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Abstract

It is proposed that convection driven dynamos operating in planetary cores could be

oscillatory even when the oscillations are not directly noticeable from the outside.

Examples of dynamo simulations are pointed out that exhibit oscillations in the

structure of the azimuthally averaged toroidal magnetic flux while the mean poloidal

field shows only variations in its amplitude. In the case of the geomagnetic field,

global excursions may be associated with these oscillations. Long period dynamo

simulations indicate that the oscillations may cause reversals once in a while. No

special attempt has been made to use most realistic parameter values. Nevertheless

some similarities between the simulations and the paleomagnetic record can be

pointed out.
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1 Introduction1

The origin of geomagnetic reversals is a much debated subject among scientists2

in the fields of paleomagnetism and dynamo theory. There is general agreement3

that a detailed understanding of reversals is a key issue of geodynamo theory.4

In this connection also the problem of global excursions of the geomagnetic5

field in which the dipole strength reaches temporarily unusually low values6

has been discussed and it has been suggested (Doell & Cox (1972), Hoffman7

(1981), see also Merrill et al. (1996) and later papers by Gubbins (1999) and8

Wicht (2005)) that global excursions are aborted reversals. Not all recorded9

excursions are global ones, but global excursions still appear to occur more10

frequently than reversals. Langereis et al. (1997) identified at least six global11

excursions in the last about 800 ky since the Brunhes/Matuyama reversal, but12

in the last decade many more global excursions have been found according to13

Lund et al. (2006). In this letter we wish to support the notion that global14

excursions and reversals originate from the same mechanism. An oscillatory15

dynamo process that manifests itself primarily in the toroidal component of16

the magnetic field will be proposed as such a mechanism. Indeed, from the17

perspective of the oscillations, excursions must be considered as the normal18

behavior, while a reversal represents an exceptional excursion in which the19

mean poloidal field is perturbed more strongly that it can recover from its20

low-amplitude state only with the opposite sign.21

Traditionally the geodynamo is regarded as a stationary dynamo in contrast to22

the solar dynamo which exhibits a 22-year period. Dynamo simulations have23

shown, however, that in rapidly rotating spherical fluid shells with significant24

differential rotation often oscillatory dynamos are found. That dynamo oscil-25
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lations may not be visible from the exterior of the conducting fluid sphere26

has been pointed out previously (Busse & Simitev (2006)). The present let-27

ter intends to demonstrate how oscillations can lead to global excursions and28

more rarely to reversals. While the simulations are based on the fundamental29

equations governing the generation of magnetic fields by convection flows in30

rotating spherical shells, only a minimum of physical parameters is introduced31

and a faithful modeling of the Earth’s core has not been the primary goal.32

2 Mathematical formulation33

We consider a spherical fluid shell of thickness d rotating with a constant34

angular velocity Ω. It is assumed that a static state exists with the temperature35

distribution TS = T0 − βd
2
r
2
/2. Here rd is the length of the position vector,36

r, with respect to the center of the sphere. The gravity field is g = −dγr.37

In addition to the length d, the time d
2
/ν, the temperature ν

2
/γαd

4 and38

the magnetic flux density ν(µ̺)1/2
/d are used as scales for the dimensionless39

description of the problem where ν denotes the kinematic viscosity of the fluid,40

κ its thermal diffusivity, ̺ its density, α its coefficient of thermal expansion41

and µ is its magnetic permeability. The Boussinesq approximation is assumed.42

Accordingly, the velocity field u as well as the magnetic flux density B are43

solenoidal vector fields for which the general representation in terms of poloidal44

and toroidal components can be used,45

u = ∇× (∇v × r) + ∇w × r , (1a)

B = ∇× (∇h × r) + ∇g × r . (1b)

By multiplying the (curl)2 and the curl of the equation of motion and of the46

induction equation by r, we obtain four equations for v and w and for h and47

3
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g. These four equations together with the heat equation for the dimensionless48

deviation Θ from the static temperature distribution and with the appropriate49

boundary conditions represent the basis for the mathematical description of50

the evolution in time of thermal convection in the rotating spherical shell and51

of the magnetic field generated by it. Since these equations have been given in52

previous papers (Simitev & Busse (2005), Busse & Simitev (2006)), we list53

here only the dimensionless parameters, the Rayleigh number R, the Coriolis54

number τ , the Prandtl number P and the magnetic Prandtl number Pm,55

R =
αγβd

6

νκ
, τ =

2Ωd
2

ν
, P =

ν

κ
, Pm =

ν

λ
, (2)

where λ is the magnetic diffusivity. We assume stress-free boundaries with56

fixed temperatures and use the radius ratio ri/ro = 0.4,57

v = ∂
2

rrv = ∂r(w/r) = Θ = 0

at r = ri ≡ 2/3 and r = ro ≡ 5/3. (3)

For the magnetic field an electrically insulating outer boundary is assumed58

such that the poloidal function h must be matched to the function h
(e) which59

describes the potential field outside the fluid shell60

g = h − h
(e) = ∂r(h − h

(e)) = 0 at r = ro ≡ 5/3. (4)

In order to avoid the computation of h and g in the inner core, r ≤ ri, we61

assume either an electrically insulating inner boundary,62

g = h − h
(e) = ∂r(h − h

(e)) = 0 at r = ri ≡ 2/3, (5)

or a perfectly conducting inner core in which case the conditions63

h = ∂r(rg) = 0 at r = ri ≡ 2/3 (6)

must be applied. The numerical integration of the equations for v, w, Θ, h and64

g together with boundary conditions (3), (4) and (5) or (6) proceeds with the65
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pseudo-spectral method as described by Tilgner (1999) which is based on66

an expansion of all dependent variables in spherical harmonics for the θ, ϕ-67

dependences, i.e.68

h =
∑

l,m

H
m
l (r, t)Pm

l (cos θ) exp{imϕ} (7)

and analogous expressions for the other variables, v, w, Θ and g. P
m
l denotes69

the associated Legendre functions. For the r-dependence expansions in Cheby-70

chev polynomials are used. Azimuthally averaged components of the fields71

v, w, Θ, h and g will be indicated by an overbar. For most computations to72

be reported here a minimum of 33 collocation points in the radial direction73

and spherical harmonics up to the order 96 have been used. But this high74

resolution was not needed in all cases. Instead of the time t based on the vis-75

cous time scale we shall use in the following the time t
∗ = t/Pm based on the76

magnetic diffusion time, d
2
/λ.77

3 Oscillations of the Toroidal Magnetic Flux78

Even in their turbulent state of motion, convection flows outside the tangent79

cylinder which touches the inner core boundary at its equator remain essen-80

tially symmetric with respect to equatorial plane as is evident from figure 1.81

For this reason dynamo solutions characterized by an axial dipole correspond82

to a mean azimuthal magnetic flux that is antisymmetric with respect to the83

equatorial plane. Oscillations of these axisymmetric flux tubes originate from84

the creation of a pair of new flux tubes with opposite signs at the equatorial85

plane which grow and push the older flux towards higher latitudes as shown in86

figure 2. This process is strongly dependent on the differential rotation which87

is prograde at larger distances from the axis and retrograde at smaller ones.88

The oscillations can be described by Parker’s dynamo wave model (Parker89
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(1955)) as has been done by Busse & Simitev (2006). In the present case of90

figure 2 the oscillation is modified in two respects. First, the mean toroidal91

field becomes nearly quadrupolar, i.e. symmetric about the equatorial plane, as92

the amplitudes of the mean poloidal field and of the differential rotation reach93

their minimum values. Secondly and more importantly, the mean poloidal field94

participates in the oscillation only as far as its amplitude varies. In the case95

of figure 2 its amplitude decays and reaches a minimum around t
∗ ≈ 1.6 at96

which time a magnetic eddy emerges with the opposite sign of the given mean97

poloidal field. Usually this eddy drifts outward and dissipates as it reaches the98

surface of the conducting region such that the original poloidal field prevails.99

Now a relatively long time passes before the process repeats itself and new100

toroidal flux emerges at the equatorial plane. In contrast to the thinner flux101

tubes of dynamos at higher Prandtl numbers which exhibit a more sinusoidal102

oscillation as shown in section (b) of figure 3, the oscillation in the present103

case resembles more a relaxation oscillation as shown in section (a) of figure104

3. The amplitudes H
0

l , G
0

l in this figure are assumed at the mid-radius of the105

fluid shell, but H
0

1
usually does not differ much from the dipole component106

describing the magnetic field outside the fluid shell.107

While the process visualized in figure 2 shares several features with global108

excursions, it may also give rise to reversals. These happen in some cases109

when the emerging eddy with the opposite sign of the poloidal field replaces110

the latter as shown in figure 4. This situation occurs most likely if the eddy111

with the opposite sign emerges near the equatorial plane such that it splits112

the original field into two parts. It is remarkable that the reversed poloidal113

field appears first at low latitudes as has also been observed in the case of114

geomagnetic reversals (Clement (2004)). Note that the radius r = ro + 1.3115
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corresponds approximately to the Earth’s surface. The occurrence of a reversal116

seems to be promoted by a particularly strong equatorially symmetric toroidal117

flux as appears to be indicated by the correlation between reversals and relative118

high absolute values of the coefficient G
0

1
in sections (b) and (c) of figure 3. We119

note in passing that Li et al. (2002), propose a reversal mechanism in which120

the quadrupole mode grows, exceeding the dipole mode before the reversal in a121

manner similar to what happens near the minimum of the oscillations shown in122

figure 2. In contrast, however, our dynamo solutions do not alternate between123

high- and low-energy states, nor do they exhibit a broken columnar vortex124

structure of the velocity field.125

The examples discussed so far all correspond to a single set of parameter val-126

ues. In particular condition (6) for a highly electrically conducting core has127

been used. In order to demonstrate the robust nature of the mechanism of128

global excursions and reversals, we show in figure 5 a sequence of plots ex-129

hibiting a reversal from a dynamo simulation with a quite different set of130

parameters for which condition (5) instead of (6) has been applied. The oscil-131

lations occur somewhat less regularly in this case as is evident from the time132

series of the amplitude of the axial dipole component shown in section (c) of133

figure 3, but the average period is again close to half a magnetic diffusion time.134

A common property of the oscillations is that the quadrupolar components of135

the axisymmetric magnetic field play a significant role. In this respect some136

similarity may be noted with the oscillations displayed in figures 12 and 13 of137

Busse & Simitev (2006).138

Although the inner core does not participate in the oscillations in either of the139

boundary conditions (5) and (6), we expect that the use of a vanishing jump of140

the electrical conductivity at r = ri will not affect the results significantly. As141

7
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has been observed in the dynamo simulations of Wicht (2002) and of Simitev142

& Busse (2005), because of its small volume the inner core does not appear143

to have a significant effect on the dynamo process.144

4 Discussion145

In selecting the dynamo cases displayed in figures 2, 4 and 5 we have em-146

phasized a high value of τ and a reasonably high value of R for which the147

available computer capacity allows to obtain time records extending over148

many magnetic diffusion times. The critical values of the Rayleigh numbers for149

τ = 3×104 and τ = 105 are Rc = 2.35×104 with mc = 10 and Rc = 1.05×106
150

with mc = 11, respectively. Hence the Rayleigh numbers used for the cases of151

figures 2, 4 and 5 exceed their critical values by nearly a factor of four. The152

corresponding average Nusselt numbers at the inner boundary are Nui = 1.58153

and Nui = 1.73 and the corresponding magnetic Reynolds numbers, defined154

by Rm ≡ Pm

√
2E, are Rm = 210 and Rm = 156, respectively. The Prandtl155

number P = 0.1 was used in both cases since it appears to be a reasonable156

compromise between the molecular value P = 0.05 estimated for the outer157

core (Poirier (1988)) and a value of the order unity usually assumed for a158

highly turbulent fluid. Moreover, the choice of a low value of P has allowed159

us to choose a desirable relatively low value of Pm.160

The successful application of Parker’s kinematic model for dynamo waves em-161

ployed by Busse & Simitev (2006) suggests that the oscillations depend pri-162

marily on the differential rotation and the mean helicity of convection which163

are assumed as given. The modified oscillation considered in the present paper164

is characterized by an extended phase of a dominant equatorially symmetric165

8
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(quadrupolar) mean toroidal field which is responsible for the property that166

the period becomes comparable to the magnetic diffusion time. The variations167

of the amplitude of convection and of the differential rotation seem to be of168

lesser importance.169

Using the depth d ≈ 2200 km of the liquid outer core and a typical and often170

quoted value λ ≈ 2 m2/s we find 0.8 × 105 years as the magnetic diffusion171

time of the Earth’s core which corresponds to t
∗ = 1 in the figures of this172

paper. The oscillation period T
∗ ≈ 0.5 obtained in the time series of figure173

3(a) thus roughly equals about 40 ky in the Earth’s core. This period is quite174

comparable to the broad maximum in the region of 30-50 ky that seems to175

characterize the spectrum of the amplitude variations of the geomagnetic field176

(Tauxe & Shackleton (1994), Tauxe & Hartl (1997), Guyodo & Valet (1999))177

throughout the last million years. A more recent analysis (Constable & John-178

son (2005)) has shed some doubts on the existence of such a spectral peak,179

but still confirms a sharp decrease of the spectral power for periods shorter180

than about 30 ky. We also like to draw attention to the property that the181

typical separation between global excursions in table 1 of Lund et al. (2006)182

varies between 30 and 50 ky.183

From the reversals exhibited in figures 3, 4 and 5 it appears that the amplitude184

increases more sharply after the reversal than it decays towards the reversal. To185

demonstrate this effect more clearly we have plotted in figure 6 the coefficient186

H
0

1
in proximity of the reversal as a function of time for each of the last 4187

reversals that have been obtained in the cases a) and c) of figure 3. Although188

the asymmetry between the dipole strengths before and after the reversal is189

not as strong as has been found in the case of paleomagnetic reversals (Valet190

et al. (2005), Guyodo & Valet (2006)), a similar effect seems to exist. Since191

9
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the time records of figure 3 do not exhibit this effect very well we have plotted192

in figure 6 values of H
0

1
at r = ri + 0.5 for shorter time periods. In the case193

R = 850000 H
0

1
at r = ro is also shown (by solid lines) since it represents the194

axial dipole strength of the potential field outside the fluid shell. Apart from a195

small shift in time the value of H
0

1
does not vary much as function of the radius.196

In the continuing investigation of the dynamo oscillations it will be attempted197

to find even closer correspondences with paleomagnetic observations.198

The possibility of toroidal flux oscillations as origin of global excursions and199

reversals proposed in this paper differs from all other mechanisms proposed in200

the literature for reversals and excursions and resembles more the mechanisms201

considered for the solar cycle. In the latter the mean poloidal field fully par-202

ticipates, of course, similarly as in the dipole oscillation of figure 10 of Busse203

& Simitev (2006) except for the property that the solar dynamo wave prop-204

agates towards lower instead of higher latitudes. A comparison of different205

mechanisms for geomagnetic reversals would go beyond the scope of present206

paper and should be postponed until more detailed computational results for207

a wider range of parameters become available.208
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Fig. 1. (color online). Typical structures of the velocity field in the case P = 0.1,

τ = 105, R = 4 × 106, Pm = 0.5 with a perfectly electrically conducting inner

core. The left plot shows lines of constant uϕ in the left half and streamlines

r sin θ∂θv =const. in the right half, all in the meridional plane. The right plot shows

lines of constant ur at r = ri + 0.5 at the time t∗ = 1.486. Positive and negative

values are indicated by solid (red online) and dashed (blue online) lines.
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Fig. 2. (color online). Dynamo oscillation in the case P = 0.1, τ = 105, R = 4×106,

Pm = 0.5 with perfectly conducting inner core. The half circles show lines of constant

uϕ. The full circles show meridional isolines of Bϕ (left half) and of r sin θ∂θh (right

half) at times t∗ = 1.490, 1.538, 1.586, 1.634, (first column, from top to bottom)

and t∗ = 1.682, 1.810, 1.954, 2.034 (second column). The times t∗ refer to figure

3(a).
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Fig. 3. (color online). Selected coefficients at r = ri + 0.5 in the cases (a) P = 0.1,

τ = 105, R = 4 × 106, Pm = 0.5 with perfectly conducting inner core; (b) P = 5,

τ = 5000, R = 600000, Pm = 10 with electrically insulating inner core; (c) P = 0.1,

τ = 3 × 104, R = 850000, Pm = 1 with insulating inner core. The coefficient of

the axial dipole component H0

1
(axial quadrupole component H0

2
) is indicated by a

solid/red online (dashed/blue online) line. The coefficient G0

2
in (a) is indicated by

a dashed/green online line.
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Fig. 4. (color online). Magnetic field polarity reversal in the case P = 0.1, τ = 105,

R = 4× 106, Pm = 0.5 with perfectly conducting inner core. The left column shows

meridional isolines of Bϕ (left half) and of r sin θ∂θh (right half). The right column

shows lines Br = const. at r = ro+1.3. The interval between the plots is ∆t∗ = 0.048

with the first plot at t∗ = 0.994 (see figure 3(a)).
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Fig. 5. (color online). Same as figure 4, but for P = 0.1, τ = 3 × 104, R = 850000,

Pm = 1 with insulating inner core. The interval between the plots is ∆t∗ = 0.07

with the first plot at t∗ = 26.155 (see figure 3(c)).
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Fig. 6. (color online). Time-series of the coefficients of the axial dipole component

H0

1
at r = ri + 0.5 across the last 4 reversals in the cases P = 0.1, τ = 105,

R = 4 × 106, Pm = 0.5 with perfectly conducting inner core (top) and P = 0.1,

τ = 3× 104, R = 850000, Pm = 1 with insulating inner core (bottom). For the sake

of comparison, the time series have been translated along the time axis so that the

polarity transitions occur at t = 0 and −H0

1
is plotted for every second reversal. In

both panels, black, red, blue and green color correspond to reversals 1(2) to 4(5) of

the respective cases in figure 3. In the bottom panel, H0

1
at r = ro has been included

in order to represent the axial dipole strength of the potential field outside the fluid

shell. H0

1
at r = ri + 0.5 (given by dashed lines) precedes it by about ∆t∗ ≈ 0.04
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