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Finite volume discretization for dynamic viscosities on Voronoi 1

grids2

Christian Hüttig1 and Kai Stemmer, Institute of Planetary Research, Department of Planetary 3
Physics, German Aerospace Center (DLR), Berlin, Germany4

Abstract5

We present a new formulation to discretize the viscous term in the momentum equa-6

tion of the Navier-Stokes set. A technique based on the finite volume method enables ther-7

mal convection models to utilize spatially varying viscosity on a collocated variable arrange-8

ment. This technique can be applied to various grids in two or three dimensions with Voronoi 9

properties, either irregular as the spiral grid or regular like the cubed sphere grid, icosahedral 10

or simple boxes. A model for mantle convection implements this discretization and is com-11

pared to other published models. Further computational aspects are illuminated to efficiently 12

reduce required resources. 13

1. Introduction14

Over the last three decades, local discretization methods like finite-element (FE), fi-15

nite-volume and finite-difference (FD) methods have firmly established themselves as the 16

approach for computational fluid-flow problems in geophysics, especially with regard to 17

thermal convection problems involving spatially varying viscosities in two (Parmentier, 1978; 18

Christensen, 1984; Hansen and Yuen 1993; Solomatov and Moresi 2000) and three dimen-19

sions (Ogawa et al., 1991; Christensen and Harder 1991; Trompert and Hansen, 1998; Tackley 20

1998; Stein et al. 2004) as well as in spherical shells (Tabata and Suzuki, 2000; Zhong et al 21

2000; Yoshida and Kageyama 2004; McNamara and Zhong 2005; Choblet 2005; Stemmer et 22

al. 2006). The advantages of irregular grids like arbitrary refinements and resolution choices 23

were left outside because of more complicated discretization techniques and computational 24
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requirements. Nevertheless, these advantages become especially interesting in cases with 25

complex geometries like spheres in three dimensions (3D) or disks in two dimensions (2D), 26

which occur regularly in geophysics. This work demonstrates a technique to utilize the FV 27

method on irregular grids in 3D with a focus on the spatial derivate of the stress tensor, re-28

quired for the implementation of dynamic viscosities, which is of primary interest in the field 29

of mantle convection modeling, e.g. Stemmer et al., 2006.30

Most of the published models for mantle convection that include locally varying vis-31

cosities implement the necessary spatial derivative of the stress tensor with finite-elements 32

(Zhong et al. 2000) or utilize grid-regularities (Yoshida and Kageyama 2004, Choblet 2005, 33

Stemmer et al. 2006). Staggered approaches where velocity and scalar fields do not coincide 34

at the same locations were preferred because of their straightforward implementation and 35

elimination of numerical oscillations (Peric et al., 1988). Advantages of the FVM are the direct 36

connection to the underlying physical problem and the conservative nature of its scheme 37

that enables a direct implementation of boundary conditions similar to the finite-difference 38

method. A disadvantage arises in irregular grids. The effort to discretize the desired equa-39

tions with the FV method increases once the walls between the computational cells become 40

tilted and spatial derivates besides the normal direction are required. Ferziger and Péric,41

2001 describe an effective approach to acquire a correct solution for tilted walls. The only 42

remaining problem within an irregular grid was the implementation of a spatial derivative of 43

the relatively complex stress tensor that is required for locally varying viscosities in geophysi-44

cal flow problems.45

The approach presented in this paper bases on the proposed dual-grid approach in46

Ferziger and Péric, 2001. It utilizes a Voronoi grid as cellular discrete basis for the domain and 47

its dual, the Delaunay triangulation to setup shape functions for an arbitrary linear interpola-48

tion mechanism (Baranger et al., 1996), as shown in figure 1. The triangulation in combina-49

tion with a Voronoi discretization is able to fulfill all requirements for irregular grids in a FV50
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scheme. In recent years, computational and storage improvements have opened the door to 51

embrace the use of complex grids with their advantages and increased computational re-52

quirements.53

2. Numerical Method54

2.1. Preface55

The domain of interest in FV and FE methods is defined as control volumes, inte-56

grated over the governing differential equations of interest (Ferziger and Péric, 2001). Mov-57

ing further to fluid mechanics, the basis of the FVM is therefore the integral form of the con-58

servation equations. The solution domain is divided into a finite number of control volumes 59

(CVs), and the conservation equations are applied to each CV. At the centroid of each CV lies 60

a computational node at which the variable values are to be calculated. Interpolation is used 61

to express variable values at the CV surface in terms of the nodal (CV-center) values. Surface 62

and volume integrals are approximated using suitable quadrature formulae. As a result, one 63

obtains an algebraic equation for each CV, in which a possible varying number of neighbor 64

nodal values appear (Fletcher, 2001).65

The FVM can accommodate any type of grid, so it is suitable for regular and irregular 66

grids. Most regular grids are Voronoi grids by nature, which means that within a CV every 67

point is closer to its associated nodal location than to any other. This nodal location serves as 68

generator point for a Voronoi region and results in a CV. The resulting cell structure offers 69

interesting properties: the face dividing two neighboring CVs lies always midway and per-70

pendicular between them, which is one requirement for the FV method. The amount of faces 71

is the direct count of neighbors for a specific CV and is always minimal (Okabe et al., 2000).72

This neighbor count is directly associated with the matrix column count per row.73

Exploiting the detail that a face lies midway between two neighboring nodes reduces 74

the difficulties of interpolating scalar values to the face centers, which is essential for the FV 75
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method. To determine the face-value f between the nodes N1 and N2 of a scalar , a central76

difference scheme (CDS) results in77

(1)78

The CDS results in a second order accuracy as long as the interpolated point coincides 79

with the center of the face. On condition that the mid-point stays within the face, the FVM 80

has at least a first order accuracy (Ferziger and Péric, 2001). A complete FVM discretization 81

with CDS interpolation for the Nabla operator, where P specifies a discrete node index, N the 82

neighbor index and PN face quantities for the face between P and N like area A and normal 83

vector 

n results in84

85

86
. (2)87

If ϕ is a vector, equation (2) reduces to the divergence operator div(ϕ), for a scalar field the 88

result is the gradient operator grad(ϕ).89

2.2. Barycentric Interpolation90

A more complex interpolation scenario arises for irregular grids. Faces often undergo 91

a perpendicular shift that moves the face center away from the interpolated midpoint. To 92

hold on to the second order accuracy, the necessity for a more complex interpolation arises. 93
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An obvious choice is linear interpolation from a triangulated domain. Since the Delaunay 94

triangulation is the dual of the Voronoi diagram (Okabe et al., 2000), utilizing it is straight-95

forward. The barycentric coordinates (Shepard, 1968) offer a simple way to interpolate at 96

any point within a triangulated domain. As they are coordinates, they provide position infor-97

mation relative to a simplex (D - dimensional tetrahedral region). As a side effect, these co-98

ordinates in a normalized homogeneous form (their sum equals one) provide weight infor-99

mation for the specified location, as Figure 2 illustrates. In contrast to the natural neighbor 100

interpolation introduced by Sambridge et al., 1995, this method requires always a minimal 101

amount (D+1) of nodal values and does not require recursive formulas to obtain the weights. 102

Correct interpolation to the center of the face PN is now possible and by the use of 103

barycentric interpolation remains of second order accuracy (Ferziger and Péric, 2001, chapter 104

8.6). Equation (1) changes with the help of barycentric weights λ to105

(3)106

where λ denotes the barycentric coordinates for a D-dimensional space, including the 107

nodal indices λi of the according Delaunay simplex edge and the weight (or normalized coor-108

dinate) λw. Figure 3 illustrates all variables for the two-dimensional case within a single cell.109

2.3. Spatial derivative of the deviatoric stress tensor110

Many geophysical fluids require a spatial derivative of the stress tensor as part of the 111

Navier-Stokes momentum equation. This enables the simulation to handle spatially varying112

viscosities. The definition of the deviatoric stress tensor of a velocity u and dynamic viscosity 113

η is114

(4)115

and results therefore in a rank 2 symmetric tensor of DxD dimensions. It can be expressed as 116
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components of gradients of velocity components as shown in equation (5) for the two-117

dimensional case, where the diagonal parts represent the normal stresses and the off-118

diagonal parts shear stresses:119

(5)120

The spatial derivative of this tensor results in a vector and according to the FV 121

scheme is 122

(6)123

For constant η,    reduces to η 2 u


. The problem for the FV method arises now that the 124

gradients of the velocity components are required at the faces. The literature describes sev-125

eral ways to approximate the normal component to implement the Laplacian operator 2126

(Ferziger and Péric 2001; Fletcher 1991). Usually finite difference schemes express deriva-127

tives at the faces. The problem with varying viscosities is that also at least one other non-128

normal spatial derivate is required. Stemmer et al., 2006 recently formulated an elegant solu-129

tion for the regular cubed sphere grid for collocated variable arrangement, utilizing midpoint 130

interpolation of neighboring nodes in several directions. This technique is useful for cubical 131

grid-setups but fails on irregular grids. 132

Including the neighbors of a nodes neighbor would resolve this issue and guarantees 133

second order accuracy, but also increases the solution matrix size dramatically and would 134

therefore make this approach impractical. Another choice is a change to the finite-difference 135

approach on the faces. With the help of shape functions from the barycentric coordinates 136

(2.2), a Cartesian cross can be constructed from the center of a face. This enables an FD for-137

mulation at the faces as presented in figure 4. The FV integral for an arbitrary ui would 138
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evolve with the interpolation sources fi+/- as in equation (2) for the Cartesian interpolation 139

cross and fc for the center as140

141
, (7)142

where dS specifies the size of the interpolation cross. This distance can be either fixed for the 143

whole grid or varying for every face, depending on resolution differences. It is untested what 144

the optimal value for dS is, but tests have shown that for a certain face area APN in a D-145

dimensional space 1D
S PNd A leads to a minimum of foreign neighbors (not depending on 146

neither one of the original nodes that the face divides) on strongly irregular grids.147

A different problem arises with the required viscosity at the cell face (ηfc). Assuming 148

the viscosity is correct at the face center, the method guarantees through pure use of second 149

order interpolants a second order truncation error. This might not hold true if the viscosity 150

needs to be interpolated. For example, in regular grids it can be shown that the harmonic 151

interpolant of viscosity between adjacent cells preserves continuity of the normal stress 152

component resolved onto the face from cell-to-cell, which is closer to the physical truth of 153

the situation. However, this does not necessarily hold true for continuity of shear stress, and 154

suggests another viscosity interpolant might be used. An implementation of a dual stencil 155

composed of shear and normal components of stress and their associated continuity could 156

ensure a proper viscosity interpolant at the faces.157

2.4. Laplacian158

The energy conservation as well as the momentum conservation equation for con-159

stant viscosities consists of the Laplacian operator 2 . The FV discretization results in160
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(8)161

which requires the gradient in normal direction at the cell face. The fact that only the normal 162

direction of the gradient is required can be exploited and replaced by a CDS (Fletcher 1991):163

(9)164

This approximation for the face stays second order accurate even in irregular grids 165

since the derivative between P and N does not change within all simplexes that have both, P166

and N, as connectors. However, a face center can move out of those simplexes on strongly 167

deformed cells. In this case, it is useful to introduce barycentric weights of the normal direc-168

tion from the face center fn+/-, as illustrated in Figure 3 as well. Equation (9) changes to169

(10)170

and guarantees second order accuracy for all Voronoi cells.171

3. Computational Aspects and Tests172

3.1. Setup phase173

In order to utilize the in chapter two presented scheme, a pre-calculated Voronoi di-174

agram and Delaunay triangulation for the same discrete set of points should exist with the 175

following information:176

 Nodal positions177

 Cell volumes178

 List of faces with their two neighbor indices (the node indices they divide), area and 179

center180
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 List of simplex indices181

182

The interpolation information for each face must exist and should be pre-calculated 183

to run a simulation efficiently. They stay in a fixed position during the simulation and can 184

therefore be pre-calculated. One set of interpolation information consists of a simplex index185

that in turn holds the D+1 nodal indices i
d and weight information i

w . Each face usually has 186

2D+3 or 2D+1 interpolation points consisting of the center, the Cartesian cross and two more 187

depending on the use of the fn+/- weights as described in chapter 2.4. 188

To find a certain point within a Delaunay triangulation, it is possible to calculate the 189

barycentric coordinates of a desired point relative to every simplex with equation (3) until 190

each single coordinate lies between zero and one, as described in chapter 2.2. The time com-191

plexity of this procedure falls into  2n . To reduce this to  logn n , it is possible to index 192

the simplex indices within a search tree. These indices correspond to node indices, which can 193

be found in the face neighbor information as well. Since only locations close to a certain face 194

are looked up, the simplexes containing the neighbor nodes of a face can be checked first. 195

For extremely deformed cells, the fallback to a check-every-simplex should exist as well. 196

3.2. Storage requirements197

Including the fn+/- weights, interpolation information for one face requires 198

(11)199

bytes if a weight is stored with W bytes and an index with I bytes. On an average ir-200

regular grid in three dimensions, one node contains of approx. 14 neighbors (Huettig and 201

Stemmer 2006), resulting in 7R faces, where R denotes the total node count. Assuming fur-202

ther double floating-point precision for the weights (W=8) and standard 32-bit integer for 203

indices (I=4), the total memory requirement for the interpolation information is 3024R byte. 204
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To reduce this enormous extra memory requirement one can exploit the fact that a weight is 205

always only in the range between zero and one. Utilizing fast integer arithmetic can turn a 206

16-bit integer into a floating point consisting of 216 steps between zero and one, introducing 207

a global error of
16

1

2

D  and a reduction to W=2, resulting in 1512R byte. A reduction to I=3 is 208

only theoretically possible because it leads, if even possible, practically to misaligned mem-209

ory that dramatically reduces performance.210

3.3. Validation211

In order to test the presented numerical technique several results from other pub-212

lished mantle convection models were reproduced to verify its accuracy. According to linear 213

stability analysis (Busse, 1975), there are two stable solutions for thermal convection in the 214

three-dimensional spherical shell with an inner to outer radius ratio of 0.55 that is compara-215

ble to the Earth’s mantle and is purely bottom heated. The complete set of equations is216
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217

218

219

220

, where T is the Temperature, u the velocity, p the hydrostatic pressure, t the time and er the 221

unity vector towards the gravitational center. The viscosity follows an Arrhenius law and is 222

purely temperature dependent, as in Stemmer et al., 2006.223

The stationary stable flow patterns in tetrahedral and cubic symmetry are suitable to 224

compare output values like the heat flow at the core-mantle boundary and the volume-225

averaged rms-velocity against other published models that use different discretization 226

schemes and numerical techniques. To initiate these steady state patterns, the initial conduc-227

tive temperature field is perturbed with a normalized spherical harmonic mode m
lY with 228

small amplitude. The mode 2
3Y forces a tetrahedral flow pattern and 0 4

4 4Y Y  results in a 229

cubical symmetric flow. A convergence test for an isoviscous tetrahedral flow with a Rayleigh 230

number of 7000 similar to the published test by Stemmer et al., 2006, results in the bottom 231

Nusselt numbers (3.3105, 3.4514, 3.4848, 3.4897) for a radial/lateral grid resolution of 232

(8/642, 16/2562, 32/10242, 48/10242) nodes. Table 1 shows a detailed comparison to other 233

published models of isoviscous convection 1T  and convection with temperature de-234

pendent viscosity of 10T  , 20T   and 30T   respectively as an extension to the 235

published results by Stemmer et al., 2006.236

For the advection-diffusion equation of temperature a similar discretization approach 237

as described in 2.4 with a three-level implicit time stepping and a BiCGStab solver turned out 238

to be an efficient combination. A major advantage of the method discussed here lies in its 239

robustness for a fully implicit treatment: instead of a classical use of the Courant-criteria 240

ref

dTg
Ra


 3

)(exp()( TTT ref   )( refref T 

0 u

    0 pTRa r
T euu

02 



TT
t

T
u
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which restricts the time step length on the maximal velocity within the system, an approach 241

utilizing the maximal difference in a velocity compared to the previous inner iteration lead to 242

equally good results. An effect of this restriction is that less chaotic convection models re-243

quire less time steps and therefore computational time. Of course, on very turbulent models, 244

the difference is less pronounced and the computing time required for a single time step 245

becomes relatively large.246

Table 2 shows, besides a more detailed comparison of local values such as radial min 247

/ max velocities and temperatures at mid-depth, the computational effort for these kind of 248

problems. This table shows also the volatile nature of these control values as two different 249

initial conditions are compared to each other. 250

Figure 5a and b shows detailed flow patterns and temperature distributions of the te-251

trahedral and cubical steady state pattern with low temperature dependent viscosity 252

(ΔηT=20). Once ΔηT reaches a certain limit, the convective regime changes to stagnant-lid 253

convection. This transition is smooth and between contrasts of ΔηT=1e4 and 5e5, as further 254

examined in three-dimensional spherical geometry by Stemmer et al., 2006. The here intro-255

duced method shows the same behavior around this contrast and develops a stagnant lid, as 256

illustrated in figure 5c. Figure 6 displays the typical plume-thinning phenomena caused by 257

temperature dependent viscosity (Ratcliff et al. 1996; Hansen and Yuen, 1993). If the viscos-258

ity contrast based on temperature is increased for a tetrahedral or cubical mode with mod-259

erate Rayleigh numbers, the plume-tail gets thinner and faster. 260

4. Summary261

The discretization method presented in chapter 2 is a proof of concept for mantle 262

convection simulations in irregular n-dimensional grids. The spatial derivative of the stress 263

tensor offers further thermal convection models the possibility to utilize varying viscosities.264

The discretization bases on the finite volume method and the dual-grid approach (Ferziger 265
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and Péric, 2001). A Voronoi diagram is constructed around the locations of the nodes that act 266

as cells for the control volumes. Furthermore, the dual of the Voronoi diagram, the Delaunay 267

triangulation, serves as interpolation basis for values between the cells. 268

Chapter 3 illuminates computational aspects dealing with an effective way to store 269

certain information within a setup phase and demonstrates how to reduce the extra resource270

requirements for this kind of discretization. There is also a hint on how to speed up the setup 271

phase, reducing the time complexity back to  logn n .272

A comparison with other published models for mantle convection validates the 273

scheme and concludes this document. The verification bases on isoviscous and weakly tem-274

perature dependent steady state flow patterns in a bottom heated three-dimensional spheri-275

cal shell with an aspect ratio of 0.55. Bottom heat flow (Nusselt number) and RMS velocity 276

are compared to a collection of other published models of the same kind and shows promis-277

ing results. The accuracy stays below two percent to other published values. The volatile 278

nature of local control values to initial conditions is also demonstrated in table 2.279

Another general advantage of this technique is the physical view on the problem. As 280

Fletcher, 1991 noted, an advantage of the Finite Volume method is the direct view on the 281

underlying physical problem without the need for higher order abstractions as required for a282

finite element approach, while maintaining its robustness and versatility.283
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361

Figure 1 shows the Voronoi diagram in red and the according Delaunay triangulation in blue 362
for a random set of generator points363

364
Figure 2 illustrates the barycentric coordinates for a point P within the triangle ABC. 365

366
Figure 3: A node P surrounded by its neighbors N, with the associated Voronoi diagram in red367
and the Delaunay triangulation in blue. The difference between the true face center with its 368
barycentric coordinates  and the central difference scheme (mid-point) is highlighted as well 369
as important components for the FVM such as area , distance  and normal vector .370

371
Figure 4 shows as an extension to figure 3 the barycentric coordinates of the constructed 372
Cartesian cross around the face center and the two interpolation points along the normal 373
path of a pre-defined size 374

375
Figure 5 shows different convection patterns for a selected set of cases. All views display 376
temperature, while the upper left part shows the residual iso-surface of temperature with 377
the respective iso-values printed below, with a cutout of the positive domain for a better 378
insight. The upper right part displays a slice with streamlines and the lower part a projection 379
of the annotated shell. All cases are purely bottom heated with free-slip boundary conditions 380
and purely temperature dependent viscosity variations. Ra0.5=7000 in all cases. The different 381
cases illustrate: a) ΔηT=20, tetrahedral initial condition, b) ΔηT=20, cubical initial condition, c) 382
ΔηT=1e6, random initial condition. Case c shows a similar pattern on all other initial condi-383
tions.384

385
Figure 6 illustrates the difference of a weakly temperature dependent case (ΔηT=20) with386
Ra0.5=7000 to the isoviscous case. While a, b, c and e display the difference in velocity, d 387
shows the difference in temperature. Because the slice views d and e are not centered 388
around zero, they contain an extra red contour line.389

390
Table 1: Comparison of the bottom Nusselt number and the rms-velocity for the tetrahedral 391
and cubic steady-state convection with a viscosity contrast of =1, =20 and =30. 392
The Rayleigh number is 7000 for T=0.5. The abbreviation ‘Be89’ stands for the results from 393
Bercovici et al. (1989), ‘Zh00’ from Zhong et al. (2000), ‘Iw96’ from Iwase (1996), ‘TS00’ from 394
Tabata and Suzuki (2000), ‘Ha98’ from Harder (1998), ‘Ra96’ from Ratcliff (1996) and ‘YK04’ 395
from Yoshida and Kageyama (2004). The respective discretization method is listed as well, 396
where ‘SP’ denotes spectral, ‘FE’ finite elements, ‘FD’ finite differences and ‘FV’ finite vol-397
umes.398

399
Table 2 shows a comparison of global and local quantities as well as compute time measure-400
ments for some selected cases. The sole influence on the initial condition (I.C.) in the first 401
two cases demonstrates the volatile nature of these values. All computations took place on 402
an 8 CPU shared memory machine (Opteron 875 w/ 2.2GHz), while tCPU shows the compute 403
time in hours until an adequate steady state was reached. This final time is shown as non-404
dimensional diffusion time t, combined with nIter time steps. The grid consisted in all compu-405
tations of a projected icosahedron with 32 radial levels and 10.242 lateral nodes. Other val-406
ues consist of volume averaged temperature <T> and velocity <V>, as well as their interior 407
(mid-shell) minima and maxima. The velocity minima and maxima are taken only from the 408
radial component. Values in square brackets are from Zhong et al., 2008 and round brackets 409
from Stemmer et al., 2006.410
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Tetrahedral symmetry 1T  10T  20T 
Model Method Nodes NuT0 vrms NuT0 vrms NuT0 vrms

Be89 SP 2400 3.4657 - - - - -
Zh00 FE 165888 3.519 - - - - -
Iw96 FV 532480 3.45 32.4173 - - - -
TS00 FE 324532 3.6565 32.936 - - - -
Ha98 SP 552960 3.4955 32.6375 - - - -
Ra96 FV 200000 3.4423 32.19 3.2337 26.80 3.1615 25.69
YK04 FD 2122416 3.4430 32.0481 - - 3.133 26.1064
St06 FV 663552 3.4864 32.5894 3.2398 27.2591 3.1447 25.7300
This FV 327744 3.4848 32.6535 3.2346 27.2513 3.1444 25.7139

Cubic symmetry 1T  20T  30T 
Ha98 SP 552960 3.6086 31.0765 - - - -
Ra96 FV 200000 3.5806 30.87 3.3663 25.17 3.3285 24.57
YK04 FD 2122416 3.5554 30.5197 3.3280 25.3856 - -
St06 FV 663552 3.5982 31.0226 3.3423 24.9819 3.2864 24.1959
This FV 327744 3.5953 31.0704 3.3315 24.9496 3.2747 24.1568

Table 1
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Ra0.5 I.C. ΔηT t niter tCPU Nut Nub <T> Ti,min Ti,max <V> Vri,min Vri,max

1e5 Cubic 1
0.688

[0.315]
2110

[35000]
35.85

7.873
[7.850]

7.890
[7.770]

0.1826
[0.1728]

0.0304
[0.0228]

0.8804
[0.9454]

154.64
[154.8]

-265.58
[-261.5]

979.28
[982.6]

1e5 Random 1 0.748 1660 36.35 7.524
(7.371)

7.514
(7.372)

0.2493
(0.1941)

0.0306
(0.0271)

0.7970
(0.8973)

163.64
(153.13)

-396.70
(-275.65)

764.33
(949.34)

7000 Tetra 100 2.046
[2.0]

113
[30000]

3.33 2.909
[2.935]

2.920
[2.929]

0.2595
[0.2653]

0.0318
[0.0332]

0.9105
[0.9255]

23.13
[23.11]

-10.45
[-10.74]

166.59
[171.3]

7000 Tetra 1e3 1.001
[1.5]

201
[31000]

3.65 2.526
[2.546]

2.532
[2.535]

0.3027
[0.3124]

0.0662
[0.0695]

0.9292
[0.9452]

22.36
[22.90]

-6.40
[-6.97]

215.03
[226.7]

Table 2
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Figure 1

http://ees.elsevier.com/pepi/download.aspx?id=33203&guid=37c23ada-29d7-45af-aa4a-f1a4cc01608c&scheme=1
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Figure  2

http://ees.elsevier.com/pepi/download.aspx?id=33364&guid=0592d512-9d6c-4c3d-bc1f-f98aff287340&scheme=1
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Figure 3

http://ees.elsevier.com/pepi/download.aspx?id=33205&guid=e98eacef-1286-4fdd-8396-f4f5bc1f64e7&scheme=1
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Figure 4

http://ees.elsevier.com/pepi/download.aspx?id=33206&guid=123f9a9b-7f9a-4b55-b377-77744048e75d&scheme=1
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Figure 5a

http://ees.elsevier.com/pepi/download.aspx?id=33356&guid=3b7107b9-1fb8-4514-bf12-1c936e791793&scheme=1


Page 25 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 5b

http://ees.elsevier.com/pepi/download.aspx?id=33357&guid=29bb209a-8578-4c80-8710-9992d4984933&scheme=1
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Figure 5c

http://ees.elsevier.com/pepi/download.aspx?id=33358&guid=cc6fd97b-90c4-4d4d-bcf6-62da30f352ef&scheme=1
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Figure 6a

http://ees.elsevier.com/pepi/download.aspx?id=33359&guid=4737c721-5f49-4fa2-95a6-3e83e0b21451&scheme=1
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Figure 6b

http://ees.elsevier.com/pepi/download.aspx?id=33360&guid=66c9d0a7-49f2-4333-b56c-1bb3837b649c&scheme=1
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Figure 6c

http://ees.elsevier.com/pepi/download.aspx?id=33361&guid=ac32af15-61a8-4db4-8da1-3198e9fbc175&scheme=1
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Figure 6d

http://ees.elsevier.com/pepi/download.aspx?id=33362&guid=14bb6e21-3db7-4839-bc68-25228fd4e578&scheme=1
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Figure 6e

http://ees.elsevier.com/pepi/download.aspx?id=33363&guid=3f211fd8-90f5-4724-927d-92a86e37bd48&scheme=1

