margins of Iberia the transitionofn continental to oceanic crust is
mapped with significant variations between the aeéht zones. The seismic models
obtained beneath the Gulf of Cadiz indicate thatwinole area has a continental-type
crust, with a progressive thinning from 27 km ie thast to 20 km in the westernmost
area (Gonzélez et al., 2001). The onshore recadofgan SW-NE oriented MCS

profile in front of Cape San Vicente have revedtst the crust undergoes a strong but
continuous thinning from 31 km onshore Iberia tssléhan 15 km in the Horseshoe

Abyssal Plain, over horizontal distances of 120(kBonzalez et al., 1996).

In front of the coast of central Portugal, the sition between the continental and the

oceanic domains has been modelled using wide-asaj$enic data (Dean et al., 2000;
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Chian et al., 1999) and imaged with MCS profilifgickup et al., 1996). East of
10°45'W, the crust is of continental type, withraa®th uprising of the Moho from 31
km beneath Iberia to 12 km. West of this longitutie, crust is described as transitional,
with an upper layer 2-4 km thick modelled with gosg velocity gradient (4.5 — 7.0
km/s) and a second crustal layer 4 km thick andhallsvelocity gradient around 7.6
km/s. West of 12°40’ W the crust is clearly oceaniith a 2 km thick upper layer with
velocities 4.5-6.5 km/s over a lower layer of 3.5-km and seismic velocities of 6.7 to

7.2 km/s.

In front of NW Iberia, the morphology of the margs complex with, from East to
West, a small continental platform, a large basiouhd 100 km wide (Galicia Interior
Basin) where the Moho depth thins to 15 km, a stimat high (Galicia Bank) where the
Moho deepens to 22 km to thin again smoothly towavdst to a minimum of 10 km
eastwards of the peridotitic ridge (located at acbd2.5°W). West of this ridge, the
crustal structure is typical of oceanic domains fviarsh et al., 1990, Murillas et al.,

1990, Pérez-Gussinyé et al., 2003).

The structure beneath the North Iberian or Caraabrmargin has important lateral
variations. In the western sector the transitiom#&ked by a rapid and smooth thinning
of the crust, from 30 km on land to 15 km in thgssdal plain the Bay of Biscay. MCS
profiling has suggested the presence there of iceanst, interpreted as an arrested
subduction (Alvarez-Marron et al., 1996, Ayarzalket 2004). In the central part of the
margin the inferred models show the indentationtled Cantabrian margin crust
between the middle and lower Iberian crust. The Mdépth shifts abruptly from more

than 45 km to 30 km beneath the shoreline and thars smoothly till 18-20 km
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(Fernadndez-Viejo et al., 1998). The N-S and E-Wfij@® acquired during the

MARCONI experiment in the eastern half of the marghow an important crustal
thinning to the NW part of the study area, wheeeNMoho is located at depths of 10-14
km and the velocities in the upper and lower carst respectively, lower and higher
than expected, depicting an elongated and thinnaadisitional crust. Towards the
eastern termination of the North Iberian margim thust is clearly of continental type

(Ruiz, 2007).

Summary of results: crustal transects and Moho-deit model

The velocity-depth distribution along three illitve transects crossing the Iberian
Peninsula and its margins is sketched in Figuréh2 location of these transects has
been chosen to follow, as much as possible, thi#ggavhere direct crustal modelling
is available. We use them to compile and discussnihin crustal parameters beneath
Iberia. Figure 2a shows a transect oriented NNW-88& the Bay of Biscay to the
African coast, sampling the thinned continentalstrof the abyssal plain, the crustal
imbrication related to the Alpine compression beéinghe Cantabrian Mountains, the
typical Iberian Massif crust and the significantstal thickening beneath the Internal
Betics, followed by the crustal thinning beneatd fiboran Sea. The second transect
(Figure 2b) is oriented grossly E-W along the nemthpart of Iberia. It samples the
eastern termination of the Iberian Abyssal Plaiith & typical oceanic crustal structure,
and goes through the Galicia Margin, crossing thedptitic ridge, the Galicia Bank,
the Galicia Interior Basin and the continental folah. On land, the transects samples
the Iberian Massif units and depicts clearly transition to the areas affected by the

Alpine orogeny, with crustal thicknesses reachilmost 50 km along the Cantabrian-
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Pyrenean range. Locally, intrusions of the Europ@antabrian lower crust and
thinning beneath the Basque-Cantabrian basin asereéd. At the eastern end of the
Pyrenees, the crust thins once the extended doroaihe Western Mediterranean are
reached. The third transect presented here (Fp)res also oriented E-W but sampling
the central part of Iberia. Its western terminatsfrows the Atlantic oceanic crust. It
crosses afterwards the typical non-volcanic passiaegin of Iberia, and reaches the
Iberian Massif units. Eastwards, the transect endde the local crustal thickenings
beneath the Central System and the Iberian Chadhjtallustrates the transition to the
Valencia Trough, an area of clearly extended, thihoontinental crust and it ends by

documenting the thicker crust beneath the Baldnaenontory.

In order to obtain a Moho-depth model for the olteagea, we have first compiled the
geographical location of the published wide-anghel anultichannel seismic profiles
that provide information about the whole crustalusiure beneath Iberia and its
surrounding waters. In some cases, especially & oldest experiments, the
coordinates of the profiles have been recovereecthr from the published maps and
therefore may involve some degree of inaccuracguifei 1). The next step has been to
retrieve the Moho depths along the published msfilif the profile was interpreted
assuming a 1D velocity-depth distribution, the m@d Moho-depth is adopted along
the profile. If 2D models where available, the Matlhepth was extracted for enough
points to take care of its topographic variatiolsout 320 points have been compiled
in this way, stretching E-W from the Atlantic océanrust to the Balearic Promontory
and N-S from the thinned crust of the Bay of Bistayhe African coast of Morocco,

with a mean density of about one measurement €v8fx0.5°. The final compilation is
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presented in Figure 3 and is also presented adeatramic table as complementary

material.

As a final step, we undertake the construction dMaho-depth model using ordinary
kriging as the interpolation method. This method tiee advantage to take into account
the knowledge of the spatial continuity of the aate to estimate. Each data point is
weighted in the kriging procedure with a coeffidigrhich takes care of the distance to
the neighbour points. To obtain these coefficiethts,spatial autocorrelation in the form
of semi-variograms of the available data is comghated modelled. This procedure tries
to ensure a correct weighting function for not-onifi data distributions. We have used
the KT3D code, a part of the GSLIB package (Deutsoth Journal, 1998). The semi-
variogram for the Moho-depth distribution has beevdelled using a spherical model
with a sill located at 70 kmbeyond a range of 3° (325 km). The variogramsglon
different directions show some evidences of spati$otropy, but we decided not to
retain this contribution into the final model toc& overmodelling, as the data are not
conclusive in this respect. The final grid, sp&idiltered and plotted using the GMT
software package (Wessel and Smith, 1998), is ptedein Figure 4 and can be

downloaded in netCDF format &ttp://www.ija.csic.es/gt/jd/Moho l|beridt must be

pointed out that for some regions, in particulathattransition from the Pyrenees chain
to the Iberian Ranges through the Ebro Basin, dnetimit between the Guadalquivir
basin and the Betics and in the SW Mediterranean e interpolated Moho-depths
may not reflect correctly the real crustal thicksess because experimental data is very

scarce in these areas.
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Discussion and Conclusions

The lithosphere of the Iberian Peninsula and itsosiding waters has been sampled
from a huge number of active seismic experimentsnduthe last three decades.
However, a specific compilation of its seismic t¢aligeatures has not been attempted
since about 20 years, and a great amount of reanttsconstraints is available since
then. We have revisited here all these seismiectfin and refraction experiments to
summarize main crustal parameters and to build gpraprehensive map of crustal
thicknesses by compiling Moho depths. We came up @igeo-referred database that
has then been interpolated using kriging algorithongbtain a continuous Moho depth
model, in the form of a regular grid file. We tochre that in this map the geographical
areas readily sampled by the profiles and thosereviige final model comes from

interpolation are well recognized.

One of the most significant features establishadeslong ago is the crustal thickening,
reaching 50 km depth, beneath the Pyrenean rangsvevér, the experiments
performed in North Iberia in the last 10 years heexealed that this thickened crust is
not limited to the Pyrenees, but extends westwalaisg the Cantabrian Mountains, up
to the contact with the Iberian Massif units at @b@W, a feature that is not stated in
previous regional or global crustal depth complasi (Meissner, 1986, Dezes and
Ziegler, 2000). In the Betics, a thickening reagh®® km is also observed, but seems to
be limited to a small area beneath the InternaicBe®he Iberian Chain, oriented NE-
SW south of the Ebro Basin, has also a crustal nesnthing 40 km at its SE part. The
extension to the NW of this root needs still toifneestigated. The northern part of the

Iberian Massif shows Moho depths between 32 ankindGillustrating the transition to

Page 20 of 46



498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

-21 -

the thickened Alpine areas. Thicknesses of abot82Z3km have been reported at the
central and southern areas of the Variscan domawen if recent high density
experiments suggest that the crust is slightlykéitian the southwestern zone, reaching

probably 33-34 km.

The Valencia Trough and the Alboran Sea show ar ¢l@aning related to the large

scale extensional tectonics that affected thosasar&€he connection between both
domains has still to be established, and it islgeative of some ongoing projects. The
Atlantic margins illustrate the transition betwee oceanic crust, where the Moho is
located at 10-14 km, to the continental domainhwiepths exceeding 31 km. In
southern and central Iberia this transition appeguge smooth, depicting the

characteristics of a typical non-volcanic passiagm. In front of Galicia (NW Iberia)

the morphology of the margin is more complex, dudhe presence of the extended
Galicia Interior Basin and the peridotitic ridgefeat that is also missing in previous
compilations. Finally, the North Iberian margin slsoa great east-west variation. In its
Western part, the image is similar to the West #tttamargin, with a rather smooth

transition from the continental crust on land te titeanic crust in the abyssal plain of
the Bay of Biscay. In the central part of the martfie image is similar to that of the
Pyrenean range, with crustal imbrication and thmohg beneath the shoreline. In the
eastern half of the basin, the seismic propertigggesst an elongated and thinned
transitional crust towards the centre of the alyslsén, without evidences for oceanic
crust. At the eastern termination of the marginthi@ Aquitanian platform, the crust is

also thinned but preserves the usual continentglgsties.
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522 At an overall scale, a clear anticorrelation isesled between the topographic and
523 Moho depth profiles (see Figure 2), reflecting wivauld be expected if the crust was
524 compensated following the Airy hypothesis. Howe\differences between the Moho
525 depths from DSS profiles and the isostatic Mohotliepan locally reach up to 10 km
526 beneath some thickened (Pyrenees) or thinned (viadmough) regions.

527

528 The consistency of the crustal depth results carddilere from active seismic profiles
529 can be checked with respect to results from ot#ependent seismic methods, such as
530 surface waves or receiver functions. Published wodtated to dispersion of surface
531 waves (ex. Badal et al. 1993, Corchete et al., 188%s in obtaining large scale mantle
532 tomographic images and do not properly constrae lihse of the crust. The same
533 happens with continental-scale studies (ex. Pdtat.22008). More recent works use
534 surface wave analysis to infer models of the uppstrpart of the crust, either from
535 earthquakes (p.e. Chourak et al., 2003) or frorsnsiei noise (Villasefior et al., 2007),
536 but the corresponding models do not extend to Mdhapths. On the other hand,
537 estimations of the crustal thickness beneath somasan Spain have been inferred
538 from teleseismic Receiver Functions (RF) analy&&sing pseudo-migration of RFs,
539 Diaz et al., (2003) imaged the base of the crust souple of lithospheric transects
540 located beneath the western termination of theridge and the Cantabrian Mountains.
541 Later on, the same authors extended the work toIb&¥a (Diaz et al, 2008). In all
542 cases, the depth of the base of the crust is rexbhBricoincident with the results from
543 DSS profiles. Julia and Mejia (2004) presented ll@stimates of crustal thicknesses,
544  obtained using the M- stacking method, for 10 stations in Iberia. Moszently,
545 Mancilla et al. (2008) presented first results afrailar study in Southern Iberia using a

546 dense network of stations. In most cases, therdiffses between the crustal thicknesses
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presented in our compilation and the RF estimatidasnot exceed 2 km, hence
documenting the consistency of the results inferfreen two independent seismic

methodologies.

The integrative Moho map we have derived for thsy karea in the Western
Mediterranean can contribute to constrain furthegional studies documenting the
interaction between European and African platetheeiat crustal, lithospheric or
mantle scales. The bibliographic effort neededaimgile all the information used here
will serve in establishing a database of activers@ experiments beneath Iberia, to be
integrated in large-scale geosciences projects asadhe ongoing Spanish Topo-lberia

or the coming ESF-TopoEurope ones.
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Figure Captions

Figure 1. Location of the compiled refraction/wide-anglefleetion and deep

multichannel reflection profiles beneath the IberReninsula and surrounding waters.
Different colours account for each main experim@itshore circles depict the position
of OBS instruments. Inland circles represent statioaving recorded onshore-offshore

profiles.

Figure 2: Velocity-depth distributions along representativ@nsects. The directions
have been chosen to follow the zones with availatdelels. (a) NNW-SSE (b) E-W
(North Iberia) (c) E-W (Central Iberia). The maéttonic units are indicated on top of
each transect. CM: Cantabrian Mountains, b M: itbeMassif, “W Ib Margin”: West

Iberian Margin, BCB: Basque Cantabrian Basin, “Val: Valencia Trough, “lIb Ch”

Iberian Chain, “Bal Pro”: Balearic Promontory. Eacansect includes its topographic
profile. The inset presents a simplified geologitelp of Iberia showing the geometry

of the transects.

Figure 3. Compilation of crustal depth thicknesses alondplished deep seismic

sounding profiles overlying a smoothed topograpapm
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1002 Figure 4: Interpolated crustal depth model for the wholeestigated area. Colour scale
1003 depicts the crustal thickness variations. Crusti@kness isolines are represented every

1004 2 km.
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