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Finite volume discretization for dynamic viscosities on Voronoi grids

We present a new formulation to discretize the viscous term in the momentum equation of the Navier-Stokes set. A technique based on the finite volume method enables thermal convection models to utilize spatially varying viscosity on a collocated variable arrangement. This technique can be applied to various grids in two or three dimensions with Voronoi properties, either irregular as the spiral grid or regular like the cubed sphere grid, icosahedral or simple boxes. A model for mantle convection implements this discretization and is compared to other published models. Further computational aspects are illuminated to efficiently reduce required resources.

Introduction

Over the last three decades, local discretization methods like finite-element (FE), finite-volume and finite-difference (FD) methods have firmly established themselves as the approach for computational fluid-flow problems in geophysics, especially with regard to thermal convection problems involving spatially varying viscosities in two [START_REF] Parmentier | A study of convection in non-Newtonian fluids[END_REF][START_REF] Christensen | Convection with pressure-and temperaturedependent non-Newtonian rheology[END_REF][START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF]Solomatov and Moresi 2000) and three dimensions [START_REF] Ogawa | Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity[END_REF][START_REF] Christensen | 3D convection with variable viscosity[END_REF][START_REF] Trompert | Mantle convection simulations with rheologies that generates plate-like behaviour[END_REF][START_REF] Tackley | Self-consistent generation of tectonic plates in three-dimensional mantle convection[END_REF][START_REF] Stein | The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[END_REF]) as well as in spherical shells [START_REF] Tabata | A stabilized finite element method for the Rayleigh-benard equations with infinite Prandtl number in a spherical shell[END_REF]Zhong et al 2000;[START_REF] Yoshida | Application of the Ying-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell[END_REF][START_REF] Mcnamara | Degree-one mantle convection: dependence on internal heating and temperature-dependent rheology[END_REF][START_REF] Choblet | Modelling thermal convection with large viscosity gradients in one block of the 'cubed sphere[END_REF]Stemmer et al. 2006). The advantages of irregular grids like arbitrary refinements and resolution choices were left outside because of more complicated discretization techniques and computational 1 Corresponding Author
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A c c e p t e d M a n u s c r i p t 2 requirements. Nevertheless, these advantages become especially interesting in cases with complex geometries like spheres in three dimensions (3D) or disks in two dimensions (2D), which occur regularly in geophysics. This work demonstrates a technique to utilize the FV method on irregular grids in 3D with a focus on the spatial derivate of the stress tensor, required for the implementation of dynamic viscosities, which is of primary interest in the field of mantle convection modeling, e.g. Stemmer et al., 2006. Most of the published models for mantle convection that include locally varying viscosities implement the necessary spatial derivative of the stress tensor with finite-elements (Zhong et al. 2000) or utilize grid-regularities [START_REF] Yoshida | Application of the Ying-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell[END_REF][START_REF] Choblet | Modelling thermal convection with large viscosity gradients in one block of the 'cubed sphere[END_REF], Stemmer et al. 2006). Staggered approaches where velocity and scalar fields do not coincide at the same locations were preferred because of their straightforward implementation and elimination of numerical oscillations [START_REF] Peric | Comparison of finite-volume numerical methods with staggered and colocated grids[END_REF]. Advantages of the FVM are the direct connection to the underlying physical problem and the conservative nature of its scheme that enables a direct implementation of boundary conditions similar to the finite-difference method. A disadvantage arises in irregular grids. The effort to discretize the desired equations with the FV method increases once the walls between the computational cells become tilted and spatial derivates besides the normal direction are required. Ferziger and Péric, 2001 describe an effective approach to acquire a correct solution for tilted walls. The only remaining problem within an irregular grid was the implementation of a spatial derivative of the relatively complex stress tensor that is required for locally varying viscosities in geophysical flow problems.

The approach presented in this paper bases on the proposed dual-grid approach in Ferziger and Péric, 2001. It utilizes a Voronoi grid as cellular discrete basis for the domain and its dual, the Delaunay triangulation to setup shape functions for an arbitrary linear interpolation mechanism [START_REF] Baranger | Connection between finite volume and mixed finite element methods[END_REF], as shown in figure 1. The triangulation in combination with a Voronoi discretization is able to fulfill all requirements for irregular grids in a FV A c c e p t e d M a n u s c r i p t 3 scheme. In recent years, computational and storage improvements have opened the door to embrace the use of complex grids with their advantages and increased computational requirements.

Numerical Method

Preface

The domain of interest in FV and FE methods is defined as control volumes, integrated over the governing differential equations of interest (Ferziger and Péric, 2001). Moving further to fluid mechanics, the basis of the FVM is therefore the integral form of the conservation equations. The solution domain is divided into a finite number of control volumes (CVs), and the conservation equations are applied to each CV. At the centroid of each CV lies a computational node at which the variable values are to be calculated. Interpolation is used to express variable values at the CV surface in terms of the nodal (CV-center) values. Surface and volume integrals are approximated using suitable quadrature formulae. As a result, one obtains an algebraic equation for each CV, in which a possible varying number of neighbor nodal values appear (Fletcher, 2001).

The FVM can accommodate any type of grid, so it is suitable for regular and irregular grids. Most regular grids are Voronoi grids by nature, which means that within a CV every point is closer to its associated nodal location than to any other. This nodal location serves as generator point for a Voronoi region and results in a CV. The resulting cell structure offers interesting properties: the face dividing two neighboring CVs lies always midway and perpendicular between them, which is one requirement for the FV method. The amount of faces is the direct count of neighbors for a specific CV and is always minimal [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF]. This neighbor count is directly associated with the matrix column count per row.

Exploiting the detail that a face lies midway between two neighboring nodes reduces the difficulties of interpolating scalar values to the face centers, which is essential for the FV The CDS results in a second order accuracy as long as the interpolated point coincides with the center of the face. On condition that the mid-point stays within the face, the FVM has at least a first order accuracy (Ferziger and Péric, 2001). A complete FVM discretization with CDS interpolation for the Nabla operator, where P specifies a discrete node index, N the neighbor index and PN face quantities for the face between P and N like area A and normal vector  n results in .
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If ϕ is a vector, equation (2) reduces to the divergence operator div(ϕ), for a scalar field the result is the gradient operator grad(ϕ).

Barycentric Interpolation

A more complex interpolation scenario arises for irregular grids. Faces often undergo a perpendicular shift that moves the face center away from the interpolated midpoint. To hold on to the second order accuracy, the necessity for a more complex interpolation arises. Correct interpolation to the center of the face PN is now possible and by the use of barycentric interpolation remains of second order accuracy (Ferziger and Péric, 2001, chapter 8.6). Equation ( 1) changes with the help of barycentric weights λ to

(3)

where λ denotes the barycentric coordinates for a D-dimensional space, including the nodal indices λ i of the according Delaunay simplex edge and the weight (or normalized coordinate) λ w . Figure 3 illustrates all variables for the two-dimensional case within a single cell. (5)

Spatial derivative of the deviatoric stress tensor

The spatial derivative of this tensor results in a vector and according to the FV scheme is Including the neighbors of a nodes neighbor would resolve this issue and guarantees second order accuracy, but also increases the solution matrix size dramatically and would therefore make this approach impractical. Another choice is a change to the finite-difference approach on the faces. With the help of shape functions from the barycentric coordinates (2.2), a Cartesian cross can be constructed from the center of a face. This enables an FD formulation at the faces as presented in figure 4. The FV integral for an arbitrary u i would A different problem arises with the required viscosity at the cell face (η fc ). Assuming the viscosity is correct at the face center, the method guarantees through pure use of second order interpolants a second order truncation error. This might not hold true if the viscosity needs to be interpolated. For example, in regular grids it can be shown that the harmonic interpolant of viscosity between adjacent cells preserves continuity of the normal stress component resolved onto the face from cell-to-cell, which is closer to the physical truth of the situation. However, this does not necessarily hold true for continuity of shear stress, and suggests another viscosity interpolant might be used. An implementation of a dual stencil composed of shear and normal components of stress and their associated continuity could ensure a proper viscosity interpolant at the faces.

(6) For constant η,    reduces to η 2 u   .

Laplacian

The energy conservation as well as the momentum conservation equation for constant viscosities consists of the Laplacian operator 2  . The FV discretization results in which requires the gradient in normal direction at the cell face. The fact that only the normal direction of the gradient is required can be exploited and replaced by a CDS [START_REF] Fletcher | Computational Techniques for Fluid Dynamics[END_REF]):

(9)

This approximation for the face stays second order accurate even in irregular grids since the derivative between P and N does not change within all simplexes that have both, P and N, as connectors. However, a face center can move out of those simplexes on strongly deformed cells. In this case, it is useful to introduce barycentric weights of the normal direction from the face center fn+/-, as illustrated in Figure 3 as well. Equation ( 9) changes to (10) and guarantees second order accuracy for all Voronoi cells.

Computational Aspects and Tests

Setup phase

In order to utilize the in chapter two presented scheme, a pre-calculated Voronoi di- For extremely deformed cells, the fallback to a check-every-simplex should exist as well.

Storage requirements

Including the fn+/-weights, interpolation information for one face requires (11) bytes if a weight is stored with W bytes and an index with I bytes. On an average irregular grid in three dimensions, one node contains of approx. 14 neighbors (Huettig and Stemmer 2006), resulting in 7R faces, where R denotes the total node count. Assuming further double floating-point precision for the weights (W=8) and standard 32-bit integer for indices (I=4), the total memory requirement for the interpolation information is 3024R byte. 

Validation

In order to test the presented numerical technique several results from other published mantle convection models were reproduced to verify its accuracy. According to linear stability analysis [START_REF] Busse | Patterns of convection in spherical shells[END_REF], there are two stable solutions for thermal convection in the three-dimensional spherical shell with an inner to outer radius ratio of 0.55 that is comparable to the Earth's mantle and is purely bottom heated. The complete set of equations is 3.3105, 3.4514, 3.4848, 3.4897) For the advection-diffusion equation of temperature a similar discretization approach as described in 2.4 with a three-level implicit time stepping and a BiCGStab solver turned out to be an efficient combination. A major advantage of the method discussed here lies in its robustness for a fully implicit treatment: instead of a classical use of the Courant-criteria
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A c c e p t e d M a n u s c r i p t 12 which restricts the time step length on the maximal velocity within the system, an approach utilizing the maximal difference in a velocity compared to the previous inner iteration lead to equally good results. An effect of this restriction is that less chaotic convection models require less time steps and therefore computational time. Of course, on very turbulent models, the difference is less pronounced and the computing time required for a single time step becomes relatively large.

Table 2 shows, besides a more detailed comparison of local values such as radial min / max velocities and temperatures at mid-depth, the computational effort for these kind of problems. This table shows also the volatile nature of these control values as two different initial conditions are compared to each other.

Figure 5a and b shows detailed flow patterns and temperature distributions of the tetrahedral and cubical steady state pattern with low temperature dependent viscosity (ΔηT=20). Once ΔηT reaches a certain limit, the convective regime changes to stagnant-lid convection. This transition is smooth and between contrasts of ΔηT=1e4 and 5e5, as further examined in three-dimensional spherical geometry by Stemmer et al., 2006. The here introduced method shows the same behavior around this contrast and develops a stagnant lid, as illustrated in figure 5c. Figure 6 displays the typical plume-thinning phenomena caused by temperature dependent viscosity [START_REF] Ratcliff | Effects of temperaturedependent viscosity on thermal convection in a spherical shell[END_REF][START_REF] Hansen | High Rayleigh number regime of temperature-dependent viscosity convection and the Earth's early thermal history[END_REF]. If the viscosity contrast based on temperature is increased for a tetrahedral or cubical mode with moderate Rayleigh numbers, the plume-tail gets thinner and faster.

Summary

The discretization method presented in chapter 2 is a proof of concept for mantle convection simulations in irregular n-dimensional grids. The spatial derivative of the stress tensor offers further thermal convection models the possibility to utilize varying viscosities.

The discretization bases on the finite volume method and the dual-grid approach (Ferziger Another general advantage of this technique is the physical view on the problem. As

Fletcher, 1991 noted, an advantage of the Finite Volume method is the direct view on the underlying physical problem without the need for higher order abstractions as required for a finite element approach, while maintaining its robustness and versatility. Table 1: Comparison of the bottom Nusselt number and the rms-velocity for the tetrahedral and cubic steady-state convection with a viscosity contrast of =1, =20 and =30. The Rayleigh number is 7000 for T=0.5. The abbreviation 'Be89' stands for the results from [START_REF] Bercovici | Threedimensional spherical models of convection in the Earth's mantle[END_REF], 'Zh00' from Zhong et al. (2000), 'Iw96' from [START_REF] Iwase | Three-dimensional infinite Prandtl-number convection in a spherical shell with temperature-dependent viscosity[END_REF], 'TS00' from [START_REF] Tabata | A stabilized finite element method for the Rayleigh-benard equations with infinite Prandtl number in a spherical shell[END_REF], 'Ha98' from [START_REF] Harder | Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle[END_REF], 'Ra96' from [START_REF] Ratcliff | Effects of temperaturedependent viscosity on thermal convection in a spherical shell[END_REF] and 'YK04' from [START_REF] Yoshida | Application of the Ying-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell[END_REF]. The respective discretization method is listed as well, where 'SP' denotes spectral, 'FE' finite elements, 'FD' finite differences and 'FV' finite volumes. Table 2 shows a comparison of global and local quantities as well as compute time measurements for some selected cases. The sole influence on the initial condition (I.C.) in the first two cases demonstrates the volatile nature of these values. All computations took place on an 8 CPU shared memory machine (Opteron 875 w/ 2.2GHz), while t CPU shows the compute time in hours until an adequate steady state was reached. This final time is shown as nondimensional diffusion time t, combined with n Iter time steps. The grid consisted in all computations of a projected icosahedron with 32 radial levels and 10.242 lateral nodes. Other values consist of volume averaged temperature <T> and velocity <V>, as well as their interior (mid-shell) minima and maxima. The velocity minima and maxima are taken only from the radial component. Values in square brackets are from [START_REF] Zhong | A Benchmark Study on Mantle Convection in a 3-D Spherical Shell Using CitcomS[END_REF] 

  determine the face-value  f between the nodes N1 and N2 of a scalar , a central difference scheme (CDS) results in (1)

  is linear interpolation from a triangulated domain. Since the Delaunay triangulation is the dual of the Voronoi diagram[START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF], utilizing it is straightforward. The barycentric coordinates[START_REF] Shepard | Two-dimensional interpolation function for irregularly-spaced data[END_REF]) offer a simple way to interpolate at any point within a triangulated domain. As they are coordinates, they provide position information relative to a simplex (D -dimensional tetrahedral region). As a side effect, these coordinates in a normalized homogeneous form (their sum equals one) provide weight information for the specified location, as Figure2illustrates. In contrast to the natural neighbor interpolation introduced by[START_REF] Sambridge | Geophysical parametrization and interpolation of irregular data using natural neighbours[END_REF] this method requires always a minimal amount (D+1) of nodal values and does not require recursive formulas to obtain the weights.

  Many geophysical fluids require a spatial derivative of the stress tensor as part of the Navier-Stokes momentum equation. This enables the simulation to handle spatially varying viscosities. The definition of the deviatoric stress tensor of a velocity u and dynamic viscosity η is (4) and results therefore in a rank 2 symmetric tensor of DxD dimensions. It can be expressed as A c c e p t e d M a n u s c r i p t 6 components of gradients of velocity components as shown in equation (5) for the twodimensional case, where the diagonal parts represent the normal stresses and the offdiagonal parts shear stresses:

  interpolation sources fi+/-as in equation (2) for the Cartesian interpolation cross and fc for the center as ,[START_REF] Zhong | A Benchmark Study on Mantle Convection in a 3-D Spherical Shell Using CitcomS[END_REF] where d S specifies the size of the interpolation cross. This distance can be either fixed for the whole grid or varying for every face, depending on resolution differences. It is untested what the optimal value for d S is, but tests have shown that for a certain face area A PN in a Dminimum of foreign neighbors (not depending on neither one of the original nodes that the face divides) on strongly irregular grids.



  agram and Delaunay triangulation for the same discrete set of points should exist with the following information:  Nodal positions  Cell volumes  List of faces with their two neighbor indices (the node indices they divide), area and center List of simplex indices The interpolation information for each face must exist and should be pre-calculated to run a simulation efficiently. They stay in a fixed position during the simulation and can therefore be pre-calculated. One set of interpolation information consists of a simplex index that in turn holds the D+1 nodal indices i d  and weight information i w  . Each face usually has 2D+3 or 2D+1 interpolation points consisting of the center, the Cartesian cross and two more depending on the use of the fn+/-weights as described in chapter 2.4.To find a certain point within a Delaunay triangulation, it is possible to calculate the barycentric coordinates of a desired point relative to every simplex with equation (3) until each single coordinate lies between zero and one, as described in chapter 2.2. The time complexity of this procedure falls into   within a search tree. These indices correspond to node indices, which can be found in the face neighbor information as well. Since only locations close to a certain face are looked up, the simplexes containing the neighbor nodes of a face can be checked first.

D

  enormous extra memory requirement one can exploit the fact that a weight is always only in the range between zero and one. Utilizing fast integer arithmetic can turn a 16-bit integer into a floating point consisting of 2 16 steps between zero and one,  and a reduction to W=2, resulting in 1512R byte. A reduction to I=3 is only theoretically possible because it leads, if even possible, practically to misaligned memory that dramatically reduces performance.

  schemes and numerical techniques. To initiate these steady state patterns, the initial conductive temperature field is perturbed with a normalized spherical harmonic mode m l Y with

  scheme and concludes this document. The verification bases on isoviscous and weakly temperature dependent steady state flow patterns in a bottom heated three-dimensional spherical shell with an aspect ratio of 0.55. Bottom heat flow (Nusselt number) and RMS velocity are compared to a collection of other published models of the same kind and shows promising results. The accuracy stays below two percent to other published values. The volatile nature of local control values to initial conditions is also demonstrated in table 2.

  Figure1shows the Voronoi diagram in red and the according Delaunay triangulation in blue for a random set of generator points Figure2illustrates the barycentric coordinates for a point P within the triangle ABC. Figure3: A node P surrounded by its neighbors N, with the associated Voronoi diagram in red and the Delaunay triangulation in blue. The difference between the true face center with its barycentric coordinates and the central difference scheme (mid-point) is highlighted as well as important components for the FVM such as area , distance and normal vector . Figure4shows as an extension to figure 3 the barycentric coordinates of the constructed Cartesian cross around the face center and the two interpolation points along the normal path of a pre-defined size Figure5shows different convection patterns for a selected set of cases. All views display temperature, while the upper left part shows the residual iso-surface of temperature with the respective iso-values printed below, with a cutout of the positive domain for a better insight. The upper right part displays a slice with streamlines and the lower part a projection of the annotated shell. All cases are purely bottom heated with free-slip boundary conditions and purely temperature dependent viscosity variations. Ra 0.5 =7000 in all cases. The different cases illustrate: a) ΔηT=20, tetrahedral initial condition, b) ΔηT=20, cubical initial condition, c) ΔηT=1e6, random initial condition. Case c shows a similar pattern on all other initial conditions. Figure6illustrates the difference of a weakly temperature dependent case (ΔηT=20) with Ra 0.5 =7000 to the isoviscous case. While a, b, c and e display the difference in velocity, d shows the difference in temperature. Because the slice views d and e are not centered around zero, they contain an extra red contour line. Table1: Comparison of the bottom Nusselt number and the rms-velocity for the tetrahedral and cubic steady-state convection with a viscosity contrast of =1, =20 and =30. The Rayleigh number is 7000 for T=0.5. The abbreviation 'Be89' stands for the results from[START_REF] Bercovici | Threedimensional spherical models of convection in the Earth's mantle[END_REF], 'Zh00' fromZhong et al. (2000), 'Iw96' from[START_REF] Iwase | Three-dimensional infinite Prandtl-number convection in a spherical shell with temperature-dependent viscosity[END_REF], 'TS00' from[START_REF] Tabata | A stabilized finite element method for the Rayleigh-benard equations with infinite Prandtl number in a spherical shell[END_REF], 'Ha98' from[START_REF] Harder | Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle[END_REF], 'Ra96' from[START_REF] Ratcliff | Effects of temperaturedependent viscosity on thermal convection in a spherical shell[END_REF] and 'YK04' from[START_REF] Yoshida | Application of the Ying-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell[END_REF]. The respective discretization method is listed as well, where 'SP' denotes spectral, 'FE' finite elements, 'FD' finite differences and 'FV' finite volumes. Table2shows a comparison of global and local quantities as well as compute time measurements for some selected cases. The sole influence on the initial condition (I.C.) in the first two cases demonstrates the volatile nature of these values. All computations took place on an 8 CPU shared memory machine (Opteron 875 w/ 2.2GHz), while t CPU shows the compute time in hours until an adequate steady state was reached. This final time is shown as nondimensional diffusion time t, combined with n Iter time steps. The grid consisted in all computations of a projected icosahedron with 32 radial levels and 10.242 lateral nodes. Other values consist of volume averaged temperature <T> and velocity <V>, as well as their interior (mid-shell) minima and maxima. The velocity minima and maxima are taken only from the radial component. Values in square brackets are from[START_REF] Zhong | A Benchmark Study on Mantle Convection in a 3-D Spherical Shell Using CitcomS[END_REF] round brackets from Stemmer et al., 2006. 
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  Figure1shows the Voronoi diagram in red and the according Delaunay triangulation in blue for a random set of generator points Figure2illustrates the barycentric coordinates for a point P within the triangle ABC. Figure3: A node P surrounded by its neighbors N, with the associated Voronoi diagram in red and the Delaunay triangulation in blue. The difference between the true face center with its barycentric coordinates and the central difference scheme (mid-point) is highlighted as well as important components for the FVM such as area , distance and normal vector . Figure4shows as an extension to figure 3 the barycentric coordinates of the constructed Cartesian cross around the face center and the two interpolation points along the normal path of a pre-defined size Figure5shows different convection patterns for a selected set of cases. All views display temperature, while the upper left part shows the residual iso-surface of temperature with the respective iso-values printed below, with a cutout of the positive domain for a better insight. The upper right part displays a slice with streamlines and the lower part a projection of the annotated shell. All cases are purely bottom heated with free-slip boundary conditions and purely temperature dependent viscosity variations. Ra 0.5 =7000 in all cases. The different cases illustrate: a) ΔηT=20, tetrahedral initial condition, b) ΔηT=20, cubical initial condition, c) ΔηT=1e6, random initial condition. Case c shows a similar pattern on all other initial conditions. Figure6illustrates the difference of a weakly temperature dependent case (ΔηT=20) with Ra 0.5 =7000 to the isoviscous case. While a, b, c and e display the difference in velocity, d shows the difference in temperature. Because the slice views d and e are not centered around zero, they contain an extra red contour line. Table1: Comparison of the bottom Nusselt number and the rms-velocity for the tetrahedral and cubic steady-state convection with a viscosity contrast of =1, =20 and =30. The Rayleigh number is 7000 for T=0.5. The abbreviation 'Be89' stands for the results from[START_REF] Bercovici | Threedimensional spherical models of convection in the Earth's mantle[END_REF], 'Zh00' fromZhong et al. (2000), 'Iw96' from[START_REF] Iwase | Three-dimensional infinite Prandtl-number convection in a spherical shell with temperature-dependent viscosity[END_REF], 'TS00' from[START_REF] Tabata | A stabilized finite element method for the Rayleigh-benard equations with infinite Prandtl number in a spherical shell[END_REF], 'Ha98' from[START_REF] Harder | Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle[END_REF], 'Ra96' from[START_REF] Ratcliff | Effects of temperaturedependent viscosity on thermal convection in a spherical shell[END_REF] and 'YK04' from[START_REF] Yoshida | Application of the Ying-Yang grid to a thermal convection of a Boussinesq fluid with infinite Prandtl number in a three-dimensional spherical shell[END_REF]. The respective discretization method is listed as well, where 'SP' denotes spectral, 'FE' finite elements, 'FD' finite differences and 'FV' finite volumes. Table2shows a comparison of global and local quantities as well as compute time measurements for some selected cases. The sole influence on the initial condition (I.C.) in the first two cases demonstrates the volatile nature of these values. All computations took place on an 8 CPU shared memory machine (Opteron 875 w/ 2.2GHz), while t CPU shows the compute time in hours until an adequate steady state was reached. This final time is shown as nondimensional diffusion time t, combined with n Iter time steps. The grid consisted in all computations of a projected icosahedron with 32 radial levels and 10.242 lateral nodes. Other values consist of volume averaged temperature <T> and velocity <V>, as well as their interior (mid-shell) minima and maxima. The velocity minima and maxima are taken only from the radial component. Values in square brackets are from[START_REF] Zhong | A Benchmark Study on Mantle Convection in a 3-D Spherical Shell Using CitcomS[END_REF] round brackets from Stemmer et al., 2006. 
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