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Abstract

The analysis of multiple data sets is required to select a realistic 3D geological model among 

an infinite number of possibilities. An inverse method that aims at describing the 3D 

geometry of geological objects is presented. The method takes into account the geology and 

the physical properties of rocks, while respecting the topological properties of an a priori 

model. The a priori model is built from the geological data-set and its geometry is largely 

dependent upon assumptions about inaccessible geology at depth. This method, referred to as 

“total litho-inversion” is a generalized 3D inversion that results in quantifying the lithology 

and the distribution of rock property in a probabilistic way. Its application is demonstrated 

through (i) a simple synthetic case and (ii) the relative distribution characterization of granites 

and diorites in an orogenic domain.

Keywords: 3D geology, inverse problem, Metropolis, potential field, probability, gravity, 

magnetism, tensors.
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Introduction

Our knowledge of the geology of the lithosphere can be summarized in term of our 

capacity to predict the extension of geological structures, objects and phenomena in space and 

time. The problem in exercising such a prediction arises from the difficulty in understanding 

the complexity of the geological phenomena. Our ability to progress in our knowledge of the 

geology therefore amounts to our capacity to model and represent the phenomena. In this 

respect, any method of 3D inversion applied to geological and geophysical data opens up new 

perspectives in terms of quantifying the geological uncertainty.

The main problem facing the geologist is the impossibility of making continuous 

observations in the subsurface domain except for occasional access to drill cores or 

underground works. In a first stage, he has to formulate depth extension hypotheses using 

vertical sections that may already be  highly conceptual. In particular, in detail, the number of 

geological models that could be constructed from the surface data is infinite. To progress, the 

geologist is forced to use a combination of methods of indirect imagery to determine possible 

extensions of the geological structures and objects at depth. Each method is calibrated 

according to the type of data and its knowledge of variation laws; for example, the inverse 

problem can be successfully applied to quantify uncertainty of the petrophysical properties 

model (Tarantola and Valette, 1982. Li and Oldenburg, 1998.  ). However, the interpretations 

specific to each method do not arrive at a single solution that would make it possible to select 

among the infinity of geological starting models. Although the structural representation may 

be correct at regional scale, the applied geological work and the problems encountered, for 

example in tunnel digging, exhibits the uncertainty in the constructed models (Blanchin and 

Chilès, 1993).

We present  a programmable method referred to as 'total litho-inversion', to obtain a 

3D probabilistic description of geological objects at depth taking into account the complete 

set of available data, i.e. geological maps, borehole data, structural data (Calcagno et al. this 

issue), physical properties of the rocks, geophysical measurements such as gravity and/or 
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magnetic potential field and tensor data. This method overcomes the problem of identifying 

the “most probable” or the “best” model (Tarantola A., 2006) through testing all possible 

models using a range of different geometries. It provides not only one model, but a 

probability distribution over the model space, thanks to its sampling.

In this paper, inversion is performed on gravity and magnetic data using the Monte 

Carlo sampling of solutions (Metropolis and Ulam, 1949; Metropolis et al., 1953; Mosegaard 

et al, 1995; Bosch et al 2001; Tarantola A., 2005). The latter papers fully describes the theory.

The method is illustrated on a synthetic example as well a real case using an a priori 

geological model of granitic intrusions along a vertical crustal scale fault from the French 

Massif Central. 

The a priori model

The geological map provides a geo-referenced representation of the distribution of the 

main geological systems and units, from the 1/500000 regional scale of the basin or mountain 

belt to the 1/5000 high-resolution scale showing the lateral changes of composition of a single 

lithologic unit. The challenge of 3D modeling rests on the difficulty of extrapolating at depth 

surface and exceptionally in situ observations, using appropriate interpolation algorithms and

meshing. In all cases, the geological unit will constitute the elementary cell of the model and 

is defined by independent parameters:

 Nature: the lithology, defined by the mineralogical composition, is generally 

the basic notion that defines the nature of the unit; age of the formation or of 

the transformation of the rock may also characterize the unit.

 Topology: a geological unit must be defined in terms of its relationships with 

all surrounding geological units; common types of topological relationships 

are superposition and unconformity in basins, cross cutting relations in 

volcanic and magmatic domains, superposition and truncature in 

metamorphic terrains; rules for building the 3D geometrical models must be 

formulated and integrated in the process. 
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 Shape: the size, boundaries and orientation defines the shape of the unit; the 

3D geometric modeling of the shape is the key component of the 3D process 

referring to the x, y, z extent of the unit, position of the contacts between all 

surrounding units, orientation of internal structures.

 Intrinsic properties: there is an implicit relation between the nature of the 

geological unit and physical parameters such as density, susceptibility, 

magnetization, porosity, thermal conductivity, radioactivity; thus, the 3D 

geometrical model can be used to compute a 3D petrophysical properties 

model.

The knowledge of the nature of the geological units, their shape and topology 

generally fall in the field of expertise of the earth scientist. Thus, the 3D geometrical model 

will be first constrained by the information available on the geological map completed by 

direct field observations, drilling and/or underground works, and remote observation from 

space, airborne and field geophysical surveys. On the basis of this information and according 

to current conceptual geological models, the geologist will then resolve some indetermination 

of the extrapolation process by introducing interpretative cross sections and rejecting the 

models that are not geologically meaningful. An original method to reach this goal is 

described in Calcagno et al. (this issue). At this stage, the quality of the resulting a priori 

model will be largely dependent on the quality, accuracy and density of data that will be 

integrated together with the know-how of the geologist. 

Considering intrinsic properties such as density, magnetic susceptibility and remanent 

magnetization, their parameters can be assigned to each geological unit and the computed 3D 

geometric model effects can be compared to the corresponding measured potential fields. 

Starting from the a priori model, direct and inverse modeling can thus generate a very large 

number of models that will satisfy the gravity and magnetic fields and tensors of these fields. 
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Gravity, magnetic field and tensor data

The method is applied to gravity and magnetic data, with or without remanence, as 

well as gravity or magnetic field gradient tensor data. Gradient measurements improve 

accuracy and spatial resolution of gravity and magnetic surveys. The full gradiometric tensor 

is now measured in the oil and gas or mining prospecting. The ESA GOCE gradiometry 

(Gravity Field and Steady-State Ocean Circulation Explorer) will open up a whole range of 

new possibilities for solid Earth physics (Drinkwater M.R. et al., 2003).

Since the use of gravity and magnetic field data is well-known, the following 

explanation will focus on the tensor data. Historically Loránd Eötvös’s torsion balance 

allowed the first successful gravity gradiometric measurements to be made at the surface of 

the earth. The torsion balance was one of the earliest geophysical instruments used in the 

exploration for salt domes along the Texas Gulf Coast. There is increasing interest in 

measuring gravity gradients of the earth’s gravity field. For gravity undoubtedly an advantage 

of these gradient measurements is their relative insensitivity to small platform accelerations 

which constitutes a principal problem for aerial gravimetry. 

This paper will illustrate the problem focusing on the gravity tensor (Pedersen et al. 

1990); the generalisation for magnetic tensor is straightforward.

The gravity field from an extended body is most easily understood in terms of its 

gravity scalar potential U at the position r : )d(r'
'

)'(
)(  


rr

r
GrU


, where )'(r is the 

density of material at position 'r and 221110668.6  KgNmxG  is the gravitational 

constant. Gravity field and gravity gradients are easily calculated from the scalar potential and 

in Cartesian coordinates:
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The gravity gradient is used to describe how a particular component of gravity varies with 

position, e.g., for the x  component we have:                  
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The tensor is symmetric since the order of differentiation is irrelevant. By virtue of Laplace's 

equation, 0 EzzEyyExx , so the number of independent components reduces to five. 

The values of the components depend upon the choice of the axes. Here x is assumed towards 

the east, y is towards the north and z  is up. 

For a spherical body of mass M with radial density function spherical polar 

coordinates give: 
32

2
   ,)(  ,)(

r

GM
Err

r

GM
rg

r

GM
rU  , where, r refers to distance

from centre. Other components can easily be calculated and other coordinate systems can be 

used; the main point to note here is that the gravity gradient has a more rapid variation with 

position than does gravity and so falls away quicker from its maximum value near a mass 

anomaly. This ultimately translates to gravity gradient providing better estimation of edge 

location than does gravity. 

For the magnetic tensor we can generalise the previous formulation starting from the 

Poisson relation for a body with uniform susceptibility k  and uniform polarization HI k , 

where H represents the magnetic field we can relate magnetic potential to gravity potential 

for bodies of same shape and size, i.e., magnetic potential (and hence magnetic field) can be 

found from gravitational potential for body (sphere, cylinder, polygon, etc.), using Poisson
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relation we obtain: 
i

rU

G

I
rU grav

mag 



)(

)(  , where i is the direction of uniform 

polarization I .

It is well-known that the inverse problem in potential field methods is ill-posed 

(Laplace's equation has an infinity of solutions). What is the advantage of using tensor data 

for the inverse problem? Using tensor will naturally not fully resolve the non uniqueness; it

will shrink the space of solutions.  In summary, the tensor defines the shallow structures, 

while the gravity/magnetic field has less possibility to define these last ones but defines the 

deep structures.

Forward modelling

We base forward modelling and inversion on a voxel (a volume element) 

representation of the model. The geological model will be investigated as an assembly of 

homogeneous voxels with adjustable density contrast. For each voxel, the appropriate 

stratigraphic unit is assigned, based on the geological model. The specially prepared potential 

field data set dictates the (x, y) dimensions of the voxels; the z discretisation is typically set to 

the same value throughout, though may be reduced for finer discretisation.  Analytical 

expressions (Plouff D., 1976), (Okabe M., 1979), (Holstein H., 2003) are used to compute the 

gravity or magnetic field and the corresponding tensor effect of these voxels.

The inversion strategy 

The geological model is discretised into a 3D matrix of cells (voxels) in order to 

produce an initial ‘lithology’ model. Lithology, a categorical variable (i.e. one that acts as a 

label rather than as a numerical value), is the primary model parameter. The present 

implementation holds the lithology of surface voxels fixed throughout the inversion. The 

lithology associated with subsurface voxels is free to vary, subject to the condition that the 

topology of the initial model remains unchanged. The inversion explores variations to the 
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initial model which reproduce the supplied gravity or magnetic data within a desired tolerance 

level. The adopted strategy is to randomly walk around the space of possible models for a 

given set of a priori informations. This approach was proposed by Mosegaard and Tarantola 

(1995) and developed in 2D by Bosch et al. (2001).

Many transient models are derived from the a priori model using an iterative 

procedure, with two possible updates. The physical property, density or induced 

magnetization and remanent magnetization, for a randomly selected voxel that is separated 

from the boundary of that unit, may be modified. Alternatively, the lithology of a voxel that 

lies on the interface between two or more units may be modified, and a new physical property 

may be assigned to that voxel according to a random selection from the probability density 

function (pdf) of the relevant physical property. The voxels to which the latter operation can 

be applied is restricted by the constraint that the topology of the model not be altered.

The change in the misfit between the observed gravity and/or magnetic field and 

tensor components data and the responses calculated for the modified model is determined. 

This change is examined in a probabilistic framework to determine whether the modification 

to the model is accepted.

Detailed Outline of the Inversion Algorithm

The 12 steps of the algorithm that allow us to sample the a posteriori model by 

inverting geophysical data such as gravity and magnetic (field and/or tensor components), are:

1. Build the a priori model 

An a priori model is built, for a given hypothesis, to obtain the starting model ( m0 ). 

This model is constrained by a set of data ( 0pc ) that is not modifiable, and by a set of 

hypothetical data ( 0p ) that can be modified as long as the change does not alter the topology 

of the model. The construction of this model provides a topology (BRep: Boundary 

Representation) for volume elements, where each volume element Vj represents a formation 

j  of the current a priori model hypothesis. 
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2. Discretize this model 

The study zone is subdivided with a matrix 3D of cells spaced at intervals of 

zyx  ,, along axes x y z, , , and each cells is assigned with the color of the containing 

volume. The choice of intervals zyx  ,, controls the effective disturbance. 

The result is a set of cells C that are constrained by the following conditions:

 The lithology represented by the cells  containing  pc0 cannot be modified, 

 The lithology represented by the other cells can be modified.

3. Map the topology

The spatial network relationships (topology) defining connections between 

homogeneous rock unit regions are mapped from the geological model to the voxel model. 

The topology must remain unchanged throughout the inversion

4. Make a list of the boundaries or frontier cells 

The boundary or frontier cells need to be identified and updated during the inversion. 

The lithology parameter of a frontier cell may be changed during the inversion provided this 

does not alter the topology of the model. This allows the boundaries to migrate during the 

inversion.

5. Define the a priori probability density function (pdf) for each petrophysical 

parameters and for each formation or lithology.

For example, the density of a formation Fi could be represented by a normal or log-

normal law ),())log(( iii dNdf  , where id represents the mean and i the standard 

deviation in the probability density function (pdf). The choice of the a priori pdf for each 

petrophysical parameter for each formation or lithology is a key point (Bosch et al. 2001).  

This function must be defined using statistics on petrophysical measurements when they are 

available. 
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6. Compute the elementary gravity or magnetic effect (field and/or tensor’s 

components) for each cell 

For each field or tensor component involved in the inversion process and for each cell 

obtained from the discretization of the starting model, the elementary effect (field and tensor) 

using a unit physical property value is computed.

7. Sample the density or magnetization parameter for the set of cells C and initialize 

the likelihood of the model

Sampling (Stadlober and Zechner, 1999) the parameter (e.g. density, induced and 

remanent magnetization) for the set of cells C  is carried out according to Step 5. The gravity 

or magnetic (field or tensor) effects of the standard model are computed, subject to formation 

of the cells. 

The likelihood )/)(exp()( 2jmSkmL curjcurj  of the current model curm , for the 

geophysical field j relies on the following terms:

 )( curj mS , which represents the misfit with geophysical field j , for example 

   
 















N

l

l
jcur

l
jcurj datamgmS

1

2

2
1 ;

i. )( cur
l
j mg , which represents the total effect for the geophysical field 

j of the model at the point of observation l while l
jdata  represents 

the measurement of the field at the same point;

 2
j , which represents the variance of the data for the geophysical field j . In 

general, it is assumed that 
2

j is identical for all the measurement data. 

 k  is a normalisation factor.

Here we have use the 2L  norm, but the 1L  or L  norms could be used.
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8. Start the inversion process

9. Disturb the model curm

The model mcur is disturbed according to the following sequence: 

 Either a modification of the petrophysical parameters or a modification of 

the geometry (re-allocation of a cell to another formation) is made.

 If there is modification of the geometry, then work on the frontier

o Choose a cell from the list of frontier cells with an equiprobable 

random sampling method. The selected cell is mC .

o For the cell mC  not included in  pc0 , identify and list all the 

formations. Then randomly sample this list to choose a formation by 

an equiprobable random sampling method. If there are n different 

formations the probability of having a formation is n/1 . If Fi  is the 

selected formation, assign this formation to the cell mC . At the same 

time, sample the parameter (in this case density or magnetization), as 

defined in Step 5. 

o To compute the geophysical disturbance brought to the model, 

recompute the effect of the disturbed cells.

 If there is a modification to the petrophysical parameters, then work inside 

the formations

o Choose a cell from the list of cells that are completely included in a 

formation using an equiprobable random sampling method. The 

selected cell is mC .

o Sample the parameter (in this case density or magnetization) as 

defined in Step 5.

o Compute the geophysical disturbance caused by the model. This 

involves recomputing the effect of the disturbed cells.
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Increment n is the number realized by the inversion process. The new disturbed 

model is named pertm .

The next section discusses other operations realized to modify the geometry of the 

model, using morphological operations.

10. Compute the geophysical effects of the model 

The geophysical effects of the model are computed summing the effects, for each 

geophysical field j , for the set of cellsC . 

11. Compute the likelihoods of the model )/)(exp()( 2
jpertjpertj mSkmL  for each 

field j

 Loop on each field j :

o Compute )( pertj mL .

o If )()( curjpertj mLmL   then keep the disturbed model.

o If )()( curjpertj mLmL  then keep the disturbed model with random 

sampling and a probability equal to )(/)( curjpertj mLmL . 

o If pertm is rejected for this field, stop the loop.

 End of the loop

At the end of the previous loop, if pertm  is kept, set pertcur mm  . If not, curm  is not 

modified. 

As we are within the scope of optimization of convex functions, classical algorithms 

(conjugate gradient, Newton, etc.) are of no use because they would return only one local 

minimum, whereas we are looking for a good representation of the space model. We have to 

avoid the iterations values becoming concentrated in a trough. This means sometimes 

accepting models that will raise the convergence threshold (i.e. we deliberately deteriorate our 

3D model) to reach a new trough and compute a new set of possible models. Figure 1 gives an 
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example of the evolution of the likelihood function )(mL j  and clearly illustrates this 

mechanism – during the initial part of the inversion, the data misfit for each field of the 

current model follows a generally decreasing trend. At some point, the data misfit reaches an 

asymptotic value and we begin to store the models (see figure 1).

This process is an original contribution to the algorithm. To explore the space of 

the models we need to keep the current model and let the likelihood function )(mL j

increase. 

These stored models are an exploration of the probability space of acceptable models. 

12. Return to Step 10 and repeat the process

After completing Step 11, the inversion returns to Step 10 and continues to iterate 

around this loop. An ensemble of models that can satisfactorily explain the geophysical 

signature might be explored by continuing for a further million iterations. 

Following inversion, the set of acceptable models is examined. The probability of 

finding any particular unit in 3D space is computable from the models stored. The most 

probable model could be also computed, as in each voxel we can put the geological unit with 

the highest probability. For gravity and magnetic data, for example, we can also compute the 

mean density or magnetizations for each voxel and the associated standard deviation. 

Disturb the model: Erosion, dilation, opening, closing

Preservation of an acceptable geometry

From the convergence point of view, the Metropolis algorithm is designed to obtain 

geophysical effects in the final models that are close to the measured effect. Unfortunately the 

geological contents of the 3D models can lose their consistency, with various geological 

layers losing their homogeneity and their cells being scattered. The method is able to optimize 

a mathematical criterion effectively, but fails to guarantee that the model obtained will be 

geologically acceptable. For this reason, during the inversion process, at step 9, after some 
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iterations a morphology-based operation is applied to homogenise the current model (Serra J., 

1982 and 1988). Erosion, dilation and their combinations are used to:

 add or remove voxels from the boundaries of features in order to smooth them;

 join separated portions of features or separate touching features;

 remove isolated voxels, representing noise, from the model. 

Dilation turns voxels "on" according to rules based on the number or arrangement of 

neighbouring voxels; erosion turns pixels "off" according to similar rules, while Opening - an 

erosion followed by a dilation - and Closing - the reverse sequence - attempt to restore the 

original features but with some rearrangement of the boundary pixels. These operations will 

control the “quality” of the model.

Definitions:

The object A  consists of those voxels v that share some common property. In our 

case, A  is the set of voxels which are in the same geological unit:

Object  TRUEA  )(vpropertyv

The background of A  is given by cA  (the complement of A ) which is defined as 

those elements that are not in A :

Background:   AA  vvc

We will define quickly the fundamental operations associated with an object in 

mathematical morphology. The standard set operations are union, intersection, and 

complement plus translation: 

Translation - Given a vector x  and an object A , the translation xA  is defined as: 

 AxxA  vv

The basic Minkowski set operations--addition and subtraction--can now be defined. 

Given two objects A  and B : 
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Minkowski addition:  
B

ABA





 )(

   Minkowski subtraction: 
B

ABA





 )(

Dilation and Erosion

From these two Minkowski operations we define the fundamental mathematical 

morphology operations dilation and erosion: 

Dilation:  
B

ABABA





 )(),D(

                                          Erosion:  
B

ABABA





 )()(),E(

      Where,  BB  

A is usually considered as an “image” and B  is called a structuring element. The 

structuring element is to mathematical morphology what the convolution kernel is to linear 

filter theory.

Dilation and erosion share the main properties (associative, translation invariance and 

duality).

Opening and Closing

We can combine dilation and erosion to build two important higher order operations: 

opening and closing.

Opening:  BBABABA ),,E(D),(  O

Closing: )),,E(D(),( BBABABA C

The opening and closing operations also have many properties. The opening 

operation can separate geological unit that are connected with an isthmus. The closing 

operation can fill in small holes. Both operations generate a certain amount of smoothing on 

an object contour, given a "smooth" structuring element. The opening smoothes from the 

inside of the object contour while the closing smoothes from the outside of the object contour. 
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Examples

These operations are illustrated on figures 2 and 3 on 2D examples; the extension to 

3D is straightforward. When erosion is applied, the eroded voxel will be assigned to a 

geological unit randomly selected in the set of units present in the structural element.

The process of opening, on the blue unit, is illustrated figure 2 with 3 geological units 

and a structural element with a size of 3x3. In figure 3, the opening operation is applied on the 

yellow unit, which makes the yellow band included in the red unit disappear.

Growing and shrinking geological units

The previous method allows modifying the shape of the geological units using 

growing (dilation process) or shrinking (erosion process).  This operation occurs during step 9 

of the inversion process. After a random number of iterations, a geological unit is randomly

selected. For this unit an operation (growing or shrinking) is randomly selected as well as one 

of the six possible direction (toNorth, toSouth, toEast, toWest, toTop, toBottom).  Figure 4 

illustrates the different 2D structural elements used with dilation and erosion to obtain 

growing or shrinking of the shapes in the different directions.

SYNTHETIC EXAMPLE

Inversion of gravity tensor and gravity field:

The method is tested on a synthetic case assumed to represent the sought after reality.

The geological model is represented on figures 5 and 6. The body has a constant contrast of 

volumetric mass equal to 3/1000 mKg , the top of the body is at 260m depth, and the bottom 

is 2000m depth. For this body the gravity effect and the tensor are shown in figure 7.

The main point to note here is that the gravity gradient clearly defines the top of the 

structure and its main NE-SW orientation. The gravity field displays the same feature but with 

less contrast.
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The Inversion method is tested with an a priori model, simpler than the synthetic one

(Figure 8). This model is smaller and shallower, with a N-S orientation. The starting tensor 

and gravity field effect are shown in figure 9.

The starting gravity field and gravity tensor are computed assuming the volumetric 

mass property contrast according to a Gaussian distribution with mean equal to 3/1000 mKg

and standard deviation equal to 3/200 mKg . The standard deviation error on the 

measurements is 3 2ms  for the gravity field and 3 E.U ( 2910  s ) for each tensor 

component. The result after 100,000 iterations is shown in figure 9.

Figure 10 shows the comparison along a SW_NE cross section with the "real model 

in a) and the results of the inversion in b) and c). In b) we have the probability to obtain the 

body using only gravity field inversion. In c) we have the probability to obtain the body with 

gravity field inversion plus the inversion of the five components tensor. In b) and c) the red 

lines represent the a priori model shown in 3D in the previous figures. Using tensor data, the 

results show closer agreement to the synthetic model in the northern, the south-western and 

bottom parts. In both cases results can be qualified as acceptable.  However, the quality of the 

results increases using simultaneous inversion of independent fields.

Application to a case history: modelling of granitic intrusions along a 

vertical crustal-scale fault from the French Massif Central.

Geological context

Granite generation and emplacement during orogenesis is a widespread phenomenon 

that remains debated in terms of mechanism of ascent and intrusion. Thus, the drain role of 

the vertical fault system is often invoked to justify the transfer of large amounts of granitic 

melt from the middle crust towards upper levels. Such situation has been studied in the case 

of the Montmarault plutonic complex that is situated in the northern part of the French Massif 

Central (Joly et al., 2007). Several bodies, with different gravimetric and magnetic properties, 

are aligned on the Western side of a sub-vertical crustal-scale fault system that extends over 
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more than 500km from North to South, the Sillon Houiller Fault (SHF). Mapping, lithological 

and mineralogical studies, U-Th/Pb dating, field structural observation and magnetic 

susceptibility anisotropy studies, have shown that the Montmarault plutonic complex 

emplaced within host metamorphic series during the Namurian at about 320 Ma. The 

intrusion is controlled by a regional NW-SE maximum stretching direction, also recorded by 

other Namurian granites throughout the French Massif Central (Faure M., 1995). An a priori 

geometrical model has been built using all available mapping information (Figure 11). This 

initial model is of interest in terms of regional geology, however it is unconstrained 

concerning the relationship between granitic intrusion and crustal-scale fault. Therefore the 

total litho-inversion of gravity and magnetic fields has been applied to the a priori model in 

order to evaluate the possible rooting of the intrusions and the role of the fault system. 

As shown by Bouguer anomaly and magnetic maps (Figure 12), the important 

negative gravity and magnetic anomalies are well located along the SHF and since correlated 

to the thickening of the granite in the vicinity of the fault system. To the west of the SHF, the 

important positive V-shaped magnetic and gravity anomalies suggest that a thin granite of

laccolithic shape, is probably underlain by intrusions of diorite with high magnetic 

susceptibility and density locally outcropping as pods. The late Paleozoic sedimentary basins 

correspond to half-graben structures,  characterised by both negative gravity and magnetic 

anomalies.

A priori model

The a priori model contains 30 geological units and faults. The granitic complex is 

divided in three units, with different lithologies and contrasted magnetic properties.

Petrophysical properties of the modelled units are indicated in Table 1, the probability 

distribution for both density and susceptibility is modelled from measurements as a log-

normal law.
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Model is a parallelepiped 64 km long, 58 km wide and 4 km deep. It was discretized 

using a grid of 64x58x20 parallelepipeds, which results in 74240 parallelepipeds of 1000 m

1000 m  200 m.

Litho-inversion

For the results described here, the litho-inversion of the model involved 4 hours of 

computation with 1,000,000 iterations, of which 56% resulted in modifications to the model, 

and 44% were rejected. Among the modifications, 45% concerned the boundaries and 55% 

were inside the formations. The grids used to perform the inversion are built from different 

surveys; empirically the error on measurements assigned to the gravity data is 8 2ms and 5 

nT for the magnetic data.

The a priori model, obtained by applying the discretization algorithm as described 

above, represents the hypothesis accepted by the geologist (figure 11). From this model, the 

total litho-inversion method provides a set of 560,000 of different models explaining both 

gravity and magnetic anomalies, taking into in account the petrophysical data (densities, 

susceptibilities and no remanent magnetization in this case). The figure 12 shows the 

agreement between the fields created by the model and the measurements, just after 330,000 

iterations. Each of them gives a particular model that is saved in the computer's memory in 

order to study statistically the space of solutions visited by the total litho-inversion method. 

This data structure shows the probabilities of a given lithology at any 3D location of the 

underground and provides a genuine scanner of the continental crust. It is thus possible to 

visualize laterally and in depth the extension of the geological units by successive screening 

2D images representing the probabilities of presence of a studied lithotype in a cross section 

(Figure 13).

In the case of the Montmarault plutonic complex, it can be shown that a vertical 

rooting of the intrusion along the Sillon Houiller fault system is supported by the litho-

inversion of the gravimetric and magnetic fields. 
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At the scale of the studied area, a vertical rooting of the intrusion along the Sillon 

Houiller fault system is supported by the result of litho-inversion as granites are visible from 

b to e cross sections (Figure 13), depth of the main body increasing southwards. This 

modelling provides to the geologist absolutely new information to constrain the interpretation 

of the relationships between granite intrusions and vertical fault system. While the geologic 

map and a priori model suggest a widespread distribution of granites near surface, modelling 

reveals a high probability for the presence of large bodies at depth in the vicinity of the fault. 

At the scale of an individual massif, on section b (Figure 13), the result of total litho-inversion 

confirms the laccolithic shape of the granite intrusion. However, a larger development of the 

diorite at depth is suggested, corresponding to a large magnetic anomaly. Moreover, the 

screening also reveals a strong contrast between the lithologies at depth on each side of the 

fault system, suggesting a role of vertical frontier for the Sillon Houiller fault. The structures 

are thus clarified from the standpoint of volume and position, and the a posteriori density and 

susceptibility distributions, globally confirm the hypotheses on the density and magnetization 

values (figure 14). 

In conclusion, we confirm that the geological hypothesis used to build the geological 

model and the petrophysical measurements are compatible with the geophysical 

measurements of the gravity and magnetic fields. New constrains are drawn for the role of the 

Sillon Houiller fault system as a major drain controlling the ascent of the granitic intrusions 

and as a frontier separating two crustal blocks of different bulk composition. More than of 

regional interest, this case history is considered as representative of many geological contexts 

within different orogens. Such study could be of great interest to evaluate the coupling 

between tectonic processes and granite generation and emplacement.

CONCLUSION

The method shows that a probabilistic description of subsurface lithologic structures 

can be established by inverting multidisciplinary geophysical data constrained by geological 
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and geostatistical priors. The method has been successfully proved by testing on a simple 

synthetic case. This synthetic case has highlighted the fact that quality of the results is 

improved using simultaneous inversion of independent fields. 

The total litho-inversion method enables us to investigate the space of the possible 3D 

models compatible with the geological hypotheses (i.e. the a priori model) and with the 

geophysical and petrophysical data. This 3D inversion method applied to geological and 

geophysical data opens up new perspectives in terms of quantifying the geological 

uncertainties since given an a priori model it  samples the space of solutions that satisfy the 

geophysical potential fields and tensors of these fields while respecting the surface geology, 

nature and topology of the geological units. 

The generation of a space of solutions as a result of total litho-inversion is a concept 

that geologists should integrate in their approach to major scientific issues like the geometry 

of mountain belts or the coupling of deep-seated processes in the Earth and its surface. As far 

as it is stated that our capacity to predict the extension at depth of geological systems and 

units must be significantly improved, this integration process should be generalised. 
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FIGURE CAPTION

Figure 1: Evolution of the likelihood, showing that in some areas it can increase to explore 

the space model.

Figure 2: (a) the geological model. (b) same model after an erosion of the blue unit. (c)

dilation applied to  b, which represents an opening on blue unit of the original model in a.

Figure 3: (a) the geological model. (b) same model after an erosion of the yellow unit. (c) 

dilation applied to b, which represent an opening on yellow unit of the original model in a.

Figure 4:  2D Structural element use for directional growing/thinning.

Figure 5: South east view of the synthetic 3D model.

Figure 6: Different points of view of the synthetic 3D model. On the upper part: view from 

the West. On the lower part: view from the top.

Figure 7: Tensor components and gravity effect of the synthetic 3D model. The Gzz 

component is not represented since equal to -(Gxx+Gyy).

Figure 8: Starting model for inversion, viewed from the South.

Figure 9: State of the fields after 100,000 iterations in the inversion process. From the left to 

the right for each component we have: a description of the misfit, the measured component,

the component for the a priori model, the component of the current model and the misfit.

Figure 10: Comparaison between the synthetic model and inversion results. (a) synthetic 

model. (b) probability to obtain the unit after inversion of the gravity field only. (c)

probability to obtain the unit after simultaneous inversion of the gravity field and the 5 tensors 

components.

Figure 11: A priori model for inversion. (a) Geological map of the studied area. (b) South 

east view of the 3D a priori model generated using maps and orientations foliations. The 3D 

geometry of metamorphic units is displayed only on cross-sections perpendicular to the Sillon 

Houiller Fault (SH), whereas granites and leucogranites are displayed in full 3D respectively 

in red and pink. The SH is the East limit of the granites. 
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Figure 12: Gravity and magnetic anomalies used for inversion. On the upper part: gravity 

fields, on the lower part: magnetic fields. From left to right: measurements, a priori model 

effect and model effect after 330,000 iterations.

Figure 13:  Cross section screening through the 3D models from South-West to North-East 

with NW-SE cross sections. The cross-sections are aligned on the Sillon Houiller Fault (SH). 

From left to right: the a priori model, the probability (in white probability is equal to 1, in 

black probability is equal to zero) to have granites and leucogranites, and the probability to 

found the diorites. 

Figure 14:  Cross section screening through the 3D models from South-West to North-East 

with NW-SE cross sections. The cross-sections are aligned on the Sillon Houiller Fault (SH). 

From left to right: the a priori model, mean density and  the mean susceptibility (we have just 

an induced magnetization). 
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TABLE 1

Units Density

3/ mKg

Density

Variation

3/ mKg

Susceptibility

 SI

Susceptibility

Variation

 SI

Mesozoic and Cenozoic deposits 2500 80 13 6

Permian basin 2500 30 25 13

Stephanian basin 2540 30 25 13

Leucogranite Sioule 2670 20 3142 628

Servant unit 2620 20 1257 700

Treban unit 2620 20 2513 440

Diorite Sioule 2750 20 15080 10000

Diorite 1 2840 40 1256 157

Migmatite Sioule 2750 20 1885 400

Gneiss Sioule 2750 40 628 63

East unit SH 2750 40 650 65

Leucogranite 2670 20 3142 650

Porphyritic granite 1 2670 20 13200 6000

Porphyritic granite 2 2670 20 6283 3000

Porphyritic granite 3 2670 20 126 126

Granite 2600 20 2513 500

Diorite 2 2750 50 15080 10000

Migmatite 2750 20 1885 400

Gneiss 2750 50 650 100

Micaschist 2750 20 650 100

Table1


