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Abstract

In upper crustal conditions, elastic anisotropy of rocks is mainly due to cracks,
as long as the anisotropy of the background matrix remains low. Because, in gen-
eral, rock anisotropy remains weak, in the sense that hexagonal symmetry may be
sufficient to handle it, Thomsen suggested that a set of three parameters would be
convenient to describe it. Using effective elasticity, we derive Thomsen’s parameters
for the case of dry and fluid-saturated cracks, in a rock of isotropic background, in
terms of crack density parameters and fluid compressibility. These results can be
of interest for the interpretation of seismological and seismic data. They provide
moreover a way to identify the fluid nature (gas or liquid) and to extract the crack
density tensor from elastic wave data. Frequency effects are discussed when fluid is
present so that frequency dependence can be accounted for.
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1 Introduction

At all scales, from local to regional, rocks are heterogeneous. The influence of
heterogeneity in rock, as long as it remains moderate, can often be handled
by using the ergodic assumption, considering that the medium is statistically
homogeneous. That means that a representative volume element (RVE) exists
and that any part of the system with a volume much larger than the RVE
has identical physical properties. In this case, the medium can be considered
as invariant by translation (for any property averaged over a RVE). This is
obviously applicable only to geological objects much greater than a RVE.
In most cases, crustal rocks heterogeneity is mainly the result of variable
mineral composition and of the presence of pores and cracks. Effective Medium
Theories (EMT) have been constructed that allow to successfully predict rock
properties as long as the degree of heterogeneity is not large. There exists in
general some critical threshold above which such an approach does not apply.
The limits of application of EMT to rocks has been examined by Guéguen
et al. (1997). We restrict ourselves in the following to the applicability field of
EMT.

Use of EMT in order to predict elastic properties and hence elastic wave veloc-
ities is of direct interest. Elastic waves velocities are currently obtained from
seismic and seismological data. The goal of Rock Physics is to extract from
such data information on the physical state of the rock. In the oil industry, this
has direct bearings on a quantification of the oil content and the identification
of the fluid nature, i.e. oil or gas. In seismotectonics, an open question remains
to know whether earthquakes can be predicted or not: elastic waves velocities
variations have been considered as a possible precursory effect in that case.

In crustal conditions, all rocks contain cracks. Cracks represent an extremely
small amount of porosity, typically less than 10−2. Yet they have been identi-
fied for a long time as the major cause of elastic properties modifications (Sim-
mons and Brace 1965; Walsh 1965). Their existence explains the differences
observed between static and dynamic moduli, and also the elastic anisotropy
of rocks which do not exhibit any mineral preferred orientation (Kern 1978;
Sarout and Guéguen 2008a; Sarout and Guéguen 2008b). Because cracks are in
general due to anisotropic stresses, crack orientation distribution is expected
to be anisotropic. Reviews on cracked solids have been given by Kachanov
(1992) or Kachanov (1993) who provide appropriate EMT methods to calcu-
late anisotropic elastic properties of cracked rocks.

Yet elastic anisotropy of rocks is moderate in most cases, and the transversely
isotropic (TI) symmetry is sufficient to describe it in general. This has led
Thomsen (1986) to introduce three very convenient parameters to express the
phase velocities of P , SV , SH waves in any plane containing the symmetry
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axis. EMT calculations of anisotropic elastic properties provide a way to get
Thomsen’s parameters.

When fluids are present, frequency dependence is expected and the combined
use of EMT methods and poroelasticity theory allow to account for it (Le
Ravalec and Guéguen 1996). We focus in the following on elastic wave ve-
locities in porous/cracked rocks and develop a method to derive theoretically
Thomsen’s parameters in the dry and saturated case. Frequency effects are
calculated using both EMT and poroelasticity. We focus our attention to the
case of a rock with isotropic matrix, i.e., anisotropy is only due to the presence
of cracks.

2 Effective Elastic Properties

We introduce in this section the basic results that are required to express
elastic properties of cracked rocks. Following Kachanov (1993), we give the
key relations that express effective elastic properties in terms of rock matrix
elastic constants, fluid bulk modulus, and crack parameters. Because cracks
are elastically compliant, we consider a single crack as a source of extra strain.
This implies that EMT is used to calculate the extra compliance that is due
to the presence of a crack. A stiffness approach would have to be considered
if a stiff inclusion (source of extra stress) was present. Each of these two
approaches - compliance and stiffness - is appropriate for either of the two
cases: compliant or stiff inclusion.

2.1 A Single Crack

For a single pore, the extra strain per reference volume V due to its presence
is an integral over the pore boundary

∆² =
1

2V

Z
(un+ nu)dS, (1)

where u is the displacement vector generated by applied stress σ, and n the
crack unit normal vector. For a crack, (1) reduces to

∆² =
1

2V

Z
([u]n+ n[u])dS, (2)

where [u] = u+ − u− is the displacement discontinuity vector along the crack
surface (the + side corresponds to the positive direction of n).
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For a flat (planar) crack, n is constant along S and

∆² =
S

2V
(bn+ nb), (3)

where b =< u+ − u− > is the average, over S, displacement discontinuity
vector.

Strains generated by a flat crack under remotely applied stress σ are given
by (3); they are determined by b, the average displacement discontinuity. A
symmetric second rank crack compliance tensor B can be introduced that
relates b to vector of uniform traction n · σ induced at the crack site (in a
continuous material) by σ

b = n · σ ·B. (4)

Relation (4), i.e., introduction of tensor B, is simply a statement of linearity
of the system (b is a linear function of n ·σ). For the elastically axisymmetric
crack shapes in an isotropic matrix

B = BN nn+BT (I− nn) . (5)

For a 3−D circular crack (dry case) of radius a (Kachanov 1993)

Bdry
T =

32 (1− ν2o) a

3πEo (2− νo)
,

Bdry
N

Bdry
T

=1− νo
2
. (6)

where Eo and νo are the Young modulus and Poisson’s ratio of the isotropic
rock forming mineral, respectively.

The values of Bdry
N and Bdry

T are relatively close (the factor νo/2 is of the
order of 0.1 for νo = 0.25, a typical value for rocks) and the deviation of the
proportionality of B to I is relatively small.

We now focus on the saturated case of flat narrow cracks, and account for the
fact that the normal compliances of a crack is changed due to fluid saturation.
Specializing formulas of (Shafiro and Kachanov 1997) for the case of cracks,
we obtain the fluid saturated values of BN and BT for a circular crack of
radius a, that generalize formulas (6) for a dry crack
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Bsat
T =

32 (1− ν2o) a

3πEo (2− νo)
,

Bsat
N

Bsat
T

=
µ
1− νo

2

¶
δf

1 + δf
, (7)

where the solid/fluid coupling parameter δf characterizes the coupling between
the stress and the fluid pressure for a given spheroid of aspect ratio ζ. For a
first-order spheroidal crack (ζ ¿ 1), δf is controlled by the crack aspect ratio

δcrackf =

"
Eo

Kf
− 3 (1− 2νo)

#
πζ

4 (1− ν2o)
, (8)

where ζ is the crack aspect ratio (ζ = w/a where 2w is the crack average
opening). In general, ζ is not the same for cracks of all sizes and orientations,
therefore, δcrackf is generally different for different cracks. For instance, if a
water-saturated crack (Kf = 2.3 GPa) of aspect ratio ζ = 10−3 is embedded
in an isotropic matrix with Eo = 70 GPa and νo = 0.27, then δcrackf ' 10−2.
When δcrackf → ∞, we recover (6) from (7). This limit applies to a dry or
gas-filled crack. Note that the other limit, i.e., δcrackf → 0, is not physically
possible. It would imply either a very stiff fluid (Kf >> Ko = Eo/3 (1− 2νo)),
or an infinitely thin crack (ζ → 0). The first case is out of the range of validity
of the compliance approach (a stiff inclusion would require the use of the
stiffness approach), while the second case implies a zero crack aperture, hence
no fluid.

2.2 Multiple Cracks and Crack Induced Anisotropy

In this section, compliance contributions of cracks are evaluated in the non-
interaction approximation, (NIA) without accounting for the interactions be-
tween cracks. Various approximate schemes, e.g., self-consistent (Hill 1965;
Budiansky and O’Connell 1976), differential (Vavakin and Salganik 1975;
Bruner 1976; Hashin 1983; Le Ravalec and Guéguen 1996; Saenger 2007), and
Mori-Tanaka’s (Mori and Tanaka 1973; Benveniste 1987), account for interac-
tions by making the effective constants as functions of the parameters defined
in the NIA. As discussed by Kachanov (1993) and Grechka and Kachanov
(2006), the NIA is valid over a broad range of crack densities. For multiple
flat cracks in the NIA, the extra strain due to these cracks is simply the sum
∆²= 1

2V

P
[(bn+ nb)S](m), that may be replaced by integration over orien-

tations if computationally convenient. The overall strain (per representative
volume V containing cracks) can be represented as a sum
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²= ²o +∆²,

=S : σ = (So +∆S) : σ, (9)

where S are the effective compliances, So are the bulk material compliances
(assumed to be isotropic here) and σ are the applied elastic stresses. Finding
the effective compliances reduces to expressing extra strain ∆² due to cracks
in terms of applied stresses. For a single crack m, the fundamental quantity to
be estimated is the compliance contribution tensor, a fourth-rank tensor such
that the crack strain contribution ∆² is

∆²(m)=∆S(m) : σ,

=H(m) : σ. (10)

The trace of this tensor tr
³
H(m) : I

´
= H

(m)
iijj is the compressibility of the m

th

pore: it was calculated by Zimmerman (1991) for a number of pore shapes of
relevance to rocks. In the complete form, H-tensor was given, for a number of
2−D and 3−D pore shapes by Kachanov (1993). Then, for multiple cracks,
in the NIA, we have

∆² =
X
m

H(m) : σ, (11)

which identifies the fourth-rank tensor

∆S = H =
X
m

H(m), (12)

as the proper general damage parameter (tensorial crack density).

In the isotropic case, i.e., isotropic background solid and randomly oriented
circular cracks, the crack density parameter is the classical scalar

ρ =
1

V

X
m

³
a3
´(m)

, (13)

where a(m) is the mth crack radius. Note that the proportionality of the indi-
vidual crack contributions to their sizes cubed corresponds to their actual con-
tributions to the overall compliances. This parameter, introduced by Bristow
(1960) in the context of materials science, and by Walsh (1965) in the geo-
physical context was extended to the elliptic planar cracks by Budiansky and
O’Connell (1976). We examine in the following the general case of non-random
crack orientations and crack-induced anisotropy. This requires generalization
of the scalar crack density parameter, ρ, to a tensorial one. Indeed, for any
flat crack, its contribution to the overall strain is given by H-tensor, that is
expressed in terms of B using equations (3) and (4)

∆S = H =
S

V
nBn, (14)
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or, in indicial notation

∆Sijkl=
S

4V
[Biknjnl +Bilnjnk

+Bjkninl +Bjlnink] (15)

with symmetrization with respect to ij ↔ kl, i ↔ j, k ↔ l, imposed on
ijkl components. Therefore, for multiple flat cracks, the proper general crack
density parameter is the fourth-rank tensor

∆S = H =
1

V

X
m

(S nBn)(m). (16)

Note that this last formula holds for flat cracks of arbitrary shapes, provided
that B is known for the given shape.

2.3 Dry Cracks Compliances

We now consider dry circular cracks for which BN and BT are known to be
different but relatively close from equation (6). From equations (6) and (16),
the extra compliances are

∆Sdry
ijkl=

32(1− ν2o)

3(2− νo)Eo

∙
1

4
(δikαjl+

δilαjk + δjkαil + δjlαik) (17)

−νo
2
βijkl

¸
,

in terms of second- and fourth-rank damage tensors

αij =
1

V

X
m

³
a3 ninj

´(m)
βijkl=

1

V

X
m

³
a3ninjnknl

´(m)
(18)

where we note that in addition to second rank crack density tensor α, fourth
rank tensor β emerges as a second crack density parameter. Note that

βijqq =
1

V

X
m

³
a3ninjnqnq

´(m)
=
1

V

X
m

³
a3ninj

´(m)
= αij,

βppqq =
1

V

X
m

³
a3npnpnqnq

´(m)
=
1

V

X
m

³
a3
´(m)

= tr (αij) = ρ. (19)
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Because of the small factor νo/2, one may note that the β-term contribution is
small in the dry case. However, retaining α as the sole crack density parameter
is not a very good approximation and may be misleading.

Of particular interest for geophysical applications is the case of transverse
isotropy (TI), or hexagonal, symmetry; in the text to follow, we choose x3 as
the axis of symmetry. This covers two main orientation distributions of cracks
(or any combination of both):

(i) Approximately parallel cracks, all perpendicular to x3. This case is rele-
vant, for example, for foliated rocks where cracks are almost exactly parallel.
Then α11 = α22 = 0 and α33 6= 0;

(ii) Cracks with normals randomly oriented in plane x1x2. Then α11 = α22 6=
0 and α33 = 0. This case is relevant to rocks undergoing deviatoric tectonic
stresses.

In both cases, α11 = α22, in agreement with the condition 2∆Sdry
1212 = (∆Sdry

1111−
∆Sdry

1122) imposed by transversely isotropic symmetry (Nye 1979). Note that β
is symmetric with respect to all rearrangements of indices, e.g., β1133 = β1313 =
β2233 = β2323, β1122 = β1212. Therefore we have

Sdry
1111=Sdry

2222 =
1

Eo
+ h

µ
α11 −

νo
2
β1111

¶
,

Sdry
3333=

1

Eo
+ h

µ
α33 −

νo
2
β3333

¶
,

Sdry
1133=Sdry

2233 = Sdry
3311 = −

νo
Eo
− νo
2
β1133,

Sdry
1212=

Sdry
1111 − Sdry

1122

2
=
1 + νo
2Eo

+
h

2

µ
α11 −

νo
3
β1111

¶
, (20)

Sdry
1313=Sdry

3232 =
1 + νo
2Eo

+
h

4
(α11 + α33 − 2νoβ1133),

where

h =
32(1− ν2o)

3(2− νo)Eo
. (21)

2.4 High Frequency Compliances of Fluid-Saturated Cracks

This section focuses on fluid-saturated rocks. The presence of a liquid instead
of air “stiffens” cracks and thus may strongly affect their compliance contri-
butions. Crack density parameters need to be modified; in particular, crack
aspect ratios, albeit small, become important factors, since they control the

8
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stiffening effect of the fluid. One of the consequences is that the fourth-rank
tensor β starts to play an important role.

In the following, the fluid is assumed to be linearly compressible, with bulk
modulus Kf . We also assume that δf and ζ can be approximately considered
as identical for all cracks. It would be, of course, more satisfactory to introduce
a distribution of ζ values. However, the lack of appropriate, reliable data, on
such distributions on actual rocks prevents, in general, from using a more
complete theory. Then equation (17) is modified into

∆Ssat
ijkl=h

∙
1

4
(δikαjl + δilαjk

+δjkαil + δjlαik) (22)

+ψβijkl
i
,

where αij and βijkl in the fluid-saturated case are still given by (18). Tensor
β in the saturated case enters now with multiplier

ψ = (1− νo
2
)

δf
1 + δf

− 1, (23)

instead of −νo/2 in the dry case. In the isotropic case (random crack orienta-
tions, αij = (ρ/3)δij) this formula recovers results of Budiansky and O’Connell
(1976). We emphasize that the compliances given by (22) are unrelaxed com-
pliances, i.e., no fluid flow occurs at a local scale between neighbor pores
(see section 2.5). These unrelaxed compliances are relevant at high frequen-
cies. It makes the difference with the dry case, i.e., Bsat

N and Bsat
T are sub-

stantially different, making the β-tensor terms non-negligible. In the TI case
(the most frequent anisotropic case in geophysics), the number of indepen-
dent elastic constants is five (full, non-elliptic TI symmetry), each of them
depends on seven parameters (Eo, νo, two α components, and three β compo-
nents). Indeed, for a general TI orientation distribution of cracks, α11 = α22,
β1111 = β2222, β1212 = β1122 = β1111/3. Recall that β may further be simplified
since it is symmetric with respect to all rearrangement of indices, implying
that β1313 = β1133 = β2323 = β2233, and leaving only three non-zero βijkl
components. For this fluid-saturated case, equations (20) become

9
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Ssat
1111=Ssat

2222 =
1

Eo
+ h (α11 + ψβ1111) ,

Ssat
3333=

1

Eo
+ h (α33 + ψβ3333) ,

Ssat
1133=Ssat

2233 = Ssat
3311 = −

νo
Eo
+ hψβ1133,

Ssat
1212=

Ssat
1111 − Ssat

1122

2
=
1 + νo
2Eo

+
h

2

Ã
α11 +

ψ

3
β1111

!
, (24)

Ssat
1313=Ssat

3232 =
1 + νo
2Eo

+
h

4
(α11 + α33 + 4ψβ1133) ,

where we note that these high frequency compliances Sijkl depend on αij and
βijkl components in a linear fashion. Note that for identical spheroidal cracks,
the crack porosity φ is related to the crack density ρ and average aspect ratio
ζ by

φ =
4

3
πρζ. (25)

Crack porosity is useful only in the water-saturated case, for spheroidal cracks.
Although such a case of identical spheroids can only be an approximation for
real rocks, it allows to point out the fact that, for a given porosity, crack density
ρ and aspect ratio ζ cannot be described independently since ζ = 3φ/4πρ
Sarout and Guéguen (2008b).

2.5 Effective Elasticity and Poroelasticity

The effective elasticity of fluid-saturated rocks with cracks and pores depends
on the ratio between the rate of loading and the rate of fluid diffusion in
the rock. In the context of wave propagation, this means dependence on the
frequency. In order to illustrate this effect, we consider two limiting cases. The
first one is such that within any Representative Volume Element (RVE), an
equilibrium isobaric situation exists (identical fluid pressure in all pores and
cracks as resulting from local flow). The second one corresponds to a state
where no local flow at all takes place, so that pores and cracks, in a given
RVE, have different fluid pressures.

At this point, it is important to discuss some basic results of Biot’s theory of
poroelasticity (Biot 1941; Biot 1956a; Biot 1956b; Guéguen et al. 2004). The
key point is that only the first of the above mentioned situations (isobaric
RVE) is within the scope of this theory. Indeed, poroelastic theory considers
the porous/cracked rock as a continuous medium where, locally, all quantities
are defined by averaging over the RVE. Pores and cracks are assumed to be
interconnected and fluid pressure is defined over a RVE. Each mathematical
point of the equivalent continuous medium represents a RVE.

10
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2.5.1 Relaxed (isobaric) Compliances, Drained and Undrained

Let us first assume the isobaric condition for the fluid within any RVE so that
Biot’s theory of poroelasticity applies (isobaric RVE, relaxed compliances).
Poroelasticity defines in that case two types of compliances, the drained and
undrained ones.

The drained compliances, Sd, correspond to a deformation where each point
of the equivalent continuous medium is subject to a constant fluid pressure
(through connection to some reservoir). However, its fluid mass varies (through
exchange with the reservoir). As a consequence, flow takes place over a macro-
scopic scale such as the wavelength scale. This assumes a quasi-static deforma-
tion because fluid diffusivity d in most rocks is typically small (fluid diffuses
over the scale l in a time τ ∼ l2/d). For example, for a wavelength l ≈ 5 m
(frequency in the seismic kHz range), and a diffusivity d ≈ 10−2 m2.s−1 (typ-
ical for water in a sandstone of permeability 0.01 Darcy and shear modulus
1010 Pa, see Guéguen and Palciauskas (1994)), this implies that τ ≈ 103 s, a
very large time period compared to the wave period. Thus, no macroscopic
flow takes place during a wave period, and, as a consequence, the drained com-
pliances are not those that are reflected in wavespeeds. The conclusion seems
to be that drained compliances can be measured in quasi-static fluid-saturated
deformation conditions only. However, since linear poroelasticity ignores any
pressure dependence of compliances (it is a linear theory, compliances are con-
stant quantities), a simple way to measure the drained compliances is to use
dry rock samples, in which case fluid pressure is pf = 0. The “drained” com-
pliances of poroelasticity Sd are thus identical to the “dry” compliances of
effective elasticity Sdry, i.e., Sd = Sdry.

The undrained compliances, Su, of poroelasticity correspond to the opposite
situation, a deformation where each point of the equivalent continuous medium
has a constant fluid mass and its fluid pressure varies as a consequence of stress
variations. There is no macroscopic fluid flow between RVE’s but the pressure
varies from one point of the equivalent continuous medium to another. This
means that any RVE is in the isobaric state, but the fluid pressure varies from
one RVE to another. Such a situation corresponds well to the example con-
sidered above, where a 5 m wavelength perturbation propagates through the
medium. The wavespeeds “see” the undrained compliances because no macro-
scopic fluid flow can possibly take place. Undrained compliances are measured
under any conditions where there is not enough time for the macroscopic flow
to occur, and yet enough time for local flow to occur (at the RVE scale). But,
if wavespeed measurements are performed at ultrasonic frequencies, typical
of laboratory experiments, the RVE is not isobaric. In such a situation, high
frequency unrelaxed compliances Ssathigh are extracted, which are different from
the undrained compliances Su = Ssatlow.

11
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Note also that Biot-Gassmann (isotropic porous medium) and Brown-Korringa
(anisotropic porous medium) relations are useful for prediction of undrained
compliances Su from drained Sd ones (Biot 1941; Gassman 1951; Brown and
Korringa 1975; Schubnel and Guéguen 2003).

2.5.2 Unrelaxed Compliances

The case “non-isobaric RVE, unrelaxed compliances” is out of the validity
range of Biot’s theory of poroelasticity since fluid pressure is variable within a
RVE. Of course, it is well within the validity range of the concept of effective
elasticity since stresses and strains can be averaged in spite of non-uniformity
of fluid pressure in RVE. Fluid pressures in pores or cracks of different shapes
and orientations are different (pressure polarization), since there is not enough
time for local fluid flow. Above a certain critical frequency, any experimental
measurement of wavespeeds corresponds to this non-isobaric situation. There
exists a transition domain between “low” and “high” frequency regimes.

The pressure polarization is coupled with the effective elastic properties of
the RVE. An important observation is that, in the limit of narrow, crack-like
pores, their (small) aspect ratios start to play an important role (in contrast
with the dry rock, where they do not matter): they determine the stiffening
effect of fluid.

The question is now: at what frequency fc does the “pressure polarization”
start to become noticeable enough? In fluid saturated cracked rocks, squirt
flow at a microscopic scale is responsible for the frequency dependence of
the elastic wave velocities. Ultrasonic measurements in the laboratory provide
high frequency (MHz) values of the velocities (unrelaxed compliances Ssathigh),
whereas field data (seismology and seismics) correspond in general to low
frequency (kHz - Hz) values (relaxed compliances Ssatlow). The low frequency
values are, as discussed above, the relaxed undrained quantities of poroelastic
theory, i.e., Su = Ssatlow (but, of course, the high frequency values are not the
relaxed drained ones Ssathigh 6= Sd). The high frequency unrelaxed compliances
Ssathigh obtained in the laboratory are not the relaxed compliances measured
at the field scale Su = Ssatlow, because of local flow at a microscopic scale
(within a RVE). The critical frequency of maximum dissipation due to this
local fluid flow fc is obtained by calculating the time needed for local fluid
motion between two neighbor cracks, as due to local pressure gradients (Le
Ravalec and Guéguen 1996)

fc ≈ ζ3Eo/20η (26)

where typically crack aspect ratio ζ ≈ 10−3, sandstone Young’s modulus Eo ≈
70 GPa, fluid viscosity η ≈ 10−3 Pa.s, so that fc ≈ 3.5 kHz.
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2.6 Low Frequency Compliances of Fluid-Saturated Cracks

Using equations (17), (22) and Brown-Korringa relations for the saturated
transversely isotropic cracked rock yields

Shigh
ijkl − Slow

ijkl=h

⎡⎢⎣µψ + νo
2

¶
βijkl + h

³
αij − νo

2
βijqq

´ ³
αkl − νo

2
βppkl

´
³

1
Kdry
− 1

Ko

´
+ φ

³
1
Kf
− 1

Ko

´
⎤⎥⎦ ,

Shigh
ijkl − Slow

ijkl=h

"µ
ψ +

νo
2

¶
βijkl +

µ
1− νo

2

¶
αijαkl

(1 + δf) tr (αij)

#
, (27)

where φ is the crack porosity defined in (25). Note that this relation is different
from that given in (Schubnel and Guéguen 2003). This latter was calculated
by neglecting the β-terms in the dry case. Such an approximation introduces
errors that are significant when dispersion effects are investigated.

Therefore, low frequency elastic compliances are directly extracted from high
frequency compliances measured in the laboratory at ultrasonic frequencies in
both dry and fluid-saturated conditions. In the transversely isotropic cracked
rock configuration, (27) translates to

Slow
1111=Shigh

1111 − h

"µ
ψ +

νo
2

¶
β1111 +

µ
1− νo

2

¶
α211

(1 + δf) (2α11 + α33)

#
,

Slow
3333=Shigh

3333 − h

"µ
ψ +

νo
2

¶
β3333 +

µ
1− νo

2

¶
α233

(1 + δf) (2α11 + α33)

#
,

Slow
1133=Shigh

1133 − h

"µ
ψ +

νo
2

¶
β1133 +

µ
1− νo

2

¶
α11α33

(1 + δf) (2α11 + α33)

#
,(28)

Slow
1212=Shigh

1212 − h

"µ
ψ +

νo
2

¶
β1111
3

#
,

Slow
1313=Shigh

1313 − h
∙µ
ψ +

νo
2

¶
β1133

¸
,

where the reference frame (x1, x2, x3) coincides with the principal axes of the
crack density tensor α such that α12 = α13 = 0.

Further, in the fluid-saturated case for which a difference between high and
low frequency compliances exists, and using relations (24) for estimating Shigh

ijkl

components, we get

13



Page 14 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

Slow
1111=

1

Eo
+ h

"
α11 −

νo
2
β1111 −

µ
1− νo

2

¶
α211

(1 + δf) (2α11 + α33)

#
,

Slow
3333=

1

Eo
+ h

"
α33 −

νo
2
β3333 −

µ
1− νo

2

¶
α233

(1 + δf) (2α11 + α33)

#
,

Slow
1133=−

νo
Eo
− h

"
νo
2
β1133 +

µ
1− νo

2

¶
α11α33

(1 + δf) (2α11 + α33)

#
, (29)

Slow
1212=

1 + νo
2Eo

+
h

2

∙
α11 −

νo
3
β1111

¸
,

Slow
1313=

1 + νo
2Eo

+
h

2

∙
α11 + α33

2
− νoβ1133

¸
,

where we note that unlike high frequency compliances Shigh
ijkl , low frequency

compliances Slow
ijkl depend on αij and βijkl components in a non-linear fashion.

3 Elastic Wave Velocities and their Anisotropy

In the dry case, wavespeeds are controlled by quasi-static effective elastic prop-
erties. Both field and laboratory data are in the validity domain of linear elas-
ticity, i.e., they are both low strain amplitudes measurements. Both provide
quasi-static effective properties that can be directly compared.

However, measurements in the saturated case exhibit frequency dependence
(dispersion). The low frequency (quasi-static) regime extends up to a critical
frequency fc in this case. Only above fc are measured high frequency effective
elastic properties. This implies that laboratory (high frequency) data cannot
be directly compared to field (low frequency) data. However, using poroelastic
theory makes it possible to compare them, as discussed in sections 2.5 and
2.6.

3.1 Anisotropy and Thomsen’s Parameters

Thomsen introduced three dimensionless parameters, ε, γ and δ, that char-
acterize the extent of anisotropy in a way suitable for geophysical applica-
tions of elastic theory. He concentrated on TI media, the most frequent case
in geophysics, for which five independent elastic constants are needed. The
three parameters ε, γ and δ, together with the velocities V o

P =
q
C33/ρ and

V o
S =

q
C44/ρ, where ρ is the rock density, characterize TI elastic properties

in a way equivalent to the five independent elastic constants C11, C33, C13,
C44 and C66 in Voigt’s two-index notation for instance. Thomsen’s parame-
ters allow us to discriminate the isotropic contribution V o

P and V
o
S to the over
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all elastic properties from the deviation of these properties, ε, γ and δ, from
isotropy. Thomsen’s anisotropy parameters are defined as

ε=
C11 − C33
2C33

, γ =
C66 − C44
2C44

,

δ=
(C13 + C44)

2 − (C33 − C44)
2

2C33(C33 − C44)
. (30)

where stiffnesses Cij in Voigt’s two-index notation are obtained from the ten-
sorial inversion of the elastic compliances Sijkl given by (20), (24) or (29)

The so-called anellipticity parameter η = (ε−δ)/(1+2δ) quantifies the depar-
ture of the wave front from an ellipsoidal shape. Thomsen’s parameters cancel
in the case of isotropy; if all of them are much smaller than 1, the anisotropy
is considered to be weak, in the sense of low amplitude of anisotropy within
a given symmetry group such as transverse isotropy (hexagonal symmetry).
Within this approximation, the angular variations of the phase velocities, in
any plane containing the symmetry axis x3, are given by approximate rela-
tions obtained from Taylor’s expansion to the first order in terms of the small
quantities ε, γ and δ, i.e.,

VP (θ)≈V o
P (1 + δ sin2 θ cos2 θ + ε sin4 θ),

VSV (θ)≈V o
S

⎛⎝1 + Ã
V o
P

V o
S

!2
(ε− δ) sin2 θ cos2 θ

⎞⎠ , (31)

VSH(θ)≈V o
S (1 + γ sin2 θ),

where θ is the phase angle between the wave-front normal and the TI axis x3.
There are two shear waves, denoted by SH for the pure shear wave polarized
perpendicularly to x3 and SV for the pseudo-shear wave polarized normal to
the SH polarization. Note that the case η = 0, i.e., ε = δ corresponds to
VSV (θ) ≈ V o

S and VP (θ) ≈ V o
P (1 + δ sin2 θ). For the case η = 0, any wave front

propagating in a plane containing x3 is elliptic, i.e., both VP (θ) and VSH(θ)
have a sin2(θ) dependence.

3.2 Elastic Anisotropy of a Dry Cracked Medium

In that case, no frequency dependence of elastic wave velocities is expected. We
consider now the crack-induced anisotropy of a dry rock given by equations
(17) or (20). Two cases are detailed in this section, the approximate (βijkl
terms neglected) and the complete dry solutions.

In the approximate dry solution, the overall anisotropy is transverse isotropy
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of the simplified type, where five constants (V o
P , V

o
S , ε, γ and δ) reduce to four

independent ones (V o
P , V

o
S , γ and ε = δ), that depend on four microstructural

parameters, i.e., α11, α22 = α33, Eo and νo. The obvious question is then: what
are the relations between the three Thomsen’s parameters ε, γ and δ on one
hand, and the four parameters (Eo, νo, α11, α33) on the other hand ? Using
either Eo, νo or So

11 = 1/Eo, S
o
12 = −νo/Eo, (Voigt’s notation), one obtains

εdry = δdry =
h(α33 − α11)(1/Eo + hα11)

2 [(1 + νo) /Eo + hα11] [(1− νo) /Eo + hα11]
, (32)

and

γdry =
h (α33 − α11)

4 [(1 + νo) /Eo + hα11]
. (33)

In this case, anellipticity η = 0 and any wave front propagating in a vertical
plane containing x3 is elliptic (Thomsen 1986). Such a simplification is of
interest in seismics. One sees from (32) and (33) that Thomsen’s parameters
are in that case a direct measure of α11 and α33 if the matrix elastic constants
Eo and νo are known. A further simplification occurs in the case where either
α11 or α33 vanishes (for example one set of parallel cracks).

In the complete dry solution, the overall anisotropy is general transverse
isotropy, characterized by five independent elastic constants, that depend on
seven microstructural parameters, i.e., α11, α22 = α33, β1111, β3333, β1133, Eo

and νo. Equations (17) or (20) allows us to explicit the relationship between
ε, γ and δ and those microstructural parameters, i.e.,

εdry =
ao + a1ψd + a2ψ

2
d

bo + b1ψd + b2ψ
2
d

,

δdry =
co + c1ψd + c2ψ

2
d + c3ψ

3
d

do + d1ψd + d2ψ
2
d + d3ψ

3
d

, (34)

and

γdry =
h [3 (α33 − α11)− 4ψd (β1111 − 3β1133)]
12 [(1 + νo) /Eo + hα11] + 8hψdβ1111

, (35)

where

ψd = −
νo
2
, (36)

and
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ao=9Eoh(1 +Eohα11)(α11 − α33),

a1=3Eoh[(3 + 2νo + 6Eohα11 − 3Eohα33)β1111
−3(2νoβ1133 + (1 +Eohα11)β3333)],

a2=E2
oh

2
h
8β21111 + 9

³
β21133 − β1111β3333

´i
,

bo=18
h
ν2o − (1 +Eohα11)

2
i
,

b1=−12Eoh(3 + νo + 3Eohα11)β1111,

b2=−16E2
oh

2β21111, (37)
co=−9Eoh(1 +Eohα11)

2(α33 − α11),

c1=6Eoh(1 +Eohα11)[9β1133 − 3β3333 +Eoh[4 (α11 − α33)β1111,

+3 (2α11 + α33)β1133 − 3α11β3333] + νo [4β1111 + 3(β3333 − 7β1133)]]
c2=E2

oh
2[[2νo(4β1111 − 3β1133)(4β1111 + 3(β3333 − 7β1133))

+6(4β1111(5β1133 − 2β3333) + 3β1133(β1133 + β3333)]

+Eoh[−α33(4β1111 − 3β1133)2

+α11(16β
2
1111 + 96β1111β1133 + 27β

2
1133 − 48β1111β3333 + 18β1133β3333)]],

c3=8E
3
oh

3(4β1111 − 3β1133)
h
2β1111β1133 + 3β

2
1133 − β1111β3333

i
,

do=18 (1 +Eohα11)
h
ν2o − (1 +Eohα11)

2
i
,

d1=−6Eoh[8
h
νo (1− νo +Eohα11) + (1 +Eohα11)

2
i
β1111

−3(1− νo +Eohα11)[(1− νo +Eohα11)β3333
−4((1− 2νo) +Eohα11)β1133]],

d2=−4E2
oh

2[8(1 + 2νo +Eohα11)β
2
1111 + 9(1− νo + Eohα11)β

2
1133

−12β1111 [(1− νo +Eohα11)β3333 − 4((1− 2νo) +Eohα11)β1133]],

d3=−16E3
oh

3β1111
³
8β1111β1133 + 3β

2
1133 − 2β1111β3333

´
,

Figure 1 illustrates the predicted evolutions of anisotropy parameters εdry, γdry
and δdry as a function of damage parameters tr(α) /∆αo = (2 α11 + α33) /∆αo

and ∆α/tr(αo) = (α33 − α11) /tr(αo) in a dry cracked rock of general TI sym-
metry. Calculations using the full equation (17) or (20) (without neglecting
βijkl terms) are given in plain lines, while dashed lines show the results of
the approximated solution (βijkl terms neglected) given explicitly in (32) and
(33). Note that for a given matrix Eo and νo, Thomsen’s parameters depend
only on tr(α) and ∆α in the approximate dry solution (βijkl terms neglected
≡ elliptic transverse isotropy), while it also depends on β1111, β3333 and β1133
in the complete dry solution.

The values of damage parameters β1111, β3333 and β1133 used in the theoretical
predictions of anisotropy for a dry cracked rock have been obtained from
Schubnel et al. (2003), a data set obtained from a granite sample submitted
to deviatoric stresses. The corresponding values of tr(α) and ∆α are reported
in Table 1, and solid elastic parameters are Eo = 70 GPa and νo = 0.27.
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Direct quantitative observations on predicted anisotropy evolutions in a dry
cracked rock for the general TI symmetry can be made: (i) εdry = δdry and
γdry increase with increasing ∆α = α33 − α11 at fixed tr(α) = 2 α11 + α33;
(ii) εdry = δdry and γdry decrease with increasing tr(α) = 2 α11 + α33 at fixed
∆α = α33 − α11; (iii) γdry is always smaller than εdry for horizontal cracks;
and (iv) negative values for ε, γ and δ are obtained for vertical cracks.

3.3 Validity of the Approximation Neglecting βijkl Terms

It is possible to discuss further the validity of the approximation made when
neglecting βijkl terms. In the approximation, transverse isotropy is elliptic
(εapproxdry = δapproxdry ). A complete calculation (with βijkl terms in the saturated
case as shown in equation (24) and section 3.4) shows that in dry conditions
(Kf → 0 or δcrackf À 1), εdry and δdry remain distinct although the difference
is small (Figure 2). Depending on the resolution of the data, such a difference
may or may not be visible.

Moreover, if dry data are used for direct microstructural interpretation (crack
density in dry case), this approximation has been shown to be satisfactory.
However, when dispersion effects are to be estimated through Biot-Gassman
or Brown-Korringa relations, this approximation turns out to be too rough,
and the β-terms are required.

3.4 Elastic Anisotropy of a Fluid-Saturated Cracked Medium

Although we consider, as in the previous section, a TI medium with an
isotropic matrix, the saturated situation is more complex for two reasons.
First we have five independent elastic constants, each depending on seven pa-
rameters (two elastic constants of the matrix, two αij components, and three
βijkl components). Then, low frequency compliances are given by S

u
ijkl = Slow

ijkl,
that are different from the high frequency effective compliances Shigh

ijkl and need
to be calculated from them as shown in section 2.6.

The values of damage parameters α11, α33, β1111, β1133, β3333 used in the
theoretical predictions of anisotropy for a fluid-saturated cracked rock have
been taken from Schubnel et al. (2003) on a water-saturated Oshima granite.
Those values are reported in Table 1, and for Oshima granite, solid elastic
parameters are Eo = 70 GPa and νo = 0.27. Water bulk modulus is Kf =
2.3 GPa and cracks porosity φo ' 0.2%.
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3.4.1 Unrelaxed Elastic Properties and Anisotropy: Laboratory Investigations

Figure 3 (plain curves) illustrates the predicted evolution of anisotropy para-
meters εhighsat , γ

high
sat and δhighsat as a function of damage parameters tr(α) /∆αo,

∆α/tr (αo), fluid bulk modulus Kf and cracks porosity φ, in a fluid-saturated
cracked rock of general TI symmetry. Those anisotropies are calculated from
the combined use of the inverted high frequency compliances Shigh

ijkl as given
by (24) and relations (30), i.e.,

εhighsat =
ao + a1ψ + a2ψ

2

bo + b1ψ + b2ψ
2 ,

δhighsat =
co + c1ψ + c2ψ

2 + c3ψ
3

do + d1ψ + d2ψ
2 + d3ψ

3 , (38)

with

γhighsat =
h [3 (α33 − α11)− 4ψ (β1111 − 3β1133)]
12 ((1 + νo) /Eo + hα11) + 8hψβ1111

, (39)

where ψ is given by (23), and the ai, bi, ci and di by (37). The high frequency
predictions show that: (i) εhighsat 6= δhighsat , which means that there is no ellipticity
of the wave front; (ii) δhighsat > εhighsat > γhighsat , with negative values possible
for εhighsat and γhighsat ; and (iii) the variation of ε

high
sat and γhighsat with Kf (and

consequently saturation) is small, but there is a possible strong variation of
δhighsat with Kf (depending on ∆α).

3.4.2 Relaxed Elastic Properties and Anisotropy: Field Applications (Seis-
mics, Seismology)

Figure 3 (dashed curves) illustrates the predicted evolution of Thomsen’s
anisotropy parameters εlowsat , γ

low
sat and δ

low
sat as a function of damage parameters

tr(α) = 2 α11 + α33, ∆α = α33 − α11 and fluid bulk modulus Kf , in a fluid-
saturated cracked rock of general TI symmetry. Those anisotropies are calcu-
lated from the combined use of the inverted low frequency compliances Slow

ijkl as
given by (29) and relations (30). The low frequency predictions show that εlowsat
and δlowsat have significantly lower values than their high frequency counterparts
εhighsat and δhighsat , while γ

low
sat is close to γ

high
sat . If low frequency anisotropy is com-

pared to its high frequency counterpart, a relatively smaller range of variation
is observed for δlowsat , ε

low
sat and γ

low
sat . The implication is that laboratory data are

not applicable directly to seismics and seismology, unless frequency correc-
tions are performed. The assumption of ellipticity is approximately valid at
low frequencies for a broad range of crack densities (−0.2 . ∆α/tr (αo) . 0.2
and tr(α)/∆αo & 1), for the set of parameters reported in Table 1.

Figure 4 compares the dry (plain curves) and saturated low frequency (dashed
curves) predictions as a function of damage parameters tr(α) = 2 α11 + α33
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and ∆α = α33 − α11 in a cracked rock of general TI symmetry. We can note
that: (i) ellipticity is observed both in the approximate dry and saturated
(low frequency) cases, so that it is not a sufficient criterion to discriminate
the underground saturation state; (ii) the strongest saturation effect (at low
frequency) is observed on εlowsat and δlowsat . Therefore, those parameters may be
used as a proxy for saturation; (iii) an opposite sign of the anellipticity para-
meter ηlowsat ∝ (εlowsat −δlowsat ) characterizes the dry and saturated (low frequency),
which may also useful as a proxy for saturation.

4 Conclusions

Elastic wave velocities and Thomsen’s parameters have been calculated in
cracked rocks. The background rock is assumed to be isotropic and the crack-
induced anisotropy has been taken as that of transverse isotropy (TI).

Using effective medium theory (in the non-interaction approximation) and
poroelasticity theory, high and low frequency elastic compliances have been
calculated for both the fluid-saturated and dry cases. Thomsen’s parameters
have been also derived.

In the dry case, no frequency effect is predicted so that laboratory data are of
direct applicability to seismics and seismology. In that case, approximate ellip-
ticity is predicted. Crack densities can be inferred from Thomsen’s parameters
εdry (' δdry) and γdry.

In the saturated case, a strong frequency effect is predicted. Laboratory data
are no longer directly applicable to seismics and seismology. Anellipticity is
predicted at high frequency, but ellipticity is approximately valid at low fre-
quency. Thomsen’s parameters εlowsat and δlowsat may be used as a proxy for sat-
uration discrimination. Crack densities may also be inferred from Thomsen’s
parameters εlowsat and γlowsat .
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Fig. 1. Comparison of the actual (plain lines, βijkl not neglected) and the approxi-
mate (dashed lines, βijkl neglected) elastic anisotropies of a dry cracked rock.
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Fig. 2. Unrelaxed elastic anisotropy of a fluid-saturated cracked rock (plain lines for
Kf = 2.3 GPa), and the corresponding dry anisotropy (dashed horizontal lines for
Kf = 0). Also tr(α) = tr(αo) and ∆α = ∆αo.
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Fig. 3. Comparison of relaxed (low frequency, dashed lines) and unrelaxed (high
frequency, plain lines) elastic anisotropies of a fluid-saturated cracked rock (for plot
c, tr(α) = tr(αo) and ∆α = ∆αo).
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Fig. 4. Comparison of dry (plain lines) and relaxed (dashed lines) elastic anisotropies
of a cracked rock.

6 Tables
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Table 1
Range of damage parameters explored in the theoretical predictions for a dry cracked
rock (crack porosity: 0.002).

Ref. Value Range

tr (α) = 2α11 + α33 0.6 0.05 1

∆α = α33 − α11 0.25 -0.25 0.25

ζ = w/a 0.8×10−3 0.5×10−3 9.5×10−3

β1111 -0.1 N/A

β1133 -0.3 N/A

β3333 -0.025 N/A
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