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In upper crustal conditions, elastic anisotropy of rocks is mainly due to cracks, as long as the anisotropy of the background matrix remains low. Because, in general, rock anisotropy remains weak, in the sense that hexagonal symmetry may be sufficient to handle it, Thomsen suggested that a set of three parameters would be convenient to describe it. Using effective elasticity, we derive Thomsen's parameters for the case of dry and fluid-saturated cracks, in a rock of isotropic background, in terms of crack density parameters and fluid compressibility. These results can be of interest for the interpretation of seismological and seismic data. They provide moreover a way to identify the fluid nature (gas or liquid) and to extract the crack density tensor from elastic wave data. Frequency effects are discussed when fluid is present so that frequency dependence can be accounted for.

A c c e p t e d M a n u s c r i p t 1 Introduction

At all scales, from local to regional, rocks are heterogeneous. The influence of heterogeneity in rock, as long as it remains moderate, can often be handled by using the ergodic assumption, considering that the medium is statistically homogeneous. That means that a representative volume element (RVE) exists and that any part of the system with a volume much larger than the RVE has identical physical properties. In this case, the medium can be considered as invariant by translation (for any property averaged over a RVE). This is obviously applicable only to geological objects much greater than a RVE. In most cases, crustal rocks heterogeneity is mainly the result of variable mineral composition and of the presence of pores and cracks. Effective Medium Theories (EMT) have been constructed that allow to successfully predict rock properties as long as the degree of heterogeneity is not large. There exists in general some critical threshold above which such an approach does not apply. The limits of application of EMT to rocks has been examined by [START_REF] Guéguen | Microstructures, percolation thresholds, and rock physical properties[END_REF]. We restrict ourselves in the following to the applicability field of EMT.

Use of EMT in order to predict elastic properties and hence elastic wave velocities is of direct interest. Elastic waves velocities are currently obtained from seismic and seismological data. The goal of Rock Physics is to extract from such data information on the physical state of the rock. In the oil industry, this has direct bearings on a quantification of the oil content and the identification of the fluid nature, i.e. oil or gas. In seismotectonics, an open question remains to know whether earthquakes can be predicted or not: elastic waves velocities variations have been considered as a possible precursory effect in that case.

In crustal conditions, all rocks contain cracks. Cracks represent an extremely small amount of porosity, typically less than 10 -2 . Yet they have been identified for a long time as the major cause of elastic properties modifications [START_REF] Simmons | Comparison of static and dynamic measurements of compressibility of rocks[END_REF][START_REF] Walsh | The effect of cracks on the compressibility of rocks[END_REF]. Their existence explains the differences observed between static and dynamic moduli, and also the elastic anisotropy of rocks which do not exhibit any mineral preferred orientation [START_REF] Kern | The effect of high temperature and high confining pressure on compressional wave velocities in quartz bearing and quartz free 21 A c c e p t e d M a n u s c r i p t igneous and metamorphic rocks[END_REF]Sarout and Guéguen 2008a;[START_REF] Sarout | Anisotropy of elastic wave velocities in deformed shales-part II: Modeling results[END_REF]. Because cracks are in general due to anisotropic stresses, crack orientation distribution is expected to be anisotropic. Reviews on cracked solids have been given by [START_REF] Kachanov | Continuum model of medium with cracks[END_REF] or [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF] who provide appropriate EMT methods to calculate anisotropic elastic properties of cracked rocks.

Yet elastic anisotropy of rocks is moderate in most cases, and the transversely isotropic (TI) symmetry is sufficient to describe it in general. This has led [START_REF] Thomsen | Weak elastic anisotropy[END_REF] to introduce three very convenient parameters to express the phase velocities of P , SV , SH waves in any plane containing the symmetry 2 A c c e p t e d M a n u s c r i p t axis. EMT calculations of anisotropic elastic properties provide a way to get Thomsen's parameters.

When fluids are present, frequency dependence is expected and the combined use of EMT methods and poroelasticity theory allow to account for it [START_REF] Le Ravalec | High and low frequency elastic moduli for saturated porous/cracked rock: Differential self-consistent and poroelastic theories[END_REF]. We focus in the following on elastic wave velocities in porous/cracked rocks and develop a method to derive theoretically Thomsen's parameters in the dry and saturated case. Frequency effects are calculated using both EMT and poroelasticity. We focus our attention to the case of a rock with isotropic matrix, i.e., anisotropy is only due to the presence of cracks.

Effective Elastic Properties

We introduce in this section the basic results that are required to express elastic properties of cracked rocks. Following [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF], we give the key relations that express effective elastic properties in terms of rock matrix elastic constants, fluid bulk modulus, and crack parameters. Because cracks are elastically compliant, we consider a single crack as a source of extra strain. This implies that EMT is used to calculate the extra compliance that is due to the presence of a crack. A stiffness approach would have to be considered if a stiff inclusion (source of extra stress) was present. Each of these two approaches -compliance and stiffness -is appropriate for either of the two cases: compliant or stiff inclusion.

A Single Crack

For a single pore, the extra strain per reference volume V due to its presence is an integral over the pore boundary

∆² = 1 2V Z (un + nu)dS, ( 1 
)
where u is the displacement vector generated by applied stress σ, and n the crack unit normal vector. For a crack, (1) reduces to

∆² = 1 2V Z ([u]n + n[u])dS, (2) 
where [u] = u +u -is the displacement discontinuity vector along the crack surface (the + side corresponds to the positive direction of n).
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For a flat (planar) crack, n is constant along S and

∆² = S 2V (bn + nb), (3) 
where b =< u +u -> is the average, over S, displacement discontinuity vector.

Strains generated by a flat crack under remotely applied stress σ are given by (3); they are determined by b, the average displacement discontinuity. A symmetric second rank crack compliance tensor B can be introduced that relates b to vector of uniform traction n • σ induced at the crack site (in a continuous material) by

σ b = n • σ • B. (4) 
Relation (4), i.e., introduction of tensor B, is simply a statement of linearity of the system (b is a linear function of n • σ). For the elastically axisymmetric crack shapes in an isotropic matrix

B = B N nn + B T (I -nn) . (5) 
For a 3 -D circular crack (dry case) of radius a [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF])

B dry T = 32 (1 -ν 2 o ) a 3πE o (2 -ν o ) , B dry N B dry T = 1 - ν o 2 . ( 6 
)
where E o and ν o are the Young modulus and Poisson's ratio of the isotropic rock forming mineral, respectively.

The values of B dry N and B dry T are relatively close (the factor ν o /2 is of the order of 0.1 for ν o = 0.25, a typical value for rocks) and the deviation of the proportionality of B to I is relatively small. We now focus on the saturated case of flat narrow cracks, and account for the fact that the normal compliances of a crack is changed due to fluid saturation. Specializing formulas of [START_REF] Shafiro | Materials with fluid-filled pores of various shapes: Effective elastic properties and fluid pressure polarization[END_REF] for the case of cracks, we obtain the fluid saturated values of B N and B T for a circular crack of radius a, that generalize formulas (6) for a dry crack A c c e p t e d M a n u s c r i p t

B sat T = 32 (1 -ν 2 o ) a 3πE o (2 -ν o ) , B sat N B sat T = µ 1 - ν o 2 ¶ δ f 1 + δ f , (7) 
where the solid/fluid coupling parameter δ f characterizes the coupling between the stress and the fluid pressure for a given spheroid of aspect ratio ζ. For a first-order spheroidal crack (ζ ¿ 1), δ f is controlled by the crack aspect ratio

δ crack f = " E o K f -3 (1 -2ν o ) # πζ 4 (1 -ν 2 o ) , ( 8 
)
where ζ is the crack aspect ratio (ζ = w/a where 2w is the crack average opening). In general, ζ is not the same for cracks of all sizes and orientations, therefore, δ crack f is generally different for different cracks. For instance, if a water-saturated crack (K f = 2.3 GPa) of aspect ratio ζ = 10 -3 is embedded in an isotropic matrix with E o = 70 GPa and ν o = 0.27, then δ crack f ' 10 -2 . When δ crack f → ∞, we recover ( 6) from ( 7). This limit applies to a dry or gas-filled crack. Note that the other limit, i.e., δ crack f → 0, is not physically possible. It would imply either a very stiff fluid

(K f >> K o = E o /3 (1 -2ν o )),
or an infinitely thin crack (ζ → 0). The first case is out of the range of validity of the compliance approach (a stiff inclusion would require the use of the stiffness approach), while the second case implies a zero crack aperture, hence no fluid.

Multiple Cracks and Crack Induced Anisotropy

In this section, compliance contributions of cracks are evaluated in the noninteraction approximation, (NIA) without accounting for the interactions between cracks. Various approximate schemes, e.g., self-consistent [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF][START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF], differential [START_REF] Vavakin | Effective characteristics of nonhomogeneous media with isolated inhomogeneities[END_REF][START_REF] Bruner | Comment on "seismic velocities in dry and saturated cracked solids" by r. j. O'Connell and b. budiansky[END_REF][START_REF] Hashin | Analysis of composite materials -a survey[END_REF][START_REF] Le Ravalec | High and low frequency elastic moduli for saturated porous/cracked rock: Differential self-consistent and poroelastic theories[END_REF][START_REF] Saenger | Comment on "Comparison of the non-interaction and differential schemes in predicting the effective elastic properties of fractured media[END_REF], and [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Benveniste | A new approach to the application of the Mori-Tanaka's theory in composite materials[END_REF], account for interactions by making the effective constants as functions of the parameters defined in the NIA. As discussed by [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF] and [START_REF] Grechka | Effective elasticity of rocks with closely spaced and intersecting cracks[END_REF], the NIA is valid over a broad range of crack densities. For multiple flat cracks in the NIA, the extra strain due to these cracks is simply the sum ∆²= 1 2V P [(bn + nb) S] (m) , that may be replaced by integration over orientations if computationally convenient. The overall strain (per representative volume V containing cracks) can be represented as a sum where S are the effective compliances, S o are the bulk material compliances (assumed to be isotropic here) and σ are the applied elastic stresses. Finding the effective compliances reduces to expressing extra strain ∆² due to cracks in terms of applied stresses. For a single crack m, the fundamental quantity to be estimated is the compliance contribution tensor, a fourth-rank tensor such that the crack strain contribution ∆² is

∆² (m) = ∆S (m) : σ, = H (m) : σ. ( 10 
)
The trace of this tensor tr

³ H (m) : I ´= H (m)
iijj is the compressibility of the m th pore: it was calculated by [START_REF] Zimmerman | Compressibility of Sandstones[END_REF] for a number of pore shapes of relevance to rocks. In the complete form, H-tensor was given, for a number of 2 -D and 3 -D pore shapes by [START_REF] Kachanov | Elastic solids with many cracks and related problems[END_REF]. Then, for multiple cracks, in the NIA, we have

∆² = X m H (m) : σ, (11) 
which identifies the fourth-rank tensor

∆S = H = X m H (m) , (12) 
as the proper general damage parameter (tensorial crack density).

In the isotropic case, i.e., isotropic background solid and randomly oriented circular cracks, the crack density parameter is the classical scalar

ρ = 1 V X m ³ a 3 ´(m) , (13) 
where a (m) is the m th crack radius. Note that the proportionality of the individual crack contributions to their sizes cubed corresponds to their actual contributions to the overall compliances. This parameter, introduced by [START_REF] Bristow | Microcracks and the static and dynamic elastic constants of annealed and heavily cold-worked metals[END_REF] in the context of materials science, and by [START_REF] Walsh | The effect of cracks on the compressibility of rocks[END_REF] in the geophysical context was extended to the elliptic planar cracks by [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF]. We examine in the following the general case of non-random crack orientations and crack-induced anisotropy. This requires generalization of the scalar crack density parameter, ρ, to a tensorial one. Indeed, for any flat crack, its contribution to the overall strain is given by H-tensor, that is expressed in terms of B using equations (3) and ( 4)

∆S = H = S V nBn, (14) 
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or, in indicial notation

∆S ijkl = S 4V [B ik n j n l + B il n j n k +B jk n i n l + B jl n i n k ] (15) 
with symmetrization with respect to ij ↔ kl, i ↔ j, k ↔ l, imposed on ijkl components. Therefore, for multiple flat cracks, the proper general crack density parameter is the fourth-rank tensor

∆S = H = 1 V X m (S nBn) (m) . ( 16 
)
Note that this last formula holds for flat cracks of arbitrary shapes, provided that B is known for the given shape.

Dry Cracks Compliances

We now consider dry circular cracks for which B N and B T are known to be different but relatively close from equation ( 6). From equations ( 6) and ( 16), the extra compliances are

∆S dry ijkl = 32(1 -ν 2 o ) 3(2 -ν o )E o • 1 4 (δ ik α jl + δ il α jk + δ jk α il + δ jl α ik ) (17) - ν o 2 β ijkl ¸,
in terms of second-and fourth-rank damage tensors

α ij = 1 V X m ³ a 3 n i n j ´(m) β ijkl = 1 V X m ³ a 3 n i n j n k n l ´(m) (18) 
where we note that in addition to second rank crack density tensor α, fourth rank tensor β emerges as a second crack density parameter. Note that

β ijqq = 1 V X m ³ a 3 n i n j n q n q ´(m) = 1 V X m ³ a 3 n i n j ´(m) = α ij , β ppqq = 1 V X m ³ a 3 n p n p n q n q ´(m) = 1 V X m ³ a 3 ´(m) = tr (α ij ) = ρ. (19) 
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Because of the small factor ν o /2, one may note that the β-term contribution is small in the dry case. However, retaining α as the sole crack density parameter is not a very good approximation and may be misleading.

Of particular interest for geophysical applications is the case of transverse isotropy (TI), or hexagonal, symmetry; in the text to follow, we choose x 3 as the axis of symmetry. This covers two main orientation distributions of cracks (or any combination of both):

(i) Approximately parallel cracks, all perpendicular to x 3 . This case is relevant, for example, for foliated rocks where cracks are almost exactly parallel. Then α 11 = α 22 = 0 and α 33 6 = 0;

(ii) Cracks with normals randomly oriented in plane x 1 x 2 . Then α 11 = α 22 6 = 0 and α 33 = 0. This case is relevant to rocks undergoing deviatoric tectonic stresses.

In both cases, α 11 = α 22 , in agreement with the condition 2∆S dry 1212 = (∆S dry 1111 -∆S dry 1122 ) imposed by transversely isotropic symmetry [START_REF] Nye | Physical Properties of Crystals[END_REF]. Note that β is symmetric with respect to all rearrangements of indices, e.g.,

β 1133 = β 1313 = β 2233 = β 2323 , β 1122 = β 1212 . Therefore we have S dry 1111 = S dry 2222 = 1 E o + h µ α 11 - ν o 2 β 1111 ¶ , S dry 3333 = 1 E o + h µ α 33 - ν o 2 β 3333 ¶ , S dry 1133 = S dry 2233 = S dry 3311 = - ν o E o - ν o 2 β 1133 , S dry 1212 = S dry 1111 -S dry 1122 2 = 1 + ν o 2E o + h 2 µ α 11 - ν o 3 β 1111 ¶ , (20) 
S dry 1313 = S dry 3232 = 1 + ν o 2E o + h 4 (α 11 + α 33 -2ν o β 1133 ),
where

h = 32(1 -ν 2 o ) 3(2 -ν o )E o . ( 21 
)

High Frequency Compliances of Fluid-Saturated Cracks

This section focuses on fluid-saturated rocks. The presence of a liquid instead of air "stiffens" cracks and thus may strongly affect their compliance contributions. Crack density parameters need to be modified; in particular, crack aspect ratios, albeit small, become important factors, since they control the 8 A c c e p t e d M a n u s c r i p t stiffening effect of the fluid. One of the consequences is that the fourth-rank tensor β starts to play an important role.

In the following, the fluid is assumed to be linearly compressible, with bulk modulus K f . We also assume that δ f and ζ can be approximately considered as identical for all cracks. It would be, of course, more satisfactory to introduce a distribution of ζ values. However, the lack of appropriate, reliable data, on such distributions on actual rocks prevents, in general, from using a more complete theory. Then equation ( 17) is modified into

∆S sat ijkl = h • 1 4 (δ ik α jl + δ il α jk +δ jk α il + δ jl α ik ) ( 22 
)
+ψβ ijkl i ,
where α ij and β ijkl in the fluid-saturated case are still given by ( 18). Tensor β in the saturated case enters now with multiplier

ψ = (1 - ν o 2 ) δ f 1 + δ f -1, (23) 
instead of -ν o /2 in the dry case. In the isotropic case (random crack orientations, α ij = (ρ/3)δ ij ) this formula recovers results of [START_REF] Budiansky | Elastic moduli of a cracked solid[END_REF]. We emphasize that the compliances given by ( 22) are unrelaxed compliances, i.e., no fluid flow occurs at a local scale between neighbor pores (see section 2.5). These unrelaxed compliances are relevant at high frequencies. It makes the difference with the dry case, i.e., B sat N and B sat T are substantially different, making the β-tensor terms non-negligible. In the TI case (the most frequent anisotropic case in geophysics), the number of independent elastic constants is five (full, non-elliptic TI symmetry), each of them depends on seven parameters (E o , ν o , two α components, and three β components). Indeed, for a general TI orientation distribution of cracks, α 

= 1 E o + h (α 11 + ψβ 1111 ) , S sat 3333 = 1 E o + h (α 33 + ψβ 3333 ) , S sat 1133 = S sat 2233 = S sat 3311 = - ν o E o + hψβ 1133 , S sat 1212 = S sat 1111 -S sat 1122 2 = 1 + ν o 2E o + h 2 Ã α 11 + ψ 3 β 1111 ! , (24) 
S sat 1313 = S sat 3232 = 1 + ν o 2E o + h 4 (α 11 + α 33 + 4ψβ 1133 ) ,
where we note that these high frequency compliances S ijkl depend on α ij and β ijkl components in a linear fashion. Note that for identical spheroidal cracks, the crack porosity φ is related to the crack density ρ and average aspect ratio ζ by

φ = 4 3 πρζ. ( 25 
)
Crack porosity is useful only in the water-saturated case, for spheroidal cracks.

Although such a case of identical spheroids can only be an approximation for real rocks, it allows to point out the fact that, for a given porosity, crack density ρ and aspect ratio ζ cannot be described independently since ζ = 3φ/4πρ Sarout and Guéguen (2008b).

Effective Elasticity and Poroelasticity

The effective elasticity of fluid-saturated rocks with cracks and pores depends on the ratio between the rate of loading and the rate of fluid diffusion in the rock. In the context of wave propagation, this means dependence on the frequency. In order to illustrate this effect, we consider two limiting cases. The first one is such that within any Representative Volume Element (RVE), an equilibrium isobaric situation exists (identical fluid pressure in all pores and cracks as resulting from local flow). The second one corresponds to a state where no local flow at all takes place, so that pores and cracks, in a given RVE, have different fluid pressures.

At this point, it is important to discuss some basic results of Biot's theory of poroelasticity [START_REF] Biot | General theory of three-dimensional consolidation[END_REF]Biot 1956a;Biot 1956b;[START_REF] Guéguen | Fundamentals of Poromechanics[END_REF]). The key point is that only the first of the above mentioned situations (isobaric RVE) is within the scope of this theory. Indeed, poroelastic theory considers the porous/cracked rock as a continuous medium where, locally, all quantities are defined by averaging over the RVE. Pores and cracks are assumed to be interconnected and fluid pressure is defined over a RVE. Each mathematical point of the equivalent continuous medium represents a RVE. Let us first assume the isobaric condition for the fluid within any RVE so that Biot's theory of poroelasticity applies (isobaric RVE, relaxed compliances).

Poroelasticity defines in that case two types of compliances, the drained and undrained ones.

The drained compliances, S d , correspond to a deformation where each point of the equivalent continuous medium is subject to a constant fluid pressure (through connection to some reservoir). However, its fluid mass varies (through exchange with the reservoir). As a consequence, flow takes place over a macroscopic scale such as the wavelength scale. This assumes a quasi-static deformation because fluid diffusivity d in most rocks is typically small (fluid diffuses over the scale l in a time τ ∼ l 2 /d). For example, for a wavelength l ≈ 5 m (frequency in the seismic kHz range), and a diffusivity d ≈ 10 -2 m 2 .s -1 (typical for water in a sandstone of permeability 0.01 Darcy and shear modulus 10 10 Pa, see [START_REF] Guéguen | Introduction to the Physics of Rocks[END_REF]), this implies that τ ≈ 10 3 s, a very large time period compared to the wave period. Thus, no macroscopic flow takes place during a wave period, and, as a consequence, the drained compliances are not those that are reflected in wavespeeds. The conclusion seems to be that drained compliances can be measured in quasi-static fluid-saturated deformation conditions only. However, since linear poroelasticity ignores any pressure dependence of compliances (it is a linear theory, compliances are constant quantities), a simple way to measure the drained compliances is to use dry rock samples, in which case fluid pressure is p f = 0. The "drained" compliances of poroelasticity S d are thus identical to the "dry" compliances of effective elasticity S dry , i.e., S d = S dry .

The undrained compliances, S u , of poroelasticity correspond to the opposite situation, a deformation where each point of the equivalent continuous medium has a constant fluid mass and its fluid pressure varies as a consequence of stress variations. There is no macroscopic fluid flow between RVE's but the pressure varies from one point of the equivalent continuous medium to another. This means that any RVE is in the isobaric state, but the fluid pressure varies from one RVE to another. Such a situation corresponds well to the example considered above, where a 5 m wavelength perturbation propagates through the medium. The wavespeeds "see" the undrained compliances because no macroscopic fluid flow can possibly take place. Undrained compliances are measured under any conditions where there is not enough time for the macroscopic flow to occur, and yet enough time for local flow to occur (at the RVE scale). But, if wavespeed measurements are performed at ultrasonic frequencies, typical of laboratory experiments, the RVE is not isobaric. In such a situation, high frequency unrelaxed compliances S sat high are extracted, which are different from the undrained compliances S u = S sat low .
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Note also that Biot-Gassmann (isotropic porous medium) and Brown-Korringa (anisotropic porous medium) relations are useful for prediction of undrained compliances S u from drained S d ones [START_REF] Biot | General theory of three-dimensional consolidation[END_REF][START_REF] Gassman | über die elastizität poröser medien[END_REF][START_REF] Brown | On the dependence of the elastic properties of a porous rock on the compressibitiy of the pore fluid[END_REF]Schubnel and Guéguen 2003).

Unrelaxed Compliances

The case "non-isobaric RVE, unrelaxed compliances" is out of the validity range of Biot's theory of poroelasticity since fluid pressure is variable within a RVE. Of course, it is well within the validity range of the concept of effective elasticity since stresses and strains can be averaged in spite of non-uniformity of fluid pressure in RVE. Fluid pressures in pores or cracks of different shapes and orientations are different (pressure polarization), since there is not enough time for local fluid flow. Above a certain critical frequency, any experimental measurement of wavespeeds corresponds to this non-isobaric situation. There exists a transition domain between "low" and "high" frequency regimes.

The pressure polarization is coupled with the effective elastic properties of the RVE. An important observation is that, in the limit of narrow, crack-like pores, their (small) aspect ratios start to play an important role (in contrast with the dry rock, where they do not matter): they determine the stiffening effect of fluid.

The question is now: at what frequency f c does the "pressure polarization" start to become noticeable enough? In fluid saturated cracked rocks, squirt flow at a microscopic scale is responsible for the frequency dependence of the elastic wave velocities. Ultrasonic measurements in the laboratory provide high frequency (MHz) values of the velocities (unrelaxed compliances S sat high ), whereas field data (seismology and seismics) correspond in general to low frequency (kHz -Hz) values (relaxed compliances S sat low ). The low frequency values are, as discussed above, the relaxed undrained quantities of poroelastic theory, i.e., S u = S sat low (but, of course, the high frequency values are not the relaxed drained ones S sat high 6 = S d ). The high frequency unrelaxed compliances S sat high obtained in the laboratory are not the relaxed compliances measured at the field scale S u = S sat low , because of local flow at a microscopic scale (within a RVE). The critical frequency of maximum dissipation due to this local fluid flow f c is obtained by calculating the time needed for local fluid motion between two neighbor cracks, as due to local pressure gradients (Le Ravalec and Guéguen 1996)

f c ≈ ζ 3 E o /20η (26) 
where typically crack aspect ratio ζ ≈ 10 -3 , sandstone Young's modulus E o ≈ 70 GPa, fluid viscosity η ≈ 10 -3 Pa.s, so that f c ≈ 3.5 kHz.

A c c e p t e d
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Low Frequency Compliances of Fluid-Saturated Cracks

Using equations ( 17), ( 22) and Brown-Korringa relations for the saturated transversely isotropic cracked rock yields

S high ijkl -S low ijkl = h ⎡ ⎢ ⎣ µ ψ + ν o 2 ¶ β ijkl + h ³ α ij -ν o 2 β ijqq ´³α kl -ν o 2 β ppkl 3 1 K dry -1 K o ´+ φ ³ 1 K f -1 K o ´⎤ ⎥ ⎦ , S high ijkl -S low ijkl = h " µ ψ + ν o 2 ¶ β ijkl + µ 1 - ν o 2 ¶ α ij α kl (1 + δ f ) tr (α ij ) # , ( 27 
)
where φ is the crack porosity defined in (25). Note that this relation is different from that given in (Schubnel and Guéguen 2003). This latter was calculated by neglecting the β-terms in the dry case. Such an approximation introduces errors that are significant when dispersion effects are investigated.

Therefore, low frequency elastic compliances are directly extracted from high frequency compliances measured in the laboratory at ultrasonic frequencies in both dry and fluid-saturated conditions. In the transversely isotropic cracked rock configuration, ( 27) translates to

S low 1111 = S high 1111 -h " µ ψ + ν o 2 ¶ β 1111 + µ 1 - ν o 2 ¶ α 2 11 (1 + δ f ) (2α 11 + α 33 ) # , S low 3333 = S high 3333 -h " µ ψ + ν o 2 ¶ β 3333 + µ 1 - ν o 2 ¶ α 2 33 (1 + δ f ) (2α 11 + α 33 ) # , S low 1133 = S high 1133 -h " µ ψ + ν o 2 ¶ β 1133 + µ 1 - ν o 2 ¶ α 11 α 33 (1 + δ f ) (2α 11 + α 33 ) # , (28) 
S low 1212 = S high 1212 -h " µ ψ + ν o 2 ¶ β 1111 3 # , S low 1313 = S high 1313 -h •µ ψ + ν o 2 ¶ β 1133 ¸,
where the reference frame (x 1 , x 2 , x 3 ) coincides with the principal axes of the crack density tensor α such that α 12 = α 13 = 0.

Further, in the fluid-saturated case for which a difference between high and low frequency compliances exists, and using relations (24) for estimating S high ijkl components, we get
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S low 1111 = 1 E o + h " α 11 - ν o 2 β 1111 - µ 1 - ν o 2 ¶ α 2 11 (1 + δ f ) (2α 11 + α 33 ) # , S low 3333 = 1 E o + h " α 33 - ν o 2 β 3333 - µ 1 - ν o 2 ¶ α 2 33 (1 + δ f ) (2α 11 + α 33 ) # , S low 1133 = - ν o E o -h " ν o 2 β 1133 + µ 1 - ν o 2 ¶ α 11 α 33 (1 + δ f ) (2α 11 + α 33 ) # , (29) 
S low 1212 = 1 + ν o 2E o + h 2 • α 11 - ν o 3 β 1111 ¸, S low 1313 = 1 + ν o 2E o + h 2 • α 11 + α 33 2 -ν o β 1133 ¸,
where we note that unlike high frequency compliances S high ijkl , low frequency compliances S low ijkl depend on α ij and β ijkl components in a non-linear fashion.

Elastic Wave Velocities and their Anisotropy

In the dry case, wavespeeds are controlled by quasi-static effective elastic properties. Both field and laboratory data are in the validity domain of linear elasticity, i.e., they are both low strain amplitudes measurements. Both provide quasi-static effective properties that can be directly compared.

However, measurements in the saturated case exhibit frequency dependence (dispersion). The low frequency (quasi-static) regime extends up to a critical frequency f c in this case. Only above f c are measured high frequency effective elastic properties. This implies that laboratory (high frequency) data cannot be directly compared to field (low frequency) data. However, using poroelastic theory makes it possible to compare them, as discussed in sections 2.5 and 2.6.

Anisotropy and Thomsen's Parameters

Thomsen introduced three dimensionless parameters, ε, γ and δ, that characterize the extent of anisotropy in a way suitable for geophysical applications of elastic theory. He concentrated on TI media, the most frequent case in geophysics, for which five independent elastic constants are needed. The three parameters ε, γ and δ, together with the velocities V o P = q C 33 /ρ and all elastic properties from the deviation of these properties, ε, γ and δ, from isotropy. Thomsen's anisotropy parameters are defined as

V o S = q C 44 /ρ,
ε = C 11 -C 33 2C 33 , γ = C 66 -C 44 2C 44 , δ = (C 13 + C 44 ) 2 -(C 33 -C 44 ) 2 2C 33 (C 33 -C 44 ) . ( 30 
)
where stiffnesses C ij in Voigt's two-index notation are obtained from the tensorial inversion of the elastic compliances S ijkl given by ( 20), ( 24) or ( 29)

The so-called anellipticity parameter η = (ε -δ)/(1 +2δ) quantifies the departure of the wave front from an ellipsoidal shape. Thomsen's parameters cancel in the case of isotropy; if all of them are much smaller than 1, the anisotropy is considered to be weak, in the sense of low amplitude of anisotropy within a given symmetry group such as transverse isotropy (hexagonal symmetry). Within this approximation, the angular variations of the phase velocities, in any plane containing the symmetry axis x 3 , are given by approximate relations obtained from Taylor's expansion to the first order in terms of the small quantities ε, γ and δ, i.e.,

V P (θ) ≈ V o P (1 + δ sin 2 θ cos 2 θ + ε sin 4 θ), V SV (θ) ≈ V o S ⎛ ⎝ 1 + Ã V o P V o S ! 2 (ε -δ) sin 2 θ cos 2 θ ⎞ ⎠ , (31) 
V SH (θ) ≈ V o S (1 + γ sin 2 θ),
where θ is the phase angle between the wave-front normal and the TI axis x 3 . There are two shear waves, denoted by SH for the pure shear wave polarized perpendicularly to x 3 and SV for the pseudo-shear wave polarized normal to the SH polarization. Note that the case η = 0, i.e., ε = δ corresponds to

V SV (θ) ≈ V o S and V P (θ) ≈ V o P (1 + δ sin 2 θ).
For the case η = 0, any wave front propagating in a plane containing x 3 is elliptic, i.e., both V P (θ) and V SH (θ) have a sin 2 (θ) dependence.

Elastic Anisotropy of a Dry Cracked Medium

In that case, no frequency dependence of elastic wave velocities is expected. We consider now the crack-induced anisotropy of a dry rock given by equations ( 17) or (20). Two cases are detailed in this section, the approximate (β ijkl terms neglected) and the complete dry solutions.

In the approximate dry solution, the overall anisotropy is transverse isotropy 

ε dry = δ dry = h(α 33 -α 11 )(1/E o + hα 11 ) 2 [(1 + ν o ) /E o + hα 11 ] [(1 -ν o ) /E o + hα 11 ] , (32) 
and

γ dry = h (α 33 -α 11 ) 4 [(1 + ν o ) /E o + hα 11 ] . (33) 
In this case, anellipticity η = 0 and any wave front propagating in a vertical plane containing x 3 is elliptic [START_REF] Thomsen | Weak elastic anisotropy[END_REF]. Such a simplification is of interest in seismics. One sees from ( 32) and ( 33) that Thomsen's parameters are in that case a direct measure of α 11 and α 33 if the matrix elastic constants E o and ν o are known. A further simplification occurs in the case where either α 11 or α 33 vanishes (for example one set of parallel cracks).

In the complete dry solution, the overall anisotropy is general transverse isotropy, characterized by five independent elastic constants, that depend on seven microstructural parameters, i.e., α 11 , α 22 = α 33 , β 1111 , β 3333 , β 1133 , E o and ν o . Equations ( 17) or (20) allows us to explicit the relationship between ε, γ and δ and those microstructural parameters, i.e.,

ε dry = a o + a 1 ψ d + a 2 ψ 2 d b o + b 1 ψ d + b 2 ψ 2 d , δ dry = c o + c 1 ψ d + c 2 ψ 2 d + c 3 ψ 3 d d o + d 1 ψ d + d 2 ψ 2 d + d 3 ψ 3 d , (34) 
and

γ dry = h [3 (α 33 -α 11 ) -4ψ d (β 1111 -3β 1133 )] 12 [(1 + ν o ) /E o + hα 11 ] + 8hψ d β 1111 , (35) 
where , ). A complete calculation (with β ijkl terms in the saturated case as shown in equation ( 24) and section 3.4) shows that in dry conditions (K f → 0 or δ crack f À 1), ε dry and δ dry remain distinct although the difference is small (Figure 2). Depending on the resolution of the data, such a difference may or may not be visible.

ψ d = - ν o 2 , (36) 
a o = 9E o h(1 + E o hα 11 )(α 11 -α 33 ), a 1 = 3E o h[(3 + 2ν o + 6E o hα 11 -3E o hα 33 )β 1111 -3(2ν o β 1133 + (1 + E o hα 11 )β 3333 )], a 2 = E 2 o h 2 h 8β 2 1111 + 9 ³ β 2 1133 -β 1111 β 3333 ´i , b o = 18 h ν 2 o -(1 + E o hα 11 ) 2 i , b 1 = -12E o h(3 + ν o + 3E o hα 11 )β 1111 , b 2 = -16E 2 o h 2 β 2 1111 , (37) 
c o = -9E o h(1 + E o hα 11 ) 2 (α 33 -α 11 ), c 1 = 6E o h(1 + E o hα 11 )[9β 1133 -3β 3333 + E o h[4 (α 11 -α 33 ) β 1111 , +3 (2α 11 + α 33 ) β 1133 -3α 11 β 3333 ] + ν o [4β 1111 + 3(β 3333 -7β 1133 )]] c 2 = E 2 o h 2 [[
d o = 18 (1 + E o hα 11 ) h ν 2 o -(1 + E o hα 11 ) 2 i , d 1 = -6E o h[8 h ν o (1 -ν o + E o hα 11 ) + (1 + E o hα 11 ) 2 i β 1111 -3(1 -ν o + E o hα 11 )[(1 -ν o + E o hα 11 ) β 3333 -4((1 -2ν o ) + E o hα 11 )β 1133 ]], d 2 = -4E 2 o h 2 [8(1 + 2ν o + E o hα 11 )β 2 1111 + 9(1 -ν o + E o hα 11 )β 2 1133 -12β 1111 [(1 -ν o + E o hα 11 ) β 3333 -4((1 -2ν o ) + E o hα 11 )β 1133 ]], d 3 = -16E
Moreover, if dry data are used for direct microstructural interpretation (crack density in dry case), this approximation has been shown to be satisfactory. However, when dispersion effects are to be estimated through Biot-Gassman or Brown-Korringa relations, this approximation turns out to be too rough, and the β-terms are required.

Elastic Anisotropy of a Fluid-Saturated Cracked Medium

Although we consider, as in the previous section, a TI medium with an isotropic matrix, the saturated situation is more complex for two reasons. First we have five independent elastic constants, each depending on seven parameters (two elastic constants of the matrix, two α ij components, and three β ijkl components). Then, low frequency compliances are given by S u ijkl = S low ijkl , that are different from the high frequency effective compliances S high ijkl and need to be calculated from them as shown in section 2.6.

The values of damage parameters α 11 , α 33 , β 1111 , β 1133 , β 3333 used in the theoretical predictions of anisotropy for a fluid-saturated cracked rock have been taken from Schubnel et al. (2003) ijkl as given by ( 24) and relations (30), i.e.,

ε high sat = a o + a 1 ψ + a 2 ψ 2 b o + b 1 ψ + b 2 ψ 2 , δ high sat = c o + c 1 ψ + c 2 ψ 2 + c 3 ψ 3 d o + d 1 ψ + d 2 ψ 2 + d 3 ψ 3 , (38) 
with

γ high sat = h [3 (α 33 -α 11 ) -4ψ (β 1111 -3β 1133 )] 12 ((1 + ν o ) /E o + hα 11 ) + 8hψβ 1111 , ( 39 
)
where ψ is given by ( 23), and the a i , b i , c i and d i by (37). The high frequency predictions show that: (i) ε high sat 6 = δ high sat , which means that there is no ellipticity of the wave front; (ii) δ high sat > ε high sat > γ high sat , with negative values possible for ε high sat and γ high sat ; and (iii) the variation of ε high sat and γ high sat with K f (and consequently saturation) is small, but there is a possible strong variation of δ high sat with K f (depending on ∆α).

3.4.2 Relaxed Elastic Properties and Anisotropy: Field Applications (Seismics, Seismology)

Figure 3 (dashed curves) illustrates the predicted evolution of Thomsen's anisotropy parameters ε low sat , γ low sat and δ low sat as a function of damage parameters tr(α) = 2 α 11 + α 33 , ∆α = α 33α 11 and fluid bulk modulus K f , in a fluidsaturated cracked rock of general TI symmetry. Those anisotropies are calculated from the combined use of the inverted low frequency compliances S low ijkl as given by (29) and relations (30). The low frequency predictions show that ε low sat and δ low sat have significantly lower values than their high frequency counterparts ε high sat and δ high sat , while γ low sat is close to γ high sat . If low frequency anisotropy is compared to its high frequency counterpart, a relatively smaller range of variation is observed for δ low sat , ε low sat and γ low sat . The implication is that laboratory data are not applicable directly to seismics and seismology, unless frequency corrections are performed. The assumption of ellipticity is approximately valid at low frequencies for a broad range of crack densities (-0.2 . ∆α/tr (α o ) . 0.2 and tr(α)/∆α o & 1), for the set of parameters reported in Table 1. and ∆α = α 33α 11 in a cracked rock of general TI symmetry. We can note that: (i) ellipticity is observed both in the approximate dry and saturated (low frequency) cases, so that it is not a sufficient criterion to discriminate the underground saturation state; (ii) the strongest saturation effect (at low frequency) is observed on ε low sat and δ low sat . Therefore, those parameters may be used as a proxy for saturation; (iii) an opposite sign of the anellipticity parameter η low sat ∝ (ε low sat -δ low sat ) characterizes the dry and saturated (low frequency), which may also useful as a proxy for saturation.

Conclusions

Elastic wave velocities and Thomsen's parameters have been calculated in cracked rocks. The background rock is assumed to be isotropic and the crackinduced anisotropy has been taken as that of transverse isotropy (TI).

Using effective medium theory (in the non-interaction approximation) and poroelasticity theory, high and low frequency elastic compliances have been calculated for both the fluid-saturated and dry cases. Thomsen's parameters have been also derived.

In the dry case, no frequency effect is predicted so that laboratory data are of direct applicability to seismics and seismology. In that case, approximate ellipticity is predicted. Crack densities can be inferred from Thomsen's parameters ε dry (' δ dry ) and γ dry .

In the saturated case, a strong frequency effect is predicted. Laboratory data are no longer directly applicable to seismics and seismology. Anellipticity is predicted at high frequency, but ellipticity is approximately valid at low frequency. Thomsen's parameters ε low sat and δ low sat may be used as a proxy for saturation discrimination. Crack densities may also be inferred from Thomsen's parameters ε low sat and γ low sat . 6 Tables
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M a n u s c r i p t 

  s c r i p t² = ² o + ∆², = S : σ = (S o + ∆S) : σ,(9)

  11 = α 22 , β 1111 = β 2222 , β 1212 = β 1122 = β 1111 /3. Recall that β may further be simplified since it is symmetric with respect to all rearrangement of indices, implying that β 1313 = β 1133 = β 2323 = β 2233 , and leaving only three non-zero β ijkl components. For this fluid-saturated case, equations (20) become

  A c c e p t e d M a n u s c r i p t S sat 1111 = S sat 2222

  (isobaric) Compliances, Drained and Undrained

A

  where ρ is the rock density, characterize TI elastic properties in a way equivalent to the five independent elastic constants C 11 , C 33 , C 13 , C 44 and C 66 in Voigt's two-index notation for instance. Thomsen's parameters allow us to discriminate the isotropic contribution V o P and V o S to the over 14

  s c r i p t of the simplified type, where five constants (V o P , V o S , ε, γ and δ) reduce to four independent ones (V o P , V o S , γ and ε = δ), that depend on four microstructural parameters, i.e., α 11 , α 22 = α 33 , E o and ν o . The obvious question is then: what are the relations between the three Thomsen's parameters ε, γ and δ on one hand, and the four parameters (E o , ν o , α 11 , α 33 ) on the other hand ? Using either E o , ν o or S o 11 = 1/E o , S o 12 = -ν o /E o , (Voigt's notation), one obtains

  Direct quantitative observations on predicted anisotropy evolutions in a dry cracked rock for the general TI symmetry can be made: (i) ε dry = δ dry and γ dry increase with increasing ∆α = α 33α 11 at fixed tr(α) = 2 α 11 + α 33 ; (ii) ε dry = δ dry and γ dry decrease with increasing tr(α) = 2 α 11 + α 33 at fixed ∆α = α 33α 11 ; (iii) γ dry is always smaller than ε dry for horizontal cracks; and (iv) negative values for ε, γ and δ are obtained for vertical cracks.3.3 Validity of the Approximation Neglecting β ijkl TermsIt is possible to discuss further the validity of the approximation made when neglecting β ijkl terms. In the approximation, transverse isotropy is elliptic (ε approx dry = δ approx dry

  Figure3(plain curves) illustrates the predicted evolution of anisotropy parameters ε high sat , γ high sat and δ high sat as a function of damage parameters tr(α) /∆α o , ∆α/tr (α o ), fluid bulk modulus K f and cracks porosity φ, in a fluid-saturated cracked rock of general TI symmetry. Those anisotropies are calculated from the combined use of the inverted high frequency compliances S high ijkl as given by (24) and relations (30), i.e.,

Figure 4

 4 Figure 4 compares the dry (plain curves) and saturated low frequency (dashed curves) predictions as a function of damage parameters tr(α) = 2 α 11 + α 33

Fig. 1 .Fig. 2 .Fig. 3 .Fig. 4 .

 1234 Fig.1. Comparison of the actual (plain lines, β ijkl not neglected) and the approximate (dashed lines, β ijkl neglected) elastic anisotropies of a dry cracked rock.

  2ν o (4β 1111 -3β 1133 )(4β 1111 + 3(β 3333 -7β 1133 )) +6(4β 1111 (5β 1133 -2β 3333 ) + 3β 1133 (β 1133 + β 3333 )] +E o h[-α 33 (4β 1111 -3β 1133 ) 2 +α 11 (16β 2 1111 + 96β 1111 β 1133 + 27β 2 1133 -48β 1111 β 3333 + 18β 1133 β 3333 )]], c 3 = 8E 3 o h 3 (4β 1111 -3β 1133 )

	h 2β 1111 β 1133 + 3β 2 1133 -β 1111 β 3333	i

  Figure1illustrates the predicted evolutions of anisotropy parameters ε dry , γ dry and δ dry as a function of damage parameters tr(α) /∆α o = (2 α 11 + α 33 ) /∆α o and ∆α/tr(α o ) = (α 33α 11 ) /tr(α o ) in a dry cracked rock of general TI symmetry. Calculations using the full equation (17) or (20) (without neglecting β ijkl terms) are given in plain lines, while dashed lines show the results of the approximated solution (β ijkl terms neglected) given explicitly in (32) and (33). Note that for a given matrix E o and ν o , Thomsen's parameters depend only on tr(α) and ∆α in the approximate dry solution (β ijkl terms neglected ≡ elliptic transverse isotropy), while it also depends on β 1111 , β 3333 and β 1133 in the complete dry solution.The values of damage parameters β 1111 , β 3333 and β 1133 used in the theoretical predictions of anisotropy for a dry cracked rock have been obtained fromSchubnel et al. (2003), a data set obtained from a granite sample submitted to deviatoric stresses. The corresponding values of tr(α) and ∆α are reported in Table1, and solid elastic parameters are E o = 70 GPa and ν o = 0.27.

	3 o h 3 β 1111	³ 8β 1111 β 1133 + 3β 2 1133 -2β 1111 β 3333	´,

  on a water-saturated Oshima granite. Those values are reported in Table 1, and for Oshima granite, solid elastic parameters are E o = 70 GPa and ν o = 0.27. Water bulk modulus is K f = 2.3 GPa and cracks porosity φ o ' 0.2%.

Table 1

 1 Range of damage parameters explored in the theoretical predictions for a dry cracked rock (crack porosity: 0.002).

		Ref. Value	Range	
	tr (α) = 2α 11 + α 33	0.6	0.05	1
	∆α = α 33 -α 11	0.25	-0.25	0.25
	ζ = w/a	0.8×10 -3	0.5×10 -3 9.5×10 -3
	β 1111	-0.1	N/A	
	β 1133	-0.3	N/A	
	β 3333	-0.025	N/A	

A c c e p t e d M a n u s c r i p t