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Abstract

Numerically modelling the dynamics of a self-coteigly subducting lithosphere is a
challenging task because of the decoupling probleinise slab from the free surface. We
address this problem with a benchmark comparistwden various numerical codes
(Eulerian and Lagrangian, Finite Element and FiDitéerence, with and without markers) as
well as a laboratory experimefithe benchmark test consiststiofeeprescribed setups of
viscous flow, driven by compositional buoyancy, avith a low viscosity, zero-density top layer
to approximate a free surface. Alternatively, dyftree surface is assumed. Our results with a
weak top layer indicatthat the convergence of the subduction behaviotlr iwcreasing
resolution strongly depends on the averaging scHem@scosity near moving rheological
boundaries. Harmonic means result in fastest sulmiy@rithmetic means produces slow
subduction and geometric mean results in intermediahaviour. A few cases with the
infinite norm scheme have been tested and resugliiwergence behaviour between that of
arithmetic and geometric averagir8atisfactory convergence of results is only reachexhe
case with a very strong slab, while for the othesas complete convergence appears mostly
beyond presently feasible grid resolutidmalysing the behaviour of the weak zero-densify to
layer reveals that this problem is caused by thegment of the weak material into a
lubrication layer on top of the subducting slab sdathickness turns out to be smaller than
even the finest grid resolution. Agreement betwthenfree surface runs and the weak top
layer models is satisfactory only if both approachse high resolution. Comparison of
numerical models with a free surface laboratoryegixpent shows that (1) Lagrangian-based
free-surface numerical models can closely reproduedaboratory experiments provided that
sufficient numerical resolution is employed andE2)erian-based codes with a weak surface
layer reproduce the experiment if harmonic or geamaveraging of viscosity is used. The
harmonic mean is also preferred if circular higbcaisity bodies with or without a lubrication
layer are considered. We conclude that modelliegitbe surface of subduction by a weak
zero-density layer gives good results for highesblutions, but otherwise care has to be
taken in 1) handling the associated entrainmentfamdation of a lubrication layer and 2)

choosing the appropriate averaging scheme for sigcat rheological boundaries.
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1. Introduction

While dynamically modelling of subduction has beenissue in the geodynamical literature
since a long time (e.g. Jacoby 1976; Jacoby andan8lhg, 1982) only recently a vast
number of numerical and laboratory models have loeseloped in an attempt to understand
the dynamics of self-consistently forming subduttiaones (Bellahsen et al., 2005,
Funiciello, et al., 2003a,b, Schmeling et al., 19B&zlaff and Schmeling, 2001, OzBench et
al., this issue, Capitano et al., 2007, and othef$)e term "self-consistent” emphasizes that
the formation of the trench and the sinking of sheb is driven by internal forces only and
without invoking prescribed zones of weakness. Qfrtte major problems in all models is to
formulate and apply a method to decouple the subducslab from the surface or the
overriding plate. While early modellers simply as®a a sufficiently large region near the
trench in which the mantle was artificially weakdnether models invoked more complex
rheologies or neglected the overriding plate atsthmeling and Jacoby, 1981, Becker at al,
1999; Funiciello, et al., 2004; 2006; Kincaid & &fs 1987; Martinod et al, 2005; Schellart et
al., 2004a, b, 2005; Stegman et al., 2006).

Laboratory models have the possibility to sineil@alistic geologic features using complex
rheologies and at the same time having the advantdgan intrinsically 3-D approach.
However, 3-D aspects are often suppressed usiaglgthomogeneous slabs affected by box
boundary effects (Kincaid and Olson, 1987; Shememh€@@2) or by using 2-D feeding pipes
to inject the slab into a density/viscosity layefiedd (Griffiths and Turner, 1988; Griffiths et
al., 1995; Guillou-Frottier et al., 1995). 3-D lahtory models including lateral slab migration
have been recently realized prescribing kinemdyidale trench movement by Buttles and
Olson, (1998) and Kincaid and Griffith (2003) andhdmically self-consistently by Faccenna
et al., (2001) and Funiciello et al., (2003; 202805) and Schellart, (2004a, b, 2005). 3-D
numerical subduction models have been studiedbg.g Stegman et al. (2006), Schellart et
al. (2007), and OzBench et al. (this issue).

All these approaches can be divided into twoss#a: In one class subduction is
kinematically or rheologically prescribed by kindinaboundary conditions of weak
decoupling zones. In the other class the decouptimges evolves self-consistently. Our
benchmark addresses this second class of modettheRuore our setup studies a slab
without an overriding plate. Thus the dynamics e¢sehe behaviour of a subducting slab as

it decouples from the free surface without beirfuenced by another plate.
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Although our benchmark definition might look tmisimple, as it describes a purely
viscous, isothermal fluid dynamical problem withdar creeping rheology, and the viscosity
contrasts are f0at most, it turns out to be a very challenging. t&&is is because of the
decoupling mechanism acting in real systems in lwhiense bodies detach from a surface,
even if they are purely viscous: Layers of difféarenmposition interact dynamically, are
smeared out and turn into lubrication layers. As ttumerical resolution of our codes is
limited, such fluid dynamical scenarios easily eect¢he limitations of even high resolution
runs. To explore how these limits are reached ffferdint codes and what can be done to
tackle these resolution problems is one of the vatiins of the present benchmark.

Our approach is three-fold. In one set of téstse 1) we try to benchmark the process of
subduction approximating the subduction zone tovalain by a soft buoyant layer (“sticky
air” or an artificial layer whose lowermost partnsgsts of water rich, weak sediments, in
short "soft sediments") and compare it to subduactimdels with a free surface. As it will
turn out, the soft material will be entrained, lichating the subducting slab, and the
subducting slab is decoupled from the overridinghtieain a self-consistent way. However,
the lubricating layer will be very thin, its thickss is beyond the resolution of our models.
Consequently, to achieve convergence of the diitereodes will be difficult.
Notwithstanding, such model approaches are fretjudiscussed in the literature. Therefore,
it is interesting to study how the different methadkal with this decoupling / lubricating
problem, how the algorithms of determining the etifee viscosity at the lubrication region
handle the problem, and how they compare to mosiittsa free surface.

In a second approach (case 2), an attempt i r@mcchieve convergent results of the
different codes. We will define a modified setupmely one without the formation of a thin
lubricating layer. In this setup, the viscositytbé overlying layer will be chosen as equal to
the mantle viscosity. Consequently, no lubricateyer can form, and one should expect that
the resulting evolution of subduction should cogeeamong the different codes. It should be
emphasized, that we do not suggest this setup teedléstic in the sense of subduction
dynamics, but it is a reasonable fluid dynamic getutest codes which model the evolution
of a triple point associated with a subduction zdf@ constant viscosity thermal convection
the role of such a triple point on entrainment aftenial with a different density has already
been benchmarked by van Keken et al. (1997).

Thirdly (case 3), we benchmark a laboratory sigidn model with a free surface and try to
reproduce it as close as possible by numerical lmodih a weak top layer or with free

surface numerical models.
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In the discussion section we present a welllveslocase of a Stokes flow problem with and
without a lubrication layer to test the applicalgilof our algorithms of determining the

effective viscosity near compositional rheologibalindaries.

2. Definition of cases

2.1 Governing equations

The benchmark is defined as a purely viscous fldythamic problem. We assume an
incompressible fluid, in which driving density filsl are advected with the flow. Then the

problem can be described by the equations of ceasen of mass

Om=0 (1)

and the equation of momentum

-~ 0 av; 0V .
—OP+—— || oo+ ~Pk9 & =0 (2)
an[ [an aXi J]

whereV is the velocity P the pressurex the coordinatesyy the viscosity of compositiok,
o the density of compositioR, g gravity acceleration, an@; the unit vector in vertical

upward direction. The viscosity and the density advected with the flow. The

corresponding advection equation is given by

a@%wuﬁck:o (3)

whereCy is the concentration of tHeth compositionCy is equal 1 in a region occupied by

compositiork and 0 elsewhere.

2.2 Model setup

The 2D model setup for case 1 and 2 is shown in Eidt is defined by a layer of 750 km
thickness and 3000 km width. The initial conditianspecified by a mantle of 700 km
thickness, overlain by a 50 km thick soft surfaeger mimicking "sticky air" or "soft

sediments”. The mantle layer consists of a highdgous, dense lithosphera € 3300 kg/rﬁ,
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m = 107 Pa s, initial thickness of 100 km) and an ambieantle withg, = 3200 kg/m, 77m =
10°* Pa s. The surface layer of initially 50 km thicksehas a densitg = 0 kg/n? and a
viscosity of eithers = 10®° Pa s ors = 10°* Pa s and a free slip top. In order to trigger
subduction and mechanical decoupling of the slamfthe surface in a most direct and
simple way the slab tip is already penetrating themmantle as deep as 200 km (from the top
of the mantle). This configuration with a 90° carreoids that time-dependent bending
might mask the detachment of the slab from theasetf The mechanical boundary conditions
are reflective (free slip), implying the slab bemtached to the right boundary.

The model setup for the free surface case stich to the setup described above, only the
weak surface layer is removed, and the surfacedsoyrcondition is free.

The model setup for the laboratory experimentsl ahe corresponding numerical

experiments (case 3) is somewhat different andheiltdescribed in detail in section 3.3.

3. Methods
3.1. The participating codes

FDCON

The code FDCON (used by authors Schmeling, GolabBsks, and Grigull) is a finite
difference code. Equations 1 and 2 are rewrittethasiharmonic equation in terms of the
stream function and variable viscosity (e.g. Sclmgeland Marquart, 1991). The FD
formulation of the biharmonic equation results isyanmetric system of linear equations,
which is directly solved by Cholesky decompositidine advection equation is solved by a
marker approach (e.g. Weinberg and Schmeling, 1998 region is filled completely with
markers which carry the information of compositiomhe concentratio®x of compositiork

at any FD grid point is determined by the numbemafkers of composition k found within a
FD-cell sized area around the grid point dividedhwry total number of markers present in the
same cell. The density and viscosity at any grithipare determined by - weighted
averaging using either the harmonic, the geomeirithe arithmetic mean (see below). The
markers are advanced by a 4-th order Runge-Kutterse, combined with a predictor-
corrector step. For this predictor-corrector steprkers are provisionally advanced by two
first order Eulerian steps. The Navier Stokes dquoas solved for these preliminary steps to
obtain the corresponding velocity fields. Theseoe#y fields are then taken for the full 4th

order Runge-Kutta step to advance the markers.
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12VIS, 1I2ELVIS

Both the viscous code I12VIS (used by author Geaya) the viscoelastic code I2ELVIS are
based on a combination of finite-differences (puessrelocity formulation on fully staggered
grid) with marker-in-cell technique (Gerya and Yu2003a: Gerya and Yuen, 2007).
Markers carry information on composition (whichused to define density, viscosity and
shear modulus) and stresses (in viscoelastic cdsepsity, density and stresses (in
viscoelastic case) are interpolated from markersottes by using bilinear distance-dependent
schemes. In I12ELVIS the shear modulus for viscoms was taken 6[70°° Pa and the bulk
modulus was taken infinity (incompressible flui®bviously with a time step of f@ears

and a viscosity of the slab of #(Pa s there is no elastic deformation componehe T
markers are advanced by a 4-th order in spacerdst m time Runge-Kutta-scheme. The
runs done with 1I2ELVIS differ from those with I12Vi8 that they average the viscosity
around nodes more locally. In I2ELVIS averagingrirmarkers to a node is done from
markers found in 1 grid cell around the node (uithin 0.5 grid step). Averaging in I2ELVIS
is done separately for different nodal points cgponding to shear (interceptions of grid
lines) and normal (centres of cells) stress compién 12VIS averaging from markers to
nodes is first uniformly done for nodal points @sponding to shear stress components (i.e.
for intersections of grid lines) from markers foundx2=4 grid cells around each nodes (i.e.
within 1.0 grid step). Then viscosity for normalests components is computed for centres of
cells by averaging viscosity from 4 surroundingeahviscosity nodes” (i.e. averaging is
effectively from 3x3=9 cells, within 1.5 grid stef@oth codes use the optional possibility of
refinement locally in a 100-800 km wide and 10-20 #keep area (Swiss-cross-grid following
the trench). Therefore, the subsequent models cgevmetter for the initial 10-20 Myr of the

model development.

LAPEX-2D

This code (used by author Babeyko) solves for le@arof mass, momentum and energy
through an explicit Lagrangian finite differencechiaique (FLAC-type) (Cundall & Board
1988; Poliakovet al. 1993; Babeykoet al. 2002) combined with particle-in-cell method

(Sulsky et al., 1995). The solution proceeds onawing Lagrangian grid by explicit time
integration of conservation equations. For thatsoea the inertial termp™* ov,/at is
included into the right-hand side of the momentumservation equation (Eq.2). Here inertial
densityp'™" actually plays a role of parameter of dynamic xateon. Incorporation of the

inertial term allows explicit time integration ofodal velocities and displacement
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increaments, thus “driving” the solution towardsagustatic equilibrium. The magnitude of
the inertial term is kept small in comparison totomic forces, typically, I&— 10° so the
solution remains quasi-static. In comparison todlassical implicit finite element algorithm,
memory requirements of this method are very modesahce no global matrices are formed
and inverted. Accordingly, computational costs éore time step are very low. However,
explicit time integration imposes very strict rgions on the magnitude of the calculational
time step — for typical geodynamic application s@ble Courant time step has an order of 1-
10 years. Being a disadvantage of this method,sthall computational time step allows,
however, treatment of any physical non-linearityc{s as plastic flow, for example) in a
natural way, without any additional iterations gmblems with convergence. A principal
restriction in LAPEX-2D, which partly limited it'suitability for the present benchmark setup,
is the requirement of non-zero material densityusTbenchmarks with zero-density 'sticky
air' soft layer were not performed with LAPEX-2Dhd& algorithm is easy parallelizable.

LAPEX-2D has a principally visco-elastic selvThe explicit numerical scheme of stress
update at each computational time step directlyaggpthe elastic constitutional law. Thus,
elasticity cannot be completely 'switched-off'tlie present models, the slab was assigned the
elastic properties of olivine, i.e., Young's moduki=184 GPa and Poisson's ratio of 0.244.
Together with slab viscosity of 10Pa s these elastic properties correspond to thevilh
relaxation time of 40 kyr, which is much less ththe characteristic model time. Thus, the
behaviour of the slab in LAPEX-2D is effectivelysubus.

Solution on the moving Lagrangian grid becomes accurate when the grid becomes too
distorted. At this point remeshing should take eldduring remeshing the new grid is built,
and solution variables are interpolated from thd distorted grid. This procedure of
remeshing is inevitably related to the problem wfnerical diffusion. In the case of history-
dependent solution, like presence of elastic stgesand strong stress gradients (e.g.,
subducting slab versus its surrounding), uncoratbédd numerical diffusion might strongly
affect the solution. In order to sustain it, we dawplemented in our code a particle-in-cell,
or material point technique (Sulsky et al., 199%).this approach, particles, which are
distributed throughout the mesh, are more than Isinmpaterial tracers. In LAPEX-2D,
particles, typically 30 - 60 per element, track anly material properties but also all history-
depending variables including full strain and Srésnsors. Between remeshings, particles
provide no additional computational costs sincey thee frozen into the moving Lagrangian
grid composed of constant-stress triangles, ane tlseno need to update particle properties at

this stage. Additional computational efforts arm@y during remeshing. First, stress and
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strain increments accumulated since the previoogesting are mapped from Lagrangian
elements to particles. After the new mesh is coogdd, stresses and strains are back-

projected from particles onto the new grid.

CITCOM

The code Citcom (used by author van Hunen) isitefalement code (Moresi and Solomatov,
1995; Moresi and Gurnis, 1996; Zhong et al., 2000)e finite elements are bi-linear

rectangles, with a linear velocity and a constaesgure. Interpolation of composition is done
per element and directly applied to the integrapomts. The code uses an iterative multigrid
solution method for the Stokes Equation. Equati@)sand (2) in their discrete form are

written as:

Au+Bp=f 4

BTu=0 )

This system of equations is solved with some fofrthe Uzawa iteration scheme: Equation
4 is solved iteratively with a Gauss-Seidel muitdgnethod, while applying Equation 5 as a
constraint. The augmented Lagrangian formulatiomsed to improve convergence of the
pressure field for large viscosity variations. Arkex approach is used to solve the advection
equation (3): the computational domain is filledngetely with markers (approximately 40
markers per finite element), which carry the conipms Markers are advected using a
second order Runge-Kutta scheme. Interpolation fifeenmarkers onto the integration points
of the finite element mesh is done by a geometamtted average of the marker values over

each element (i.e. one value per element).

ABAQUS with remeshing

An adaptive solid mechanical Finite Element Metlddaqus Standard) (used by author
Morra) that uses the tangent operator matrix isleyagl for calculating the deformation of
the mantle. In order to avoid excessive deformatwery 1Ma a remeshing algorithm re-
interpolates the variables to the initial mesh. Taerials are traced using a field defined at
the nodes (field1: O=air, 1 = mantle ; field2: @mantle, 1=lithosphere) and the material
properties are calculated interpolating the figltha 4 nodes around each linear quadratic

element. Rheology is implemented in all configunasi, using geometric, arithmetic and
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harmonic mean. For the viscous runs the elasticutngds increased by of 2 orders of
magnitude compared to the real value in nature {D€ Pa vs.. 18" Pa), which reduces the
Maxwell time by 2 orders of magnitude, thereforkilniting elasticity (stresses are dissipated

immediately, with virtually no delay).

LaMEM

LaMEM (used by author Kaus) is a thermo-mecharfioéke element code that solves the
governing equations for Stokes flow in parallehiBD domain using Uzawa iterations for
incompressibility and direct, iterative or multigisolvers (based on the PETSc package). A
velocity-pressure formulation is employed with eitli P (linear) elements or 491

elements (quadratic for velocity and linear discmntus for pressure). To facilitate
comparison with similar FEM methods in this benchostudy (such as CitCOM), all
computations have been performed with linear elésn@iracers are used to advect material
properties as well as stress tensors. Materialgstigs are computed at integration points by
arithmetic averaging from the nearest tracersrda surface runs, the properties at the
integration points are employed for calculatiomssélected cases, the values from all
integration points in an element are homogenizealgh arithmetic, geometric or harmonic
averaging (which thus yields one value of viscopiy cell). Tracer advection is done
through mapping of global tracer coordinates t@lames, after which the element is
deformed, and tracer locations are mapped baclobmbcoordinates. LaMEM can be
employed in an Eulerian mode, in a purely Lagramgiede, or in an Arbitrary Lagrangian-
Eulerian (ALE) mode, in which some elements are@deéd (typically close to the free
surface) but others are fix. The ALE mode empl&meshing after each time step.

An advantage of LaMEM is that it can handle selfisistent free surface deformation, while
simultaneously solving the Stokes equation in aplicit manner. In free-surface simulations
the ALE approach is used with remeshing based effrée-surface deformations. Remeshing
is done at each timestep, and a new free surfaceeated from the old one by linear
interpolation on regular x- coordinates. If andbager than 25 degrees occur at the free
surface after remeshing, a kinematic redistrilbutitgorithm is employed that distributes the

fluid over adjacent nodes in a mass conservatianmar (until angles<25 degrees).

FEMS-2D
FEMS-2D (used by author Schmalholz) is a finitevetat code for simulating slow

incompressible flows in two dimensions (Frehnet &hmalholz, 2006; Schmalholz, 2006)

Page 10 of 72



11

and is written in MATLAB (The MathWorks). The algtthm is based on a mixed velocity-
pressure formulation (e.g., Hughes, 1987). Twoedéht elements can be used: (i) the
isoparametric @P; 9-node quadrilateral element using 9 integratiom{g, a biquadratic
velocity approximation and a linear discontinuoussgure approximation or (ii) the
isoparameteric PP, 7-node triangular element using 7 integration {®ia quadratic velocity
approximation and a linear discontinuous pressppeaimation (e.g., Cuvelier et al. 1986;
Hughes, 1987; Bathe, 1996). The higher order elésrfen the velocities are used in
combination with linear elements for the pressiifés so-called mixed velocity-pressure
formulation is especially accurate for pressurewations for incompressible flows (which
are not calculated using a stream function Ansatz¢. higher order elements should here not
matter concerning the overall accuracy of the dated flow field. Both elements satisfy the
inf-sup condition guaranteeing numerical stabildyincompressible flows. Uzawa-type
iterations are used to achieve incompressible fleav.both elements the pressure is
eliminated on the element level. For the presentederical subduction simulations the
triangular elements are used. The applied mestragmes Triangle developed by J.
Shewchuk (Shewchuk, 1996, www.cs.cmu.edu/~quaiedfie.html) An algorithm written

in MATLAB (developed and provided by Dani Schmid;®P, University of Oslo, Norway) is
used to link the mesh generator Triangle with FERLS-After each time step the coordinates
of the nodes are updated by adding the correspgmtigplacements which result from the
product of the calculated velocities times the tstep (explicit time integration). The new
velocity field is then calculated for the new nodabrdinates.

Recently, the matrix assembly algorithm and eotleveloped by Dabrowski et al. (2008)
was implemented in FEMS-2D which shortened the adatn time significantly. This
version has been named MILAMIN (used by authorsn&tdholz and Kaus). Tests have
shown that the results are identical to models WEMS-2D.

Due to the applied Lagrangian approach thearical mesh is deformed with the
calculated velocities. When the finite elementrigi@s are too strongly deformed, the finite
element mesh is re-meshed but the contour lingsidgfthe geometry of the mantle and the
slab remain unchanged. There is also one poitieafirée surface at which the mantle surface
and the slab surface are identical, i.e. the mefining the trench. During the slab subduction
the mantle is overriding the slab and the contmer lefining the free surface of the mantle
gets overturned, which is unrealistic. Thereforeggeothe mantle surface exceeds a critical
angle (between 10 and 90 degrees), the trench igambved upwards along the contour line

defining the slab surface. Two different approadieese been applied: in the first approach
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the trench point is simply moved upwards to thet mexial point on the contour line of the
slab surface and the mantle surface is additiosatigothed. This approach does not
guarantee a strict mass conservation. In the segppibach, a new trench point is generated
at the slab surface so that the surface of thelmarhibits a predefined angle at the trench
(here 10 degrees) and additionally the mass of Imamdterial is conserved. It was found that
when the numerical resolution is sufficiently lafge. the results of each algorithm do not
change significantly anymore with higher resolufiaround the trench, both approaches yield
nearly identical results. The stepwise change etithnch location caused by the adjustment
of the contour lines can be physically interpretéith some kind of stick-slip behaviour,
where stresses first build up and are then relebgéeide slip of mantle material along the
surface of the slab.

3.2. Viscosity averaging
At compositional boundaries all codes have the lpralof either to map the viscosity (and
density) advected by the markers to the FD- or R, gr to interpolate viscosities from a
deformed mesh to a remeshed configuration. Thisme by using either of the following
averaging laws:

Harmonic mean:

1 _¢G N C,

=2 ©
,7ave ,71 ,72

Arithmetic mean:

,7ave = Cl’?l + CZI72 (7)

Geometric mean:

Nave =15 105° ©®

Heren; is the viscosity of composition andC; is the relative volumetric fraction of
compositioni in the vicinity of the FE- or FD-node at whictetbffective viscosityjaye is
needed. A physical discussion of the above lawsheilpresented below.

Another viscosity averaging scheme which delbsly avoids any a priori assumptions
about the averaging process, or any informatioruab@rker distributions on a scale below
the grid resolution is the "infinite norm average":

Nave =N withk: C,=2C,, i=1..,n ©))

vl it
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whereny is the total number of compositions. Equationg@)ply states that the material
which has most particles in a cell determines tlagenml properties of that cell.

In the subsequent sections we essentially use@mpare models with the harmonic,
arithmetic and geometric means, and apply theitefimorm average only in one resolution
test. In section 5 (Discussion) the infinite naganeme is discussed and quantified for a 2D-

Stokes flow problem..

3.3 Laboratory experiments and set up of corresporidg numerical runs

We (authors Funiciello and Faccenna) use silicanty/gRhodrosil Gomme, PBDMS + iron
fillers) and glucose syrup as analogue of the §iffi@re and upper mantle, respectively.
Silicone putty is a visco-elastic material behawiggously at experimental strain rates
(Weijermars and Schmeling, 1986) since the defdondime-scale is always larger than its
Maxwell relaxation time (about 1 s). Glucose syip transparent Newtonian low-viscosity
fluid. These materials have been selected to aehitey standard scaling procedure for
stresses scaled down for length, density and \ityciosa natural gravity fielddmode = Gnature)
as described by Weijermars and Schmeling (1986)Cawy and Cobbold (1991).

The layered system, where densities and viscositiesassumed as constant over the
thickness of the individual layers, is arrangedaitransparent Plexiglas tank (Fig. 2a). The
subducting plate is fixed to the box in the faldi€'fixed ridge" see Kinkaid and Olson,
1987). 3-D natural aspects of laboratory modelsnai@mized using slabs as large as the
width of the box W = b). It allows to consider in first approximation tlsgstem as two-
dimensional for comparison with the numerical medaf the present benchmark. The box
sides are lubricated with Vaseline to avoid stigkieffects of the slab with the box
boundaries.

The subduction process is manually started by rigrdiownward the leading edge of the
silicone plate into the glucose to a depth of 3ril(corresponding to about 200 km in nature)
at an angle of ~30 In Figure 2 and Table 1 we summarized the characteristicshef t
selected experiment we describe in the presentrp&oe more detailed explanations see
Funiciello et al., 2003, 2004. The experiment isnitayed over its entire duration by two
digital cameras both in the lateral and top vieisematic and geometric parameters (trench
retreat, dip of the slab) are afterwards quantibgdneans of image analysis tools (software
DIAna Image Analysis). The measurement error wag £fh.

The laboratory set up is taken to define a cornedjpy 2D numerical set up (Fig. 2b). As
these experiments are carried out by both the cetthsa free surface and with a soft surface
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layer ("sticky air"), both alternative setups aspitted in Fig 2b. Based on the photograph of
the laboratory model at time equal zero, the ihdip angle and length of the leading edge of

the slab are chosen as 34° and 6 cm, respectively,

4. Results

We first present results of case 1 with a weak dpling layer (16° Pa s), which leads to the
entrainment of weak material and effective lubimabf the upper side of the subducting
slab. We then show the results of the free sarfans. This will be followed by the non-
lubrication models (case 2) with a “weak layer16f* Pa s. Finally (case 3) the laboratory

result and the corresponding numerical runs wilsbewn.

4.1 Models with weak decoupling layer (case 1)

These models have been run with different resaigtiny the codes and are summarized in
Table 2. The typical behaviour of a case 1 modshmwn in Fig 3. At time 0 instantaneously
high vertical flow velocities of the order of 5.t(a are observed as the originally flat
mantle/lithosphere surface relaxes towards anasostquilibrium. This equilibrium is
approached after about 100 to 200 kyr, and is &s®acwith a vertical offset at the trench of
about 4 km. This isostatic relaxation is confirniyothe codes FDCON (3.8 km after
180kyr), CITCOM (3.9km after 183 kyr), I2ELVIS (4Kim after 400 kyr) with an accuracy of
approximately 100 m, as well as by the free surfaodel LaMEM and FEMS-2D (both 4 km
after 200 kyr) and LAPEX-2D (5.2 km after 2 Ma). filng the following 20 Mio years

vertical velocities are small (order of 0.25 cm/yttakes a few tens of Mio years until the
slab successfully detaches from the surface. Rapidubducts through the upper mantle and
reaches the bottom of the box after some tens ofyars. As the slab is fixed at the right
side of the model box, subduction is accompanieddmsiderable roll back with a horizontal

velocity of the order of 1 cm/yr.

4.1.1 Comparison of slab shapes

First we compare the shapes of the subducting.sfebthe temporal behaviour is different
(see below) we chose snapshots for stages at whiecsubducting slab has reached a depth of
approximately 400 km. As can be seen in Fig 4 sthelar stages are reached at different

times. The geometries are quite similar on firsteoy but a detailed examination reveals some
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differences: the FDCON case shows a slightly steomigickening of the horizontal part of the
plate, associated with a larger trench retreat @vetpto the 1I2ELVIS-model. In the FDCON-
model the originally right angles at the edgeshefdlab front are less deformed than in the
I2ELVIS case. The CITCOM model has already subdlitea slightly greater depth than the
other two models, however, the trench retreat dmeesas for FDCON. A careful examination
of the three models shows that a thin layer oft sofface material is entrained on top of the
subducting slab. As will be discussed more in di&low, this layer is thinner than the grid
resolution of all of the models, thus its lubricatieffect may differ from code to code. Most
importantly the lubrication effect depends on theywf determining the effective viscosity in
the entrainment region (see section 3.2). All thmeelels shown in Fig 4 used geometric
means (equ. 8) for viscosity averaging, that isrdason for the first order similarity of the
geometries.

Fig. 5 show the effect of viscosity averagingtioa shapes of the slabs. Note that the
snapshots are taken at different times, so thasldietips have reached comparable levels.
The deformation of the slab tip is strongest fa thse with the harmonic mean, which yields
the weakest effective viscosity, while the origishlpe of the rectangular slab is best
preserved for the stiffer arithmetic mean caserithmetic case, the bending is more
localized near the trench, as deeper parts ofidehmve already undergone unbending during
the more slowly subduction. In the harmonic cadackvare taken at shorter times,
unbending has not proceeded that far. The geonmatran case shows characteristics just in

between the other two cases.

4.1.2 Comparison of temporal behaviour
To compare the temporal behaviour of the differantiels Fig 6 shows the depth of the slab
as a function of time for different codes and hgjhesolutions each. Diagrams of the full set
of models with different resolutions is given iretAppendix A. In contrast to the others,
I2VIS and I2ELVIS also used of local refinementri@s with symbols). All models
(FDCON, 12VIS, I2ELVIS, CITCOM, LAPEX2D) using geaetric mean (greenish curves)
lie close together and reach the 400 km depth lkeftet 35 — 41 Myr. Interestingly
LAPEX2D used a higher weak layer viscosity of’1Pa s instead of 1dand still shows
good agreement with the others who used the gemmeéan.

The highest resolution uniform grid models usanighmetic mean for viscosity averaging
(FDCON and 12ELVIS) (bluish curves) show a sigrafit slower subduction. Increasing the

grid resolution locally (on the expense of gridalesion far away from the trench area),
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I2VIS with arithmetic means (blue curve with diamis) shows a significant faster
subduction compared to the uniform grid, arithmetEan models (blue curves) and lies close
to the slowest models with geometric means (gréecusves). Averaging the viscosity near
boundaries even more locally as is done by I2ZELWI8e curve with squares) speeds up
subduction even more, entering the field of cumwéh the geometric mean.

However, testing the harmonic mean as a thidaeable possibility shows again a
dramatic effect: FDCON, I12VIS and I2ELVIS highessolution models show (redish curves)
that subduction is now much faster than in the iptesscases, even when using the highest
resolutions. However, locally refined models nowwtthe tendency towards slower
subduction, these curves lie on the slower sidd@fet of the harmonic averaging models.

A resolution test of the models of case 1 witheak top layer is shown in Fig 7 which
shows the time at which the slab tip passes thekdOvel as a function of the characteristic
grid size used in the runs. Increasing the resmiutiearly shows that the curves with the
geometric or arithmetic means converge from highastowards a time between 34 and 38
Myr. The 12VIS and I2ELVIS runs with the harmoniean show a trend of coming from
small values converging towards an asymptotic vakteveen 25 and 30 Myr. FDCON
(harmonic) has the same asymptotic trend, but slobvasacteristic oscillations which are
strongly damped as the resolution increases. Huaéncy of these oscillations, which are
also observed for the geometric averaging modeFFD&ON, correlates with the frequency
with which a FD-grid line coincides with the compmsal interface between the lithosphere
and the soft layer (non-connected crosses in Figi® convergence behaviour of FDCON
with infinite norm scheme is similar to arithmegéigeraging models, but the asymptotic trend
is not well defined.

In Fig 8. we show the temporal behaviour ofttieech rollback evolution of our highest
resolution models for different rheological averagschemes used. Only the results of
I2ELVIS and 12VIS are shown, as those allow fordbgrid refinement in the trench region.
During the first 15 - 20 Myr all models with locadfined grids agree well with each other and
follow roughly the evolution of the uniform gridmwith geometric mean. The uniform grid
models with harmonic or arithmetic mean signifi¢puliffer already from the beginning. At
later stages, t > 20 Myr, the retreat curves digewith the harmonic mean models retreating
fastest (redish curves) and the arithmetic meavesuretreating slowest (bluish curves). The
full set of models with different resolutions isosim in Appendix A, Fig. A2a to A2c.

From this comparison it becomes clear thattides have some problems in correctly

solving the stated fluid dynamical problem (whi¢tosld have a unique solution). They only
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converge to roughly comparable subduction histafiiee resolution is drastically increased.
Harmonic and arithmetic mean runs approach the g&ansolution from opposite sides, runs
with geometric mean often seem to start from vatileser to the asymptotic value. Yet,
extrapolation of these runs towards the exact molus not fully satisfactory as the
differences between results obtained by differéstosity averaging methods are still large,
and asymptotic values of harmonic and other meansotlyet coincide for the resolutions
used. In the next section we give an explanationhe diverse behaviour of our models in

terms of decoupling and lubrication.

4.1.3 Decoupling from the top - the role of entraiment of weak material

In order to examine the reason for the differerasasng the models with different viscosity
averaging, Fig. 9 presents a closer look at thaildetf one of our models. The marker
distributions show that a thin layer of the weaKate material is entrained on top of the
downgoing slab. This layer is only one to threekaes wide (in this example, ever{} 4
marker is shown in every direction), thus lies laetbe resolution of the FD grid. As the
weak surface layer markers carry weak rheology tiezrease the effective viscosity within
a layer immediate above the downgoing slab, but mreégularly within distinct FD grid cells
as is visible by the irregular distribution of lhiFD cells (Fig 9 left). This lubrication helps
the subduction of the slab, however, it cannotdselved adequately as the lubrication layer
is thinner than the grid resolution. We believet tech differences in non-resolvable
lubrication behaviour is the reason for the siguaifit differences between the models if

different rheological averaging methods are used,ifithe resolution is varied.

4.2 Free surface models

Case 1 has also been modeled by LAPEX2D, LaMEMREMS-2D assuming a free surface
instead of the weak surface layer (Fig. 10). Theass point out that the results depend
strongly on the numerical resolution that is empbhyLow resolution is accompanied by a
higher resistance of the mantle at the trench refidlow and spread on top of the sinking
slab. Coarse elements do not well approximate igjte durvatures at the tip of the
"overrolling" mantle wedge building up near thentk and make the surface geometrically
stiffer (or less flexible). This requires more strantil one of the surface elements at the tip
of the wedge gets overturned and re-meshing §lip. of one element) is performed. Large
elements cannot resolve this overturning and leadumerical locking’ — severe

underestimation of the correct solution by the ptea@ numerical approximation. This
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numerical ‘locking effect’ is especially pronoundedhe beginning of the slab sinking
process, when the mantle wedge loading is stilllsi®reover, the results in Fig. 10 show
that low-resolution LaMEM and LAPEX2D runs probablgmonstrate pertinent locking at
the mantle wedge even at later stages of subdudtarger velocities and full decoupling of
the slab from the surface are only obtained foh&igesolutions and re-meshing near the
trench.

In the FEMS-2D runs an unstructured mesh witigh resolution around the slab and low
resolution away from the slab has been used. Isorgdhe resolution in these runs mainly
increased the resolution away from the slab andentiagl mesh more regular. As the number
of markers in the marker chain specifying the slalpe was the same in the different runs,
the resolution directly around the slab was neigéytical in the runs. This is the reason for
almost identical curves for different resolutiomsus, increasing the resolution in areas away
from the slab does not change the results. Onttier dand, the time step has some effect on
the behaviour because remeshing is done oncegtiiteniiaterial becomes "overturned" while
overriding the slab. Bigger time steps lead to amier remeshing because the light material
becomes faster overturned.

Even for the highest resolutions there are stijhificant differences between the different
codes. We believe that these differences are dtretdifferent remeshing schemes used,
particularly near the trench (see section 3.1). e\, once the decoupling reached a quasi-

steady state, the subduction velocities of the FESand LaMEM models are similar.

4.3 Models without a lubrication layer (case 2)

As has been shown in section 4.1, the entrainnfentak material helped decoupling of the
slab from the surface but did not lead to fully werging results when using different
viscosity averaging methods. Therefore we carrigcaosecond comparison of results (case 2
models) for a model in which the “soft layer” hid viscosityrs = 10 Pa s, i.e. the same
viscosity as the mantle. The idea was, that if emyainment of this layer takes place there
will be no lubrication between the slab and the emimantle. This model setup has been run

with different resolutions by the codes summarize@able 3.

4.3.1 Comparison of slab shapes and temporal behaur
The general behaviour of this case is shown in Fig.During the first 40 Myr the leading,
vertical part of the slab stretches in a Raylélglytor-like fashion, while the surface part of

the lithosphere stays near the original surfacéwBen 40 and 60 Myr the original trench part
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of the slab (i.e. the triple point between lithosph mantle and surface layer) detaches from
the initial surface and starts to sink into the trearHowever, the coupling to the surface is
still so strong that the deeper parts of the statiinue to further stretch and thin. Trench
retreat is less efficient than in the case 1.

Fig. 12 shows a comparison of shapes of seeasd 2 models run with different codes, all
using the geometric mean for viscosity averagirge $napshots have been taken around 60
Myr and the shapes are quite similar. They all aghat the deformation of the slab tip is
significantly less than in case 1 models, howetrar slab is more stretched than in series 1.
The detachment from the surface is significantliaged.

Fig. 13 shows the temporal behaviour of the @aswdels of our best resolution models. In
contrast to the case 1 curves, subduction is sogmifly slower. Compared to case 1 the
results fall into a narrow range of solutions. Céing the same (here geometric) averaging
scheme, the difference between the codes is stinali00 km depth level is passed within the
time interval 60 to 68 Myrs or reach the bottoneaftmes between 93 to 105 Myrs, LaMEM
and LAPEX2D lying on the slower side of the setofves. However, inspecting curves with
different rheological averaging schemes at comjaosit boundaries shows notable but
consistent differences: Harmonic averaged modeldaatest, arithmetic averaged models are
slowest. As for these variances slabs reach therhatf the box after times between 80 Myr
(harmonic mean runs) and 110 Myr (arithmetic mears).

We now address the question about the nefasdhe still notable differences between
the different case 2 - curves of Fig. 13. Theysanaller than in the case 1, however, they are
surprising since no lubrication layer is involvedciase 2 models. An examination of the triple
point between the three different materials reyehbt using the arithmetic (stiff) mean leads
to piling up of surface material near the triplerppowhereas for harmonic averaging a thin
layer of light surface material is entrained. Olngly piling up of light material produces
sufficient buoyancy to delay subduction of thel&ipoint, while with harmonic (soft)
averaging the surface material near the boundaryreae easily be smeared out. This
smearing out distributes buoyancy over a wideradis¢ allowing earlier subduction of the

triple point. The role of the appropriate averagimgthod will be discussed below
4.4 Results of laboratory experiments and comparigsowith numerical models (case 3)

In this section we present some laboratory resuits compare them with numerical results

obtained under the same initial conditions.
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The experimental subduction process during thedmale of the lithosphere into the upper
mantle is similar to what has been already desdrilpedetails in previous experiments
(Faccenna et al., 2001; Funiciello et al., 2008430During the first phase of the experiment,
the trench retreats with a fast rate that incregsegressively in time with the amount of
subducted material (Fig. 14). The dip of the slsb &ncreases, reaching a maximum value of
about 60°. The retrograde slab motion is always@ated with a significant displacement of
the mantle driven by the subducting lithospheresuReng mantle circulation is organized in
two different components, poloidal and toroidal tth@active since the beginning of the
experiment (see Funiciello et al, 2006 for details)

When the leading edge of the slab approachebdtiem boundary &, ~ 3 min), the slab
reduces its rate of retreat and its dip by abo(t(4&e Fig 14). Afterwards, the slab touches
the bottom boundary and the trend of the trencleattchanges slowing down for about 12
min. After the interaction the trench starts to déaterally into an arc shape allowing lateral
circulation of mantle material around the slab eegliming the trench retreat. This 3D nature
of the laboratory model is shown in a surface vi@ig. 15). Due to the arc shape the
subduction process continues in the central ph#t otherwise would be inhibited. This
arcuation can create small delay of the time necgdsr the slab tip near the sides to reach
the bottom of the box compared to the central phathe plate. From this moment, the trench
retreat velocity is approximately constant andglad dip reaches steady state values of about
45°, while the slab tip lies horizontally on top oktanalogue of the 660 discontinuity.

We now compare the laboratory results to nupakrmodels using the same physical
parameters and a similar initial configuration (d&fg. 2 and Tab. 1). To mimic the free
laboratory surface the FDCON-series was run witveak surface layer of 0.8 cm thickness,
zero density and a viscosity of 3.2 Pa s (i.e. ttbd the mantle viscosity). These numerical
experiments used the arithmetic, the geometrichemthonic mean for the calculation of the
viscosity. We also performed numerical simulatiomsth LaMEM and FEMS-2D
(MILAMIN), employing a true free surface (whichlimwever remeshed regularly).

Both the numerical free surface and the saiftace layer results with harmonic viscosity
averaging show a similar sinking behaviour as th@ague model until the slab reaches the
bottom (cf. Fig. 14 and Fig 16). All models showamtelerating phase during which the slab
dip increases. The bottom is first reached by @mdral part of the slab in the lab model after
about 4 min, while the sides of the laboratory sdald the numerical slab reach the bottom
approximately after 6 min. As a remnant from thiéiahgeometry, the numerical slabs still

show a weak kink after 6 min. This is missing ia ttaboratory models, which started from a
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smooth initial geometry (c.f. Fig. 2). The retredtthe numerical models shows a good
agreement with the laboratory results until theezipental slab reaches the bottom of the
experimental box (see Fig. 14, 16). At later staffes 6 min) the laboratory model is
dominated by 3D flow structures which cannot beadpced numerically using a 2D code.
As a consequence, the amount of retreat in bothetaadarts to diverge drastically after slab
interaction with the bottom.

It is interesting to compare the develepiof the slab dips of the analogue experiment
with the numerical model (see Fig. 14, 16). Durthg early stage (2-4 min) the slab dip
increases to values between 70 and 80° in the ncahenodel which is steeper than in the
analogue model (~60°), but then, in agreement thithaboratory model, decreases to a value
of about 45° approaching the bottom boundary (addun6 min).

A significant difference also arises in the deflon (horizontal flattening) of the slab after it
reaches the bottom boundary. The analogue slabsshaguite large horizontal flattening at
late stages whereas the numerical slab flattensrdytnegligibly. We explain this difference
againby the 2D confinement of the sublithospheric mantkgerial on the right hand side of
the numerical slab: Flattening of the front partted slab in the lab model is accompanied by
progressive trench retreat, and thus requires derale decrease in mantle volume beneath
the retreating slab. While this mass flux is achawy 3D flow in the lab model, the 2D
confinement of the numerical model does not allbis thantle region, captured by the slab,
to decrease in volume. As a result, the late stdgiee numerical model is characterized by a
straight, gently dipping slab, whose dip angle ociyanges slowly with time as the trench
slowly migrates to the right.

Fig. 17 and 18 show the temporal behaviouhefdepth of the slab tip and of the position
of the retreating trench, respectively. Note tiat $tarting position of the numerical and the
laboratory models are slightly different due to thleght differences in initial geometry
(curvature of the leading part of the slab). Gelhgrthe free-surface numerical results are in
good agreement with the laboratory experiments, riésolution of at least 256x64 nodes is
employed or local mesh refinement near the tresalseéd. Smaller resolutions result in much
slower subduction rates. An examination of the nucaéresults revealed that the critical part
of the free surface simulation is the formatioraafusp-like triple point, i. e. the trench, above
the subducting slab. Once this point has been fdsriiee mantle 'overflows' the subducting
slab in a fairly steady manner. If the triple poga&nnot be resolved, due to for example
insufficient resolution, a more oscillatory behavie observed which results in drastically

slower rates of subduction.
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It is interesting to note that the numeriedults using the arithmetic and geometric mean
differ dramatically (for FDCON) or considerably (fRELVIS) from the experimental results
in both retreat and slab tip depth (see Fig. 17 &8d These slabs are also slightly to
significantly slower than the runs with harmonic ane The best agreement between the
laboratory and numerical models is obtained withlthrmonic mean — models (Fig. 17a) and
with harmonic or geometric mean —models with laedinement (Fig. 17b) during the first
200 - 300 s. During this time, which is charactediby progressive slab bending and trench
retreat, the best numerical models consistentlyvshalightly slower sinking velocity of the
slab tip, and a slightly higher retreat velocityrgmared to the lab model. As the differences
are small we cannot distinguish whether they are tdusmall errors in material properties
(e.g. 20% uncertainty in the determination of sitie putty or glucose syrup viscosity),
differences in initial geometry or unaccounted etffesuch as surface tension. After 300s the
laboratory slab tip depth (which is determined asagerage along the visible leading edge,
c.f. Fig. 14) increases slower than the numerioalso We explain this difference as being due
to the 3D-flow structure of the laboratory modeliek 200 — 300 s the numerical trench
retreat is faster than the retreat of the laboyatowdel. Again, this may be due to the 3D-flow
structure associated with a arcuate shape of émelr Later (t > 1200 s) trench migration of
the numerical models decreases due to 2D-confinemehile the increasing 3D-flow
contribution of the laboratory model allows a stigheed up of trench migration.

We may summarize this comparison by stating thatfirst, 2D-dominated stage of the
laboratory slab could be well reproduced by nunarimodels which either have a free
surface and sufficient resolution (at least 256m6des) or which simulate the free surface by
a weak zero-density layer and take the harmonicosity averaging. Later, 3D effects
accelerate the trench retreat, decelerate slaingin&nd lead to a flattening of the subducted
slab, a feature which in principle cannot be repoedl by 2D numerical models. Finally, it
should be noted that, given sufficient resolutiad asing the harmonic mean, the free surface
models and the soft surface layer models (both ¥itl® and 1/100 of the mantle viscosity)

show a high degree of agreement.

5. Discussion

5.1 The problem of viscosity averaging at composithal boundaries

The physical meaning of the different averaging laws

One important result of this work is the extrems&tipng effect of the viscosity averaging

scheme applied to regions which contain compositiboundaries (c.f. section 3.2). Here we
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provide a physical explanation of these differeetmods. As illustrated in Fig. 19, the
harmonic mean of two viscosities is equivalentiaking the effective viscosity of a
rheological model with two viscous elements inegriSuch a model correctly describes the
volume-averaged deformation of a channel flow coirig a flow-parallel compositional
interface, i.e. undergoing simple shear. It coroesis to a weak effective viscosity. Thus, in
any fluid dynamical setup with compositional bourela an effective viscosity based on
harmonic means will be realized in those localagrgiin which the compositional interface is
undergoing interface-parallel shearing. On the roftaad, if the viscous stress at the interface
is characterized by pure shear, the effective gisgof this configuration is given by a
rheological model with two viscous elements in flakai.e. the arithmetic mean. Such a
model correctly describes the volume-averagedstiea region containing a compositional
interface undergoing interface-parallel pure sh€his model corresponds to a stiff effective
viscosity. Thus, for all slab regions undergointgiface-parallel pure shear, the arithmetic
mean is the appropriate averaging method.

A realistic slab is expected to contain inteefaections which are both under simple and
pure shear, thus its net behaviour will lie betwtese two cases. However, interface parallel
simple shear may be dominant in several circumstsre) Near the trench the flow in the
cusp like wedge may be approximated by a simpleaydiow. For low angle corner flow it
can be shown that interface parallel simple sheedominant within the flow and at the
interface to the slab. b) In case of a large visg@®ntrast between slab and overriding

mantle, the low viscous region might "see" the higitous region as a rigid interface in first

approximation. Due to the incompressibility cormtitiCJv = 0) normal deviatoric stresses in
the low viscous region drop to O near a rigid bamdn a local coordinate system parallel to
the interface, while tangential shear stressesotlo n

For these reasons, the harmonic mean is suggesbe more appropriate for high viscosity
contrasts such as 4and flows dominated by cusp like overriding wedgesis also evident

from the comparison of the laboratory and numerieallts (section 4.4) .

Apparent shift of rheological boundaries, "2D-Sokes flow"

Fig. 20 illustrates, that the geometric meas irethe middle between the arithmetic and
harmonic mean. A Finite Difference or Finite Elereall lying on the interface will
essentially have a stiff effective viscosity if thethmetic mean is used, or a weak effective
viscosity if the harmonic mean is used. Alterndsivés viscosity will be of intermediate

order of magnitude (arithmetic mean of Jggiscosity) if the geometric mean is used. There
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is no simple rheological model for the geometriameAs a result of this consideration, a
model with arithmetic mean apparently shifts theotbgical boundary into the weak region,
while the harmonic mean shifts the boundary inwdgtiff medium. We explain the behaviour
of case 2 models by this effect: in the arithmet®an case the critical triple point at the
trench is part of the effectively stiff region, tf@mation of a cusp is impeded, and
subduction is delayed, while in the harmonic measedt is part of the weak region, and
subduction is facilitated

For comparison, the infinite norm averagé @qu. 9) is also shown (Fig. 20a,b, dashed).
This scheme can be regarded as a zero order apy@tian of the harmonic mean fog €
0.5, changing to a zero order approximation ofahtihmetic mean for £ 0.5. Thus, the
apparent shift of the rheological boundary intéveitthe strong or the weak region along a
macroscopically large section of the compositidralindary is expected to be statistically
balanced at sufficiently high resolution.

Fig. 20a and especially 20b illustrate, e has to be taken when using the different
averaging schemes. For example, already a veryrrfriaction of G-material present in a
numerical cell may increase its effective viscositgmatically, if arithmetic means are taken,
or, conversely, a very minor fraction of-@aterial present in a numerical cell may decrease
its effective viscosity dramatically, if harmoniceans are taken. While these effects are still
consistent with fluid dynamics if these numericall€ experience pure shear or simple shear
deformation, respectively, spurious effects mageafor arbitrary deformation configurations,
and higher grid resolutions or more sophisticateblogy schemes are required.

On the other hand, a careful consideration obsing an appropriate averaging scheme
may allow to obtain reasonable results even foes@s which features such as a cusp-like
triple point separating regions with strong visgpsontrasts, or a thin lubrication layer as in
the case 1 models are not well resolved by the HEEogrids. While at coarse resolution such
a layer has no effect on lubrication when taking d@nthmetic or geometric averaging,
harmonic averaging effectively accounts for theikdtion viscosity.

We have tested and confirmed this conclusiondyyying out resolution tests with a 2D-
circular shaped bodies ("2D Stokes flow") of difet density with and without a surrounding
lubrication layer moving in a viscous medium (FR2da and b, respectively). For this test we
used FDCON. As long as the grid size is larger thanubrication layer, the arithmetic and
geometric means model do not "see" the lubricdgar and seem to converge to almost the
same asymptotic value, while the harmonic meansefsabnverge towards a significantly

different value. As the grid resolution become® famough to see the lubrication layer, the
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slopes of resolution curves of the arithmetic aedmgetric mean change and converge
towards the same value as the harmonic mean mdduls, for a simple body surrounded by
a lubrication layer the harmonic mean provides @pr@priate averaging scheme, and coarse
resolution models are already closer to the asyneptalue than the other averaging
schemes. The convergence behaviour of the infiraten scheme lies somewhere between the
convergence behaviour of the arithmetic and geometeans (as already seen in the
convergence test of case 1), i.e. it requires g lgh resolution to reasonably account for the
lubrication layer.

Similar resolution tests for circular bodieshvaitit lubrication layer ("2D-Stokes flow")
have been carried out (Fig. 21b). For a highly aiscbody all four means show a well
behaved convergence behaviour towards the samepasyenvelocity even for coarse
resolution , but they start from different distasi¢te the asymptotic value. For a weak viscous
body the different schemes converge monotonicailly for resolutions better than about 0.3
(grid size / radius). Comparing the different sckeemmhows that, at same resolution, a low
viscous sphere is best approximated by using fttfenaetic, geometric, or infinite norm
scheme, while a highly viscous sphere in a lowadscmedium is best approximated by using
the harmonic mean. In the latter case all four meamverge towards the asymptotic value
from below. This general convergence behaviouaf@bD-Stokes flow has also been verified
by another code (ABAQUS). Therefore we concludé the above statements are generally

valid, and only details of the convergence pathHsdepend on the numerical schemes.

Which averaging schemeisto be preferred?

What can we learn from these considerationetH¥ig 19 we conjecture that an
appropriate way of averaging at an interface wdngldo switch between arithmetic and
harmonic mean depending on the local state ofstaed strain rate at the interface.
Numerically this is somewhat cumbersome. Our régmivests with models with moderate
viscosity contrast (2 orders of magnitude) demanstrthat the arithmetic and geometric
means seem to converge from below towards a subdueite, whichhowever is still
slower than the asymptotic value from harmonic meaadels. We therefore have to leave it
open whether for case 1 type models we suggestaitmonic or geometric mean as the most
appropriate scheme. If the viscosity contrastshagker (4 orders of magnitude) our case 3
models show that harmonic averaging convergesaeiiisily and agrees best with the lab
model results and with free surface models. If cle¢d highly viscous bodies with or without

lubrication layers are studied, preference to @werionic mean is suggested by the "2D-

Page 25 of 72



26

Stokes flow" resolution tests. Similar conclusievese reached in a study by Deubelbeiss
and Kaus (this volume), in which the accuracy afouss finite difference and finite elements
methods were compared with analytical solutions.

It should, however, be noted, that in any casedifferent means have to converge to the
same asymptotic behaviour. Preference of one ootther scheme just gives better results at
coarser resolution. For a simple Stokes flow withkaication layer and for case 3 our models
show that convergence can be reached, for ourlcasd case 2 models our models came

only close to convergent results.

5.2 Simulating a free surface

Obviously a free surface plays an important rolsubduction: It produces a topography step
of the order of 4 km at the trench. As the ovengdmaterial (viscous mantle in our numerical
and laboratory cases) deforms and spreads on tihg &lab it aids the bending and
downgoing of the highly viscous slab.

Comparing the cases with the soft layer (FigniBh the free surface models (Fig. 10)
suggests that not all approaches have fully comegrigut that the temporal subduction
behaviour tends to become quite similar for inareasesolution: The 400 km levels is
reached after 25 — 38 Myr by the highest resolutimaels with a soft layer (Fig. 7), while it
is reached by the free surface models around 33 Glyen the present uncertainties these
numbers are regarded to be in good agreement,

Thus, assuming a zero-density weak zone to manfiee surface has been shown to be a
reasonably good approach, surprisingly, even ayighcous zero-density layer does a
relatively good job (case 2). However, we encowettearactical problems with this approach:
as consequence of the weak surface layer apprbacubduction of the triple point (between
slab, overriding mantle and surface layer) alwaggs down a thin layer of surface material.
While this effect is fluid dynamically consistentg lubrication effect has no physical
equivalence in models with a real free surface. elmw, if free surface codes invoke a local
remeshing scheme which moves the triple point atbegsurface of the subducting slab (c.f.
LaMEM and FEMS-2D, section 3.1), this localizeatktslip behaviour may be regarded as an
equivalent to trench lubrication as present ingbi surface layer models. The importance of
this lubrication effect at greater depth seemsetoninor in comparison with the decoupling
effect close to the trench. This can be inferrednficomparing the models with the weak layer
with the free surface models (Fig. 6, 10): the Sadace models are only marginally slower

compared to the highest resolutions models witbftsp layer. The difference lies within
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the present numerical uncertainty, but if it is doe lubrication between slab and mantle at
greater depth, then this effect can be regarddxtiag of minor importance. A possible way
to test the role of entrainment of the weak zenwsdg material would be to allow
entrainment and decoupling near the trench, bswitch off this effect (both density and
weak viscosity) by transferring those markers littmsphere markers. Although this
procedure violates conservation of composition mads, this violation is usually negligible
as the entrained layer is very thin. This procedha® successful been used by Gerya and
Yuen (2003b).

On the other hand, entrainment and subducti@aweéak lubrication layer might have some
geophysical significance. Upon subduction watdr dceanic crust or sediments may produce
a several km thick weak serpenthenized subductianmel on top of the subducting slab (e.g.
Gerya et al., 2002; Gerya and Yuen, 2003b), sin@aour lubrication layer. Thus
coincidently, the side effect of mimicking a fragface by a weak layer might indeed lead to

a rheologically reasonable scenario.

5.3 Role of Visco-elasticity

As the present subduction benchmark study is basgulirely viscous rheology, the question
arises whether the effect of visco-elasticity migatimportant (OzBench et al., this issue). A
complete rheological treatment embedding elastiatynot in general be yet embedded in a
large scale subduction model, being unclear iftelasored energy might allow the
localization of deformation at a smaller scalenttfee resolutions today accessible. It is
however possible to test the effect of a mean-fdddtic stress by some of the codes
benchmarked in this paper. Using the "Abaqus+réimgs setup, a Maxwell body
viscoelastic rheology has been tested, varyingnganodulus for several lithospheric
viscosity profiles, to test if the addition of Hatike elastic parameters would alter the
obtained results. We find that the results areaftered by visco-elasticity for the viscous
parameters defined in case 1. The viscosity ot#mtral core part of the lithosphere has to be
increased to ¥ or 10° Pa s to see some effect of visco-elasticity assgmireasonable

Youngs modulus. The detailed models can be fouragppendix B.
6. Conclusions

In conclusion, using a variety of different numaticodes and one laboratory model, we

benchmark a rather simple isothermal, purely viscepontaneous subduction setup. This
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setup either assumes a free surface or mimicseasit6face by adding a weak, zero-density

layer on top of the subduction model. The conclusimay be summarized as follows:

1. Comparing the results of these two numerical @me laboratory approaches shows that
adding a weak zero density layer on top of a nuraésubduction model satisfactorily
catches the important effect of a fully free suefdcowever, care has to be taken:

2. The effect of including this surface layer magult in severe resolution problems. We
attribute these problems to be due to specific ldugeal averaging schemes used by the
different codes. When increasing resolution the eaf our different codes almost
converged for case 1 and 2, full convergence bbmgpnd the present grid resolution.
Satisfactory convergence was observed in case Bhwiras characterized by a higher
viscosity contrast between slab and mantle.

3. When modeling the free surface by including eakvzero-density layer, entrainment of
this weak layer forms a lubrication layer on toptleé subducting slab, which helps to
decouple the slab from the surface. This lubricatie most important for effective
subduction if present in a region close to thedherin reality the lubrication layer might
represent a weak subduction channel.

4. Case 2 models avoid this weakening effect Isygagg a high viscosity to the zero-
density layer. Surprisingly, even without the laation layer full convergence was
difficult to achieve, when different rheologicalhemes are used. We attribute this effect
to the role of the triple point between slab, omn#ng mantle and surface, in particular to
the impeded formation of a cusp between slab aedrioNng mantle.

5. For some cases (resolutions) dramatically difieresults are produced, depending on the
viscosity averaging scheme used at rheologicatfates. Usually, harmonic averaging
gives fast subduction models, arithmetic averagjngs slowly subducting slabs, and
geometric averaging gives results in between. Ri#isol tests for case 1 suggest, that
these three averaging schemes converge to a coreat@aviour. Models with geometric
or harmonic mean seem to lie closest to the asyigiehaviour.

6. Comparing free surface laboratory results witimerical models shows that good
agreement is obtained between the two approach#ee ihumerical code with a free
surface has sufficient resolution at the trenctanifEulerian numerical code is employed,
in which the free surface is approximated with akvéayer, harmonic averaging yields

similarly good results.
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7. Few tests with an infinite norm scheme for detring viscosity at grid points near a
rheological boundary show that the convergence \betlies roughly between that of

arithmetic or geometric averaging schemes.

In conclusion, our case studies provide an extenset of tests for different approaches to
model a free surface at subduction zone environsnemd for different rheological averaging
schemes. It suggests which scheme to be used whildr circumstances, and will provide a
practical guide for future studies of fully dynansabduction systems with large viscosity

contrasts at compositional boundaries.
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Appendix A

This appendix summarizes the results for case kase 2 for various resolutions as obtained
by the different codes. Both, slab tip depth aeddh retreat is shown as a function of time in
Figures Al, A2, and A3. The codes, resolutions aretaging schemes used are given in the

legends.

Appendix B

The effect of elasticity in a Maxwell body is udyadescribed by the Maxwell time, defined
as the ratio between viscosity and Young moduligcosity values for the lithosphere vary
between 18 and 10°° Pa s. Assuming a Young modulus betweelf Hhd 18" Pa

(as constrained from seismic models), the Maxvirelétfor such lithosphere is in the range
10'%s (300 yrs) to 18 s (30 Myrs). The product of the strain-rate arelMaxwell time is
called Deborah numbebg) and defines whether elasticity will dominate swdution De >

10), will partially influence the solution (0.1B3e < 10) or does not play a rolBé < 0.1).
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As the lithospheric viscosity in this benchmai G Pa s, the corresponding maximum
Maxwell time is on the order of 1bs (300 kyrs). Given that strain rates over1§" are
usually not observed in the lithosphere, most gobbBe < 0.1, and a direct effect of
elasticity is not predicted. In order to verifygha simulation with much higher Young
modulus (16° Pa) and same viscosity profile was performed (Bita) without observing any
effect, confirming that in this benchmark elastiaitould probably play no role. Finally,
to countercheck that elasticity would play a rolehie presence of higher viscosity, a
simulation identical to the benchmark setup, buhwihe addition of a 30km thick highly
viscous (16 Pa s) core in the centre of the slab, was perfowith a Youngs modulus of
10"t and 168° Pa. In this setup, results are visibly differehe viscoelastic model is faster,
being less dissipative, which is in agreement witiecent study (Kaus and Becker 2007).
Similar conclusions about influence of viscoelastievere also obtained with the
viscoelastoplastic code 1I2ELVIS by comparing visssolution for the setup shown in Fig. 1
with two viscoelastic experiments of identical desion employing 6.70' Pa and 18Pa

shear modulus for all materials.

Figure Captions
Fig. 1. Model set up and initial condition of therlcthmark case 1 and 2.

Fig. 2. a) Experimental setup of the subductioncbemark case 3a =54 cmb=25cm| =
40 cm (= 34 cm along surface, 6 cm dippimg); 25 cmh=1.2 cmH = 10.3 cm. b) Setup

for the corresponding numerical models.

Fig. 3. Typical behaviour of a case 1 model (hdd€BN-4 is shown). Streamlines are also

shown.

Fig. 4. Shapes of different case 1 models at sirstiages: FDCON: 40 Myr, I2ELVIS: 34.7
Myr, CITCOM: 38.1 Myr. Viscosity averaging: geonietmean in all cases.

Fig. 5. Comparison of the shapes of the slabsifterdnt viscosity averaging methods using
I2VIS. Note that the snapshots are taken at difitetienes (59.6, 24.4, 37.8 Myr from top to
bottom), so that the slab tips have reached comfmbavels.
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Fig. 6. Temporal behaviour of case 1 modelled Ifigdint codes with highest resolutions
each. Each curve shows the position of the degyaesof the slab (slab tip) as a function of
time below the initial surface of the lithospheBee the legends for the used codes and grid
resolution. Note that the codes 12VIS and I12ELVISaise local refinement at the trench
area (given in parantheses in the legend). Outhilérench area the resolution decreases to
10x46 km at model sides. At the lower boundaryvirical resolution was 1 km. The
rheological means (c.f. section 3.2) are denotegkas for geometric, harm for harmonic
and arith for arithmetic, repectively. In contrésthe others, LAPEX2D was run with2®a

s for the weak layer.

Fig. 7. Resolution test of all models of case le Time at which the slab tip passes the 400
km level beneath the initial lithosphere surfacshiewn for each model as a function of
characteristic grid size. The different rheologiaatéraging schemes are arithmetic, geometric
and harmonic mean, as well as the infinite nornesah While for FDCON, CITCOM, and
I2ELVIS (uniform grid) the characteristic grid sieequal to the actual grid size (equal in
horizontal and vertical direction), the chararcci grid size of the 12VIS and I12ELVIS runs
with local refinement was taken as the geometriamma the nominal grid size (length
divided by number of cells in each direction anerttiaking the geometric mean of the two
directions) and the finest grid size within tremelgion (also taking the geometric mean of the
two directions), scaled so that the charactergiid size equals the nominal grid size for the
coarsest resolution. The symbols "FDCON: grid erif@ce match" show the grid sizes at
which the lithospheric surface coincides with a @izt line for FDCON. This sequence

correlates with the oscillations seen in the "FDC@arm" and FDCON geom"- curves.

Fig. 8. Highest resolution results for trench rattk of case 1 for different rheological
averaging methods (geometric, arithmetic, harmarean). Several runs were done with grid
refinement following the moving trench. For thesas, outside the trench area the resolution
decreases to 10x46 km at model sides, except éo8&ix76 node model, which has uniform
horizontal resolution with 5x46 km at the modelesidAt the lower boundary the vertical

resolution was always 1 km.

Fig. 9. Details of the entrainment and lubricatddrthe soft surface layer.
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Fig. 10. Comparison of temporal behaviour of caseotels assuming a free surface instead
of a weak layer. The FEMS-models used an irregfita) mesh with local refinment (l.r.)
near the trench, the given x-y grid resolution andy approximate values for comparison,
calculated from the total number of nodes. ThedhHfFEMS-2D models are very similar so

that the curves partly overlap.
Fig. 11. Typical behaviour of a case 2 model (HD€ON-11 is shown).

Fig. 12. Shapes of different cased 2 models atairstages: FDCON: 60 Myr, LAPEX2D at
60Myr, CITCOM at 67.2 Myr. Viscosity averaging: gmaetric mean in all cases. LAPEX2D
usedos = 1000 kg/m.

Fig. 13. Highest resolution results of differentes for slab tip depth evolution for case 2.
Different viscosity averaging schemes (arithmegmpmetric and harmonic means) have been

used.

Fig. 14. Result of the laboratory experiment atiffecent times. Note that the dark visible
regions represent the side view of the slab whigghty lighter parts show the central part of

the slab deeper within the tank.

Fig. 15. Surface view of the laboratory model &t time 19' 15" illustrating the 3D effects.
The brighter part of the plate on the right il tilthe surface, the subducted part lies left of

the arcuate trench.

Fig. 16. Zoom in for viscosity snapshots of the FEND (left), FDCON (right) numerical
models for times 57s, 5' 50", and 13' 16" whigha@mparable to the time steps presented for

the laboratory experiment. For FDCON the harmongamfor viscosity is used.

Fig. 17. a) Comparison between laboratory and nicaleslab tip depths obtained by the
codes FDCON, LaMEM and FEMS-2D. FDCON used a viggad the soft surface layer
equal to 1/10 of the mantle viscosity b) As a)foutl2ELVIS, using a viscosity of the soft

surface layer of 1/100 of the mantle viscosity.

Fig. 18. Comparison between experimental and nwalerglative slab retreat.
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Fig. 19. lllustration of the physical meaning oé ttlifferent averaging methods.

Fig. 20. Effective viscosity of one numerical della Eulerian formulation depending on the
fraction of material 2 for the different averagimgthods for a viscosity contrast 100 (a) and
10000 (b). c): Depending on the averaging methual effective position of the interface is

shifted towards the stiff or weak material.

Fig. 21. a) Resolution test, using FDCON, for auwliar body of different density, surrounded
by a weak lubrication layer, using the harmonigharetic, geometric or infinite norm mean
for viscosity averaging near boundaries. The cacbbdy has a density contra with
respect to the background material, a viscosifytibdes higher then the background viscosity
o and is situated in the centre of a square boxhvhias a height 10 times the radiys
Boundary condition at the box sides is free slipe Tircular body is surrounded by a
lubrication layer of thickness 5% of the radiusjscosity of 10° the background viscosity
and has the same density as the background mafEnalordinate shows the root-mean-
square velocity within the whole box, scaleddyg ro%no. b) Resolution tests for a stiff
and weak circular body of different density withdwitrication layer (i.e. 2D Stokes flow).
Same set up and scaling as in a). The stiff cyliide a viscosity of 106, the weak

cylinder of 0.017.

Fig. Al. Temporal behaviour of case 1 modelled kifeent codes and with different
resolution. Each diagram shows the position of deepest part of the slab (slab tip) as a
function of time below the initial surface of ththbsphere. See the legends for the used codes
and grid resolution. Note that the codes 12VIS E#LVIS (a and b) use local refinement at
the trench area (given in parantheses in the Iegé€hatside the trench area the resolution
decreases to 10x46 km at model sides, except €¢08&4x76 node model, which has uniform
horizontal resolution with 5x46 km at the modelesid At the lower boundary the vertical
resolution was always 1 km. The rheological mdarfssection 3.2) are denoted as geom for
geometric, harm for harmonic and arith for arithicietepectively. In contrast to the others,
LAPEX2D (Fig 6e) was run with TBPa s for the weak layer.

Fig. A2. Comparison of temporal behaviour of cas®rlmodels with different rheological

averaging and different resolution. Else as Fig Al.
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Fig. A3. Trench rollback of case 1 for differentedhogical averaging methods using
I2ELVIS: a: geometric mean, b: arithmetic meanharmonic mean. Several runs were done
with grid refinement following the moving trench these runs, outside the trench area the
resolution decreases to 10x46 km at model sidegpxXor the 381x76 node model, which
has uniform horizontal resolution with 5x46 km lag tmodel sides. At the lower boundary the

vertical resolution was always 1 km.

Fig. A4. Slab tip depth curves for case 2 for ddfet codes and with different resolutions. a)
Resolution test for FDCON and LaMEM models with geetric mean. b) Resolution test for
CITCOM models, one LAPEX2D model added., c) congmari of curves with different

viscosity averaging schemes.
Fig. B1. a) Test of case 1 with visco-elastic tbgp (Youngs modulus 16 Pa). b)

Modification of previous model by adding a highlysaous core in the lithosphere and

increasing the Youngs modulus to'iPa.
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A benchmark comparison of spontaneous subduction niels — towards a

free surface

H. Schmeling et al.

Tables

Table 1: Parameters of the laboratory experiment (case 3)

Parameter Value
Gravity acceleration, m s° 9.81
Thickness, m
h, oceanic lithosphere 0.012
H, upper mantle 0.103
Density, kgm®
o, OCeaNic lithosphere 1495
O, Upper mantle 1415
Density contrast g - Om 80
Viscosity , Pas
1o, oceanic lithosphere 3.5010° (+ 5%)
Nm, UppEr mantle 32 (£ 20%)
Viscosity ratio 7o/ fim 1.110"
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Table 2: Case 1 models, i.e. models with weak surface layer, pos = 0 kg/m®, 775 = 10"° Pas

Model name | Number of nodes (local trench | NO of Averaging | Remarks
arearesolution in km) markers method
FDCON-1 161x41 1800x450 geom dt = 0.01 Courant in
all FDCON runs
FDCON-2 241x61 2700x675 geom
FDCON-3 321x81 3600x900 geom
FDCON-4 561x141 6250x1570 | geom
FDCON-5 561x141 6250x1570 |harm
FDCON-6 561x141 6250x1570 |arith
12VIS-1 301x76 (10x1 km) 801700 arith, Local grid refinement
381x76 (5 x 1 km) 812560 geom, dt = 10 kyr
62176 (2 x 1 km) 994620 harm
1021x76 (1 x 1 km) 1091080
1821x93 (0.5 x 0.5 km) 356512
[2ELVIS 301x76 (10x1 km) 952500 arith, Local grid refinement
381x76 (5 x 1 km) 988000 geom, dt = 10 kyr
62176 (2 x 1 km) 1255500 harm
1021x76 (1 x 1 km) 1479000
1821x93 (0.5 x 0.5 km) 3835740
884x125 (0.2 x 0.2 km) 7473712
[2ELVIS 161x41 arith, Uniform grid
241x61 geom, dt = 10 kyr
301x76 harm
321x81
561x141
CITCOM-1 |128x32 geom dt = 0.01 Courant
CITCOM-2 | 256x64 geom dt = 0.01 Courant
LAPEX2D-1 |150x38 geom ns=10% Pas,
dt =10to 20 yrs
LAPEX2D-2 |300x75 geom ns=10% Pas,
dt as above
LAPEX2D-3 Free surface
dt as above
LaMEM-1 64x16x2 65536 none Free surface
dt= 10 kyr (40 sub-
time steps per time
step)
LaMEM-2 128x32x2 884736 none Free surface
dt as above
LaMEM-3 256x64x2 1048576 none Free surface
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dt as above
FEMS-2D-1 | 2850 nodes (equivalent to Marker chain| none Free surface, dt=2 kyr
111x26 irregular nodes with
local refinement
FEMS-2D-2 | 5000, equ 146x34 irr. I.r. Marker chain| none Free surface, dt=1 kyr
FEMS-2D-3 | 15000, equ 256x59 irr.,l.r. Marker chain| none Free surface, dt=1 kyr

Table 3 Series 2 models: models with strong surface layer, o = 0 kg/m®, 77s = 10 Pas

Model name Resolution NO of markers | Averaging | Remarks
method

FDCON-7 161x41 1800x450 geom

FDCON-8 241x61 2700x675 geom

FDCON-9 321x81 3600x900 geom

FDCON-10 401x101 4500x1125 geom

FDCON-11 561x141 6250x1570 geom

FDCON-12 321x81 3600x900 harm

FDCON-13 321x81 3600x900 arith

FDCON-14,15 561x141 harm,arith

LAPEX2D 300x75 geom 0s=0 or 1000 kg/m°

ABAQUS-mesh 300x70 harm

CITCOM-3 128x32 geom

CITCOM-4 256x64 geom

CITCOM-5 512x128 geom
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,o0ft surface layer”: p, = 0 kg/m? (or higher, sediments)
50 km n, = 10" or 102" Pa s
/

L

$ 41‘ p, = 3300 kg/m*> n, =102 Pas I1 00 km
1000 km | o
Q -~
= 100 km o)
700km qioj Pm = 3200 kg/m? %
5 o
n, =10%" Pas <
D
I free slip
N 3000 km ]

Fig 1. Model set up and initial condition of the benchmark case 1 and 2.
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ACCEPTED MANUSCRIPT

2
a) _ FIXED RIDGE
e a
plexiglass tank
b) ‘sticky air’, (only to be used in codes that do not have a free-surface upper BC) _ |
{ 2=0,9x2=0 (with sicky af models) I ot i
(R — 7 .

p.=1495 kg/m' 1 =3.5x10 Pas 1.2cm
=
]
(1]
11.5cm £
T
oS
w
o
n
3 b3

S4cm

Fig. 2. a) Experimental setup of the subduction benchmark case 3. a =54 cm, b =25
cm, I =40 cm (= 34 cm along surface, 6 cm dipping), w=25cm,h=1.2cm, H =
10.3 cm. b) Setup for the corresponding numerical models.
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Fig 3. Typical behaviour of a case 1 model (here FDCON-4 is shown). Streamlines
are also shown.
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Fig 4. Shapes of different case 1 models at similar stages: FDCON: 40 Myr, I2ELVIS:
34.7 Myr, CITCOM: 38.1 Myr. Viscosity averaging: geometric mean in all cases.
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Fig. 5: Comparison of the shapes of the slabs for different viscosity averaging
methods using 12VIS. Note that the snapshots are taken at different times (59.6,
24.4, 37.8 Myr from top to bottom), so that the slab tips have reached
comparable levels.

Page 46 of 72



200

250

300

Slab tip depth, km
£ s
o (=]
(=) o

o
j=]
(=]

600

650

350 Loooooooo

660 1---------

700 -

20

Time, Myr
30 40 50 60

70 80 a0

100

________________________________

'
e

'
I
i
I
I
___________ A ——

= FDCON 561x141 arith
= |2ELVIS 561x141 uniform grid arith
== |2V/IS 1821x93 (loc.ref. 0.5x0.5km) arith
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| APEX2D 300x75 1e20Pas
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=== |2ELVIS 884x125 (loc.ref. 0.2x0.2km) harm

FDCON 561x141 harm
= |2ELVIS 561x141 uniform grid harm

Fig.6. Temporal behaviour of case 1 modelled by different codes with highest resolutions

each. Each curve shows the position of the deepest part of the slab (slab tip) as a function of

time below the initial surface of the lithosphere. See the legends for the used codes and grid

resolution. Note that the codes 12VIS and 12ELVIS also use local refinement at the trench

area (given in parantheses in the legend). Outside the trench area the resolution decreases to

10x46 km at model sides. At the lower boundary the vertical resolution was 1 km. The

rheological means (c.f. section 3.2) are denoted as geom for geometric, harm for harmonic

and arith for arithmetic, repectively. In contrast to the others, LAPEX2D was run with 10%° Pa

s for the weak layer.
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' ' ' == |2ELVIS uniform grid arith
i ] 1 =& |2ELVIS loc.ref. arith
' ' ' —5[2VI3 loc.ref. arith
—+—FDCON (infinite Norm)
=+—=FDCON geom
CITCOM geom
== [2VIS loc.ref. geom
=—#==|2ELVIS loc.ref. geom
== |2ELVIS uniform grid geom
FDCON harm
=—8=|2VIS loc.ref. harm
=ir=|2ELVIS loc.ref. harm
== [2ELVIS uniform grid harm
- FDCON: grid - interface correlation
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o
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o

Time (Mio y) for siab tip at 400 km

L
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Char grid size , km

Fig 7. Resolution test of all models of case 1. The time at which the slab tip passes the 400 km
level beneath the initial lithosphere surface is shown for each model as a function of
characteristic grid size. The different rheological averaging schemes are arithmetic, geometric
and harmonic mean, as well as the infinite norm scheme. While for FDCON, CITCOM, and
I2ELVIS (uniform grid) the characteristic grid size is equal to the actual grid size (equal in
horizontal and vertical direction), the chararcteristic grid size of the I12VIS and I2ELVIS runs
with local refinement was taken as the geometric mean of the nominal grid size (length
divided by number of cells in each direction and then taking the geometric mean of the two
directions) and the finest grid size within trench region (also taking the geometric mean of the
two directions), scaled so that the characteristic grid size equals the nominal grid size for the
coarsest resolution. The non-connected cross symbols show the grid sizes at which the
lithospheric surface coincides with a FD-grid line for FDCON. This sequence correlates with

the oscillations seen in the FDCON —curves.
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Fig 8. Highest resolution results for trench rollback of case 1 for different rheological
averaging methods (geometric, arithmetic, harmonic mean). Several runs were done with grid
refinement following the moving trench. For these runs, outside the trench area the resolution
decreases to 10x46 km at model sides, except for the 381x76 node model, which has uniform
horizontal resolution with 5x46 km at the model sides. At the lower boundary the vertical

resolution was always 1 km.
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Viscosity Composition

Fig. 9: Details of the entrainment and lubrication of the soft surface layer.
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Fig. 10. Comparison of temporal behaviour of case 1 models assuming a free surface instead
of a weak layer. The FEMS-models used an irregular (irr.) mesh with local refinment (l.r.)
near the trench, the given x-y grid resolution are only approximate values for comparison,
calculated from the total number of nodes. The three FEMS-2D models are very similar so
that the curves partly overlap.
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Fig. 11. Typical behaviour of a case 2 model (here FDCON-11 is shown)
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Fig. 12. Shapes of different cased 2 models at similar stages: FDCON: 60 Myr,
LAPEX2D at 60Myr, CITCOM at 67.2 Myr. Viscosity averaging: geometric mean
in all cases. LAPEX2D used ps = 1000 kg/m®
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Fig. 13 Highest resolution results of different codes for slab tip depth evolution for case 2.

Different viscosity averaging schemes (arithmetic, geometric and harmonic means) have been

used.
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Fig. 14. Result of the laboratory experiment at 6 different times. Note that the dark visible
regions represent the side view of the slab while slightly lighter parts show the central part of f 72
the slab deeper within the tank.
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Fig. 15: Surface view of the laboratory model at the time 19" 15" illustrating the 3D effects.
The brighter part of the plate on the right is still at the surface, the subducted part lies left of

the arcuate trench.
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Fig. 17: a) Comparison between laboratory and numerical slab tip depths obtained by the
codes FDCON, LaMEM and FEMS-2D. FDCON used a viscosity of the soft surface

layer equal to 1/10 of the mantle viscosity b) As a) but for I2ELVIS, using a viscosity of

the soft surface layer of 1/100 of the mantle viscosity
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Viscosity averaging at compositional interfaces
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Fig. 19. Hlustration of the physical meaning of the different averaging methods
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Fig 20. Effective viscosity of one numerical cell in a Eulerian formulation depending
on the fraction of material 2 for the different averaging methods for a viscosity
contrast 100 (a) and 10000 (b). c): Depending on the averaging method, the effective
position of the interface is shifted towards the stiff or weak material
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Fig. 21. a) Resolution test, using FDCON, for a circular body of different density, surrounded
by a weak lubrication layer, using the harmonic, arithmetic, geometric or infinite norm mean
for viscosity averaging near boundaries. The circular body has a density contrast Ap with
respect to the background material, a viscosity 10° times higher then the background viscosity
no and is situated in the centre of a square box which has a height 10 times the radius ro.
Boundary condition at the box sides is free slip. The circular body is surrounded by a
lubrication layer of thickness 5% of the radius, a viscosity of 10 the background viscosity and
has the same density as the background material. The ordinate shows the root-mean-square
velocity within the whole box, scaled by Ap g ro?/m. b) Resolution tests for a stiff and weak
circular body of different density without lubrication layer (i.e. 2D Stokes flow). Same set up

and scaling as in a). The stiff cylinder has a viscosity of 100 7, the weak cylinder of 0.01 7. 62 of 72
rayc (0]



22

Time, Myr
0 10 20 30 40 50 60 70 80 a0 100
200 + + + + + + + +
e
: —I2VIS 301x76 (locref 10x1km) geom |
1 R T — S NN - ——12VIS 381x78 (loc ref 5x1km) geom S
‘ ‘ : : ISVIS 621x76 (loc.ref 2x1km) geom :
350 Jeme e SRR .\ NSUR RS SO —— [2V1S 1021x76 (loc ref. 1x1km)geom ...
; ; ——12VIS 1821x93 (loc ref. 0.5x0.5km) geom |
E 400 Jo R R\ T S — T S — S P —
= | | H ' H H H | |
s | 1 i
B 450 oreemeeeenee e L T S T S
a ' :
a ; ; :
[} | | H h
B 500 J-ooemomemen e R ErTI RN EERE AN N
0 o NN
A e
o NN
700
Fig. Ala
Time, Myt
] 10 20 a0 40 £ &0 70 &0 20 100
200, ;' ;' r r r r r .' ;
S I i~ N RS N DA R DU N
- i 1 i i | =—I12ELVIS 161x41 uniform grid geom
] ! ! i i || = I2ELVIS 241x61 uniform grid geom
300 e e [N . e [ IZELVIS 301x76 uniform grid geom |- .
] | | | || —I2ZELVIS 321%81 uniform grid geom
] : : : : I2ELVIS 561141 uniform grid gsom
3E0 - - fommmmm e I 4 R || w—2ELVIS 301%76 (locref. 10x1km) geom  |---—--
] H H i i V| ——I2ZELVIS 381x76 (loc.ref. Hx1km) geom
h | | . | | | =—I2ELVIS 621x76 (loc.ref. 2x1km) geom
E 400 p--mmmmmee dmmmmmmmee- bmmmn o - o= m e F-| ——2ELVIS 1021x76 (loc ref 1x1km)geom  |----—---
£ 1 i i | b ——I12ELVIS 1821x93 {loc_ref 0.5x0.5km) geom
] i i i || ——I2ELVIS 884x125 (loc.ref. 0.2x0.2km) geom
= 1 [ P NN N A P [ P
2 ] ! ! ! ! ! ! !
C IS — — S N |\ W W S S — S
] H H | | | H H
] i i i i i i i i
L oo TR \ VM s e Sa—
b i i i i i i i
] i i i i i i i
S R . fromems [ ERIA N\ A U poTs HE— fro
] | | i i i | |
T S oo — oee  E— — R e
1 H H | | | H H
00 ] : : : : : . i —_—

Page 63 of 72



23

Time, Myr

100

90

80

70

60

50

40

0

3

20

10

——FDCON 161x41 geom
——FDCONM 241x61 geom

——FDCOM 561x141 geom

FDCOM 561x141 arith

---------{ ——FDCON 3212x81 geom f --

T

T

200

250 {--mmmeenee e

400 {---mmemneeeees
T

wy ‘ydap dy qels

Fig. Alc

Time, Myr

——CITCOM 128x32 geom
——CITCOM 256x64 geom

e

200

250 feemeeeenenee s

11TV S

t
=
o
=t

wy ‘yydap dy qeig

t
[=]
=
=t

1 [ S

1V S

700 Lo

Fig. Ald

Page 64 of 72



24

200
DLV SO - T S— O S S — S S S — s

O S SRS — N— SR S — — SR — |

250 : : . ; ; : : —LAPEX2D 150x38, 1620Pas| |
7T T T A W T o e — LAPEX2D 300x75 1e20Pas |

I
=
=

------------------------------------------------------------------------------------------------------------------------------------------------

Slab tip depth, km
Foy
=

23}
=
=

-------------------------------------------------------------------------------------------------------------------------------------------------

o
=3}
=

@
=
=

S e e N S |

700 doeeee SRS SO SR b R SR LN R S :

Fig. Ale

Fig. A1 Temporal behaviour of case 1 modelled by different codes and with different
resolution. Each diagram shows the position of the deepest part of the slab (slab tip) as a
function of time below the initial surface of the lithosphere. See the legends for the used codes
and grid resolution. Note that the codes 12VIS and I2ELVIS (a and b) use local refinement at
the trench area (given in parantheses in the legend). Outside the trench area the resolution
decreases to 10x46 km at model sides, except for the 381x76 node model, which has uniform
horizontal resolution with 5x46 km at the model sides. At the lower boundary the vertical
resolution was always 1 km. The rheological means (c.f. section 3.2) are denoted as geom for
geometric, harm for harmonic and arith for arithmetic, repectively. In contrast to the others,
LAPEX2D (Fig 6e) was run with 10% Pa s for the weak layer.
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Fig A2. Comparison of temporal behaviour of case 1 for models with different rheological

averaging and different resolution. Else as Fig Al.
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Fig A3. Trench rollback of case 1 for different rheological averaging methods using I2ELVIS:
a: geometric mean, b: arithmetic mean, c: harmonic mean. Several runs were done with grid
refinement following the moving trench. In these runs, outside the trench area the resolution
decreases to 10x46 km at model sides, except for the 381x76 node model, which has uniform
horizontal resolution with 5x46 km at the model sides. At the lower boundary the vertical

resolution was always 1 km.
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Fig. A4 Slab tip depth curves for case 2 for different codes and with different resolutions. a)
Resolution test for FDCON and LaMEM models with geometric mean. b) Resolution test for
CITCOM models, one LAPEX2D model added., c) comparison of curves with different

viscosity averaging schemes.
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Fig. B1. a) Test of case 1 with visco-elastic theology (Youngs modulus 10** Pa). b)
Modification of previous model by adding a highly viscous core in the lithosphere and
increasing the Youngs modulus to 10** Pa
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