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Abstract

We present a new finite element code for the solution of the Stokes and energy

(or heat transport) equations that has been purposely designed to address crustal-

scale to mantle-scale flow problems in three dimensions. Although it is based on an

Eulerian description of deformation and flow, the code, which we named DOUAR

(‘Earth’ in Breton language), has the ability to track interfaces and, in particular,

the free surface, by using a dual representation based on a set of particles placed

on the interface and the computation of a level set function on the nodes of the

finite element grid, thus ensuring accuracy and efficiency. The code also makes use

of a new method to compute the dynamic Delaunay triangulation connecting the
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particles based on non-Euclidian, curvilinear measure of distance, ensuring that the

density of particles remains uniform and/or dynamically adapted to the curvature

of the interface. The finite element discretization is based on a non-uniform, yet

regular octree division of space within a unit cube that allows efficient adaptation

of the finite element discretization, i.e. in regions of strong velocity gradient or

high interface curvature. The finite elements are cubes (the leaves of the octree) in

which a q1 − p0 interpolation scheme is used. Nodal incompatibilities across faces

separating elements of differing size are dealt with by introducing linear constraints

among nodal degrees of freedom. Discontinuities in material properties across the

interfaces are accommodated by the use of a novel method (which we called divFEM)

to integrate the finite element equations in which the elemental volume is divided

by a local octree to an appropriate depth (resolution). A variety of rheologies

have been implemented including linear, non-linear and thermally activated creep

and brittle (or plastic) frictional deformation. A simple smoothing operator has

been defined to avoid checkerboard oscillations in pressure that tend to develop

when using a highly irregular octree discretization and the tri-linear (or q1 − p0)

finite element. A three-dimensional cloud of particles is used to track material

properties that depend on the integrated history of deformation (the integrated

strain, for example); its density is variable and dynamically adapted to the computed

flow. The large system of algebraic equations that results from the finite element

discretization and linearization of the basic partial differential equations is solved

using a multi-frontal massively parallel direct solver that can efficiently factorize

poorly conditioned systems resulting from the highly non-linear rheology and the

presence of the free surface. The code is almost entirely parallelized. We present

example results including the onset of a Rayleigh-Taylor instability, the indentation

of a rigid-plastic material and the formation of a fold beneath a free eroding surface,

that demonstrate the accuracy, efficiency and appropriateness of the new code to

solve complex geodynamical problems in three dimensions.
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Introduction

In recent years, modelling the Earth’s crust and upper mantle deformation has led to

increased insight concerning the way the Earth responds to both tectonic and erosional

forciong and indirectly to the climate (Willett et al., 1993; Batt and Braun, 1997; Beau-

mont et al., 2001). Apart from a few exceptions (Braun, 1993, 1994; Braun and Beaumont,

1995), such modelling has been limited to two-dimensional analysis, mostly for compu-

tational efficiency reasons. Convection or mantle-scale flow calculations have been more

easily performed in three dimensions, in part due to the relatively simple geometry of

the problem and the lack of interactions with a free or eroding upper surface (Houseman,

1988; Albers, 2000; Tackley, 1998, among many others).

The need for a three-dimensional model capable of taking into account the large

stresses arising from surface topography gradient is however growing (Braun, 2006). Key

questions regarding the potential couplings and feedbacks between tectonics, erosion and

climate can only be properly addressed using a plan-view surface processes model and,

thus a full three-dimensional representation of deformation in the underlying crust (Stolar

et al., 2005).

Three dimensional calculations are inherently computationally costly. Using a uni-

form spatial discretization, most three-dimensional convection models are limited in their

spatial resolution to meshes of the order of 1003 elements or nodes (Tackley, 1998, for

example). Owing to the non-linear and localizing nature of lithospheric rheologies, defor-

mation gradients are much greater in the lithosphere than in the convecting parts of the

Earth’s mantle and a finer spatial discretization is required to capture them. This is the

reason why complex meshing algorithms have been developed and are commonly used for

the solution of lithospheric-scale deformation or flow problems in two dimensions (Braun

and Sambridge, 1994). These are, however, difficult to generalize to three dimensions.

Furthermore, the evolving nature of the deformation or velocity field (in part due to the

formation of shear zones or faults) requires the use of adaptative meshing techniques in

which the numerical spatial discretization evolves with the flow.

Two contrasting methodologies have commonly been used to solve lithospheric-scale

deformation problems. Explicit time-stepping methods are based on the dynamical force

balance equation (F = mγ) in which a pseudo mass (m) has been introduced to damp

3



Page 4 of 52

Acc
ep

te
d 

M
an

us
cr

ip
t

numerical oscillations. These methods require relatively few operations per time steps but

a large number of time steps. There have been several implementations of these implicit

algorithms to solve problems of lithospheric deformation in two dimensions (Poliakov

et al., 1993; Hassani et al., 1997). Remarkably, none of these have been so far ported

to three-dimensions. Implicit methods in which the equations of static equilibrium have

been linearized to form a large system of algebraic equations require less time steps but

become computationally expensive in three dimensions. Multigrid iterative methods are

commonly used to solve these large systems of equations but their convergence is poor

when dealing with highly non-linear problems or those involving a free surface (Moresi

and Solomatov, 1998).

Here we present a newly developed finite element code to solve the three dimensional

Navier-Stokes equations that we purposely developed to address Re=0, high Ra and

infinite Pr flows characterized by a free and/or eroding surface. The new model, that

we called DOUAR, is in principle capable of tracking any interface, such as the Moho

or a stratigraphic marker, deforming with the flow. It is based on a multi-scale octree-

based discretization method and uses a fast, yet accurate direct solver for the solution of

the large system of algebraic equations resulting from the implicit time-stepping, finite

element discretization of the static force balance equations. In this paper, we present

in detail the various components of this new code that are based on existing and novel

algorithms. We also present the results of selected computations that demonstrate the

usefulness and accuracy of the methodology.

Basic equations

The deformation of the Earth’s lithosphere and underlying mantle are commonly regarded

as similar to that of a high viscosity, viscoplastic material deforming at a sufficiently low

speed that inertial forces can be neglected (zero Reynolds number flow) and that heat is

conducted faster than dissipated by viscous flow (infinite Prandtl number flow). Under

such conditions, the velocity field v and pressure p must obey the following simplified

form of the momentum or Navier-Stokes equations, sometimes referred to as the Stokes

equations:

∇ · µ(∇v +∇vT )−∇p = ρg (1)

4
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where g is the gravitional acceleration vector. Under the assumption that such a flow is

incompressible, the divergence of the velocity must also be nil:

∇ · v = 0 (2)

Pressure can be eliminated from these equations by making the approximation that the

material is nearly compressible and introducing a so-called penalty or compressibility

factor, λ:

−λ∇ · v = p (3)

λ has the dimensions of a viscosity (Pa.s) and is commonly taken to be eight orders

of magnitude larger than the shear viscosity, µ, which ensures a nearly incompressible

behaviour for the flow.

At high temperature, rocks deform by creep, a non-linear form of viscous deformation

that is commonly approximated by defining a stress or strain rate dependent and thermally

activated viscosity in the above equation:

µ = µ0ε̇
1/n−1eQ/nRT (4)

At low temperature, rocks deform by brittle failure that is also approximated by adapting

the viscosity to limit the stress that is generated during deformation. This ‘cap’ on

the stress level is parameterized by various failure criteria that have been derived from

laboratory experiments. These criteria usually take the form of a yield criterion F that

is expressed in terms of the stress tensor σ and of material constants :

F (σ, σ0, ...) = 0 (5)

As the yield criterion should be independent of the orientation of the coordinate system

employed, it should only be a function of stress invariants:

J1 = σii

J ′2 =
1

2
sijsij

J ′3 =
1

3
sijsjkski (6)

where s is the deviatoric stress tensor defined as follows:

s = σ − 1

3
Tr[σ]1. (7)
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The Mohr-Coulomb criterion is commonly used to represent the behaviour of rocks

and requires two rheological parameters, φ the dimensionless internal angle of friction and

c the cohesion that has units of pressure:

τ = c− σn tanφ (8)

where τ is the magnitude of the shearing stress and σn is the normal stress. It can also

be expressed in terms of stress invariants:√
J ′2 =

m(θl, φ) sinφ

3
J1 +m(θl, φ) c cosφ (9)

where:

m(θl, φ) =

√
3√

3 cos θl + sin θl sinφ
(10)

and θl is the Lode angle, defined as:

θl = −1

3
sin−1[

3
√

3

2

J ′3

J
′3/2
2

] (11)

Under some circumstances or in different materials, this pressure dependence can be

neglected and the equation is simplified to become the von Mises criterion:

FvM = J ′2 − σ0 = 0 (12)

which depends on a single parameter σ0, the yield constant.

Because rock material properties such as density and viscosity depend on temperature,

it is also necessary to compute the temperature within the deforming system. This is done

by solving the energy or heat transport equation which has temperature T as an unknown:

ρc

(
∂T

∂t
+ v · ∇T

)
= ∇ · k∇T + ρH (13)

k is the thermal conductivity, ρ is density, c is heat capacity and H is heat production per

unit mass. The relative importance of the advective term with respect to the conductive

term is measured by the value of the dimensionless Peclet number, Pe = v0L/κ where

v0 and L are typical velocity and length characterizing the system and κ = k/ρc is the

thermal diffusivity. In most active tectonic systems, Pe is large (1 < Pe < 100) and,

therefore, the advective term must be included.

The density ρ varies as a function of temperature according to:

ρ = ρ0(1− α(T − T0)) (14)

where α is the coefficient of thermal expansion and ρ0 is the value of the density at T = T0.

6
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Finite element discretization

Among the many methods that have been devised to solve this set of partial differential

equations, the finite element method is one of the most commonly used, mainly because of

its geometrical flexibility, i.e. how it can solve problems with complex (non-rectangular)

geometries or those requiring a non-uniform discretization to represent efficiently localized

flow/deformation. It is based on the assumption that the solution of the PDEs, in our

case, the components of the velocity field, the pressure and the temperature, can be

approximated by their values at a finite number of points or nodes and, between these

points, by a set of piecewise interpolation functions (or shape functions) defined inside

finite elements connecting the nodes. Under this set of assumptions, a good approximation

of the solution to the PDEs can be obtained by solving the following set of integral

equations, obtained by the so-called Galerkin method or approximation:[∫
V

BT
v µBv dV +

∫
V

BT
v λBv dV

]
v =

∫
V

NT
v ρg dV[∫

V
NT

t ρcNt dV
]
Ṫ +

[∫
V

N∗Tt vBt dV +
∫

V
BT

t kBt dV
]
T =

∫
V

NT
t ρH dV (15)

where V is the problem domain over which the solution is sought and Nv,t and Bv,t are

the shape function matrix and the shape function derivative matrix, approximating the

velocity and temperature and their spatial derivatives within each element from their

values at the nodes connected by the elements. This is a standard approximation used

in problems involving visco-plastic rheologies (Hughes et al., 1979) and has been used to

study mantle flow problems (Tackley, 2000a), but also to represent the non-linear, brittle

and viscous behaviours of the Earth’s crust (Fullsack, 1995), as well as strain localization

in the mantle (Tackley, 2000b) and in the lithosphere (Huismans and Beaumont, 2002;

Huismans et al., 2005). Note that to ensure stability of the solution of the heat equation

in cases where advection dominates over conduction (large Pe number cases), a modified

version of the shape function matrix N∗ = N + τvB is used where τ = ∆l
√

15/‖v‖ and

∆l is a length representing the linear dimension of the finite element (Hughes and Brooks,

1982).

In a classical finite element implementation, the integrals in the above equations

are evaluated element by element and using an approximate integration scheme (Gauss-

Legendre) that requires estimating the integrant at a finite number of points within each

finite element. Note that the integration of the compressiblility term has to be performed

7
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using a lower order integration scheme (1 point integration) than for the other terms (8

point integration) to avoid ‘locking’ of the solution. We will show how this ‘mixed-order’

integration scheme can be improved upon when dealing with problems where material

properties, such as the viscosity or the density, vary within an element.

These finite element equations are then transformed into a set of linear algebraic equa-

tions having the degrees of freedom (or ‘dofs’) of the problem, i.e. the nodal velocities

and temperatures, as unknowns. This linearization involves decoupling the two sets of

equations (momentum and energy), linearizing the viscosity (resulting from the imple-

mentation of equations 4, 12 and 8) and performing a series of iterations, or successive

solutions of the equations in which the non-linear parameters/terms are updated. These

equations are usually written as:

Avv = bv

AtT = bt (16)

where v and T are the vectors of the nodal velocities and temperatures, which are re-

garded here as the unknowns. Note that the use of a penalty method to eliminate the

pressure from the momentum/incompressibility equations will affect the conditioning of

the resulting finite element matrix Av, whereas the advection terms in the energy equation

renders the resulting finite element matrix At non-symmetrical; both of these character-

istics will determine the choice of a particular method of solution of these very large sets

of equations.

Octree division of space

As stated above, many problems require a non-uniform discretization of space. The use of

irregular triangular meshes is common in two-dimensional analyses but becomes relatively

impractical in three dimensions. For this reason, we chose an octree-based discretization

of space (Cheng et al., 1986) which combines the flexibility of a non-uniform discretization

while being regular. An octree is a geometrical construct that divides three dimensional

space in a space-filling set of cubes of varying size that are used here as basic eight-noded

or q1 − p0 finite elements (Figure 1).

The unit cube is said to be of level zero as it counts only (20)3 = 1 leaf. After

8
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one division, the octree comprises (21)3 = 8 leaves and is of level L = 1. Performing

another subdivision of each leaf leads to a regular level L = 2 octree of (22)3 = 64 leaves.

Consequently, a 32 × 32 × 32 grid, which is a standard grid for most three-dimensional

finite element codes, is a level 5 octree with 32768 leaves.

In the simple q1 − p0 finite element, the basis functions for the velocity are tri-linear

whereas the pressure is assumed uniform within each element (Cheng et al., 1986). Where

cubes of different size share a common face, some of the nodes that are at the corners of

the small elements do not exist in the adjacent large elements. These are called ‘bad faces’

that are dealt with by imposing linear constraints (Webb, 1990) as shown in Figure 2.

[Figure 1 about here.]

The q1 − p0 elements are known to be affected by the presence of a “checkerboard”

mode in the pressure field (Bathe, 1982). The introduction of the linear constraints into

the set of finite element equations may also contribute to these unwanted oscillations. To

minimize them, we “smooth” the pressure field by performing a double interpolation of the

elemental pressure onto the nodes, and then back onto the elements. The element-to-node

interpolation is performed by averaging the elemental values from elements common to

each node; the node-to-element interpolation is performed by averaging the nodal values

element-by-element. This method is not only very efficient but produces a smoothing of

the pressure that is adapted to the local density of the octree and can be shown to be

equivalent to a least-square smoothing of the pressure.

[Figure 2 about here.]

Octrees are very simple and memory-efficient entities that can be built as a single

integer array containing, for each cube of the octree, the address in the array of the

first of its eight ‘children cubes’. In the scheme we have developed here, when a cube

is not divided, it becomes a leaf to which a name/number is associated and is stored in

the octree integer array as a negative number (to indicate that it corresponds to a leaf

number and not a child’s address). This scheme is memory efficient (most octrees are only

a few kilobytes in size) but requires additional operations when performing operations on

the octree. However, most of the operations commonly needed in the construction of a

9
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finite element problem are done with great efficient when using the octree storage scheme

described above. Most global operations (i.e. those affecting all the leaves of an octree)

require only ∼ N arithmetic or conditional operations. For example, for an octree of

maximum depth Lm (level of the smallest leaf or finite element in the octree) and made

of N leaves:

• to create a leaf at level L around a point of known coordinates; this requires L

conditional statements;

• to locate a point of known coordinates, i.e. to find the name/number of the leaf

it belongs to; we will call this a ‘location’ operation and is achieved through Lm

conditional statements for each of the point coordinates;

• to determine the size of all leaves/elements; this operation involves ∼ N conditional

statements

• to find the list of neighbouring leaves/elements; this operation involves ∼ 26N

location operations;

• to interpolate a field known at the nodes of an octree; this operation involves a

location and a trilinear interpolation operation per interpolation;

• to unite two octrees; this involves checking the depth of one octree for each leaf of

the other octree and, if necessary, creating a leaf;

• to smooth an octree (see Figure 3); this requires ∼ 6N location and conditional

operations.

[Figure 3 about here.]

When using the simple scheme described above to store the octree, one operation

becomes however relatively costly: to find the connectivity matrix between nodes and

leaves/elements. This is done here by first numbering the nodes in a redundant manner,

i.e. by giving to each element a set of eight nodes, regardless of connectivities between the

elements and the possibility that a single node is given many different names/numbers

in the sequence, i.e. if it belongs to more than one element. Then the node numbers

are ordered (Press et al., 1992) according to their x, y and z positions and checked for

10
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common values of one of their coordinates at a time. Redundant nodes are removed and

the connectivity matrix is modified accordingly. Note that because nodal coordinates are

multiples of 2Lmax , where Lmax is the maximum level of any leaf of the octree, it is a

well-posed problem to rank and compare them. Once the connectivity matrix is known,

the node numbers are ordered to minimize the bandwidth of the resulting finite element

matrix using the method developed by Sloan (1989). See Samet (1989), for example, for

more detailed information on octree structures.

Interface tracking

Material interfaces can be numerous in large-scale tectonic problems. Chief among them

is the upper free surface. Its deformation generates large differential stresses that can

influence and potentially drive crustal-scale deformation and flow (Braun, 2006). A wide

range of tectonic problems, including those in which erosional (and thus potentially cli-

matic) feedback is addressed, require the accurate tracking of the deforming free surface.

To track any interface, a dual approach is used combining particle tracking and the def-

inition of a level set function, similar to that of Enright et al. (2005); this ensures both

accuracy and efficiency.

Interface particles

Each interface is first defined by a set of particles of coordinates x = (x, y, z) and to which

unit vectors pointing in the direction normal to the interface n = (nx, ny, nz) are attached

(see Figure 4).

[Figure 4 about here.]

At each time step, the global coordinates of the interface particles, x are advected

by interpolation of the computed flow velocities at the mid-point configuration, i.e. the

locations half-way between their original and final positions for this time step:

x′ = x + v((x + x′)/2)∆t (17)

This method is second-order accurate. It does not require the use of the velocity field at the

previous time step. Note that during the non-linear iterations, each interface (its defining

11
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particles and normals) is advected to its mid-point position, i.e. its position at time

t + ∆t/2. This leads to a more accurate (and stable) solution because interfaces usually

define regions differing by their material properties (density, viscosity, etc.). Advecting

the interfaces therefore ensures that the equations of static equilibrium (eq. 15) are solved

in the mid-point configuration.

To advect the normals, we devised a simple, yet accurate algorithm: one first needs

to compute two orthogonal directions, n1 and n2 located in the tangential plane to the

interface. Two such directions are given by:

n1 = (cos θ cosφ, cos θ sinφ,− sin θ)

n2 = (− sin θ, cos θ, 0) (18)

where:

θ = tan−1

√
n2

x + n2
y

nz

φ = tan−1 ny

nx

(19)

The normals are then advected using a second-order scheme obtained by Taylor expansion

of the velocity field:

n′ = n + (Ln1 × n2 + n1 × Ln2)∆t+ (Ln1 × Ln2)∆t
2 (20)

where L, defined as:

L =


∂vx

∂x
∂vx

∂y
∂vx

∂z

∂vy

∂x
∂vy

∂y
∂vy

∂z

∂vz

∂x
∂vz

∂y
∂vz

∂z

 (21)

is the velocity gradient matrix computed inside each element using the shape function

derivative matrix B.

The time step is chosen to be smaller than that imposed by the Courant condition:

∆t < min
all elements

(
∆x

vx

,
∆y

vy

,
∆z

vz

)
(22)

Interface triangulation

The particle coordinates are used to define a triangulation on the interface that is used

to add or remove particles according to a set of rules/criteria to ensure that the interface

12
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geometry is properly tracked, and to compute a level set function at each node of the

octree as shown below. Many criteria can be used to maintain the appropriateness of

the particle set to represent the surface with accuracy. For example, on highly deformed

interfaces, a condition is imposed that the normals to two particles connected by an edge

of the triangulation do not diverge by more than a prescribed angle or that the length

of any edge is smaller than a set distance; if they do, particles are injected to reduce the

local curvature between adjacent particles or the length of an edge.

Ideally, we would like to use the Delaunay triangulation because it produces relatively

evenly shaped triangles, i.e. maximizing the smallest internal angle made by any two

sides of any triangle (Sambridge et al., 1995). However, the Delaunay triangulation is

commonly defined on a planar surface. To generalize its use to curved, arbitrary surfaces

(such as the interfaces tracked in DOUAR), we introduced a new measure of distance

between two particles, defined as the ratio of the Euclidian distance between the two

particles to the dot product of the two normals to the interface raised to a set power, m:

d̄12 =
d12

(n1 · n2)m
(23)

m is a free parameter that can be adjusted to adapt the method to various types of surfaces

(smooth versus creased surfaces for example). For a given Euclidian distance between two

points, this distance grows with the local curvature of the surface; it becomes equivalent

to the Euclidian distance on a flat surface.

To construct this pseudo-Delaunay triangulation, we first compute any arbitrary tri-

angulation and we update it by performing the so-called ‘in-circle test’ between any two

pairs of triangles sharing an edge (Sambridge et al., 1995). If the third vertex (i.e. not

belonging to the common edge) of any of the two triangles lies within the circumcircle con-

structed from the three nodes of the other triangle, the common edge has to be ‘flipped’,

as shown in Figure 5. We do this for every pair of triangles (or every edge common to

two triangles) to obtain the pseudo-Delaunay triangulation connecting the particles. This

algorithm is also used to update the triangulation from step to step, as it is deformed by

the computed velocity field.

[Figure 5 about here.]

On a planar surface, the in-circle test is equivalent to solving a set of 4 algebraic

13
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equations to compute the centre of the circle and its radius. The distance between the

fourth point and the centre of the circle is then computed and compared to the radius

of the circle. In our case, we wish to perform the in-circle test by using the generalized

measure of distance between the particles only (because they are the only locations where

the normal to the surface is known). As shown by Pritchard (2005), the two sums of

alternate angles in a convex, cyclic 2n-gon are equal to (n − 1)π. By definition, the

corners of cyclic polygons lie on a circle. Thus, the sum of two alternate angles of any

quadrilateral inscribed on a circle is π. Consequently, one can easily show that if a point,

X lies inside/outside the circumcircle of three other points A,B,C, the sum of the angles

AB̂C and AX̂C is greater/smaller than π. By analogy to the 2D (planar) situation, in

our construction of the pseudo-Delaunay triangulation on a curved interface, we have

thus replaced the in-circle test by this test on angles AB̂C and AX̂C that can be easily

computed from the distances between the points according to:

d̄2
AC = d̄2

AB + d̄2
BC − 2d̄ABd̄BC cosAB̂C

d̄2
AC = d̄2

AX + d̄2
XC − 2d̄AX d̄XC cosAX̂C (24)

Note that our algorithm is not completely internally consistent. Indeed, Pritchard

(2005)’s property cannot be generalized to any non-Euclidian metric. Our experience

shows however that the construction of the pseudo-Delaunay triangulation we propose

here is accurate when the particle density is relatively high, especially in regions where

the surface curvature is high. We therefore caution against using this algorithm for

poorly sampled surfaces and acknowledge that further work needs to be done to im-

prove the method we propose. We have also tested this algorithm for constructing a

pseudo-Delaunay triangulation by using another measure of distance, namely the dis-

tance measured at the surface of the sphere defined by the four points of two adjacent

triangles. When the point density remains relatively high, especially in regions of high

surface curvature, the two methods converge.

As stated above, during deformation of the interface, particles are injected when the

distance between two particles belonging to an edge of the triangulation becomes larger

than a prescribed value or when the dot product of the normals at the ends of any given

edge becomes smaller than a set value.

To illustrate this algorithm, we have computed the triangulation of an initial set of
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512 = 2601 particles regularly spaced on a plane of dimension 1×1, defining 2×502 = 5000

triangles, and located at z = 0 and subjected to an imposed velocity field given by:

vx = sin(2πx) cos(4πy)sin(πz)/2 + sin(πx) cos(2πy)sin(πz)

vy = cos(2πx) sin(4πy)sin(πz)/4 + cos(πx) sin(2πy)sin(πz)/2

vz = cos(2πx) cos(4πy)cos(πz) + cos(πx) cos(2πy)cos(πz) (25)

After 1200 steps, the number of particles has grown to 48038 and the number of triangles

to 95172. The deformed interface and the updated triangulation are shown in Figure 6.

[Figure 6 about here.]

Level set functions

Knowing the geometry of interfaces, we need to pass that information onto the finite

element grid (here an octree) to build the finite element equations that are functions of

material properties (such as density or viscosity) which vary strongly across interfaces.

For each interface, we first build an octree that has high resolution, i.e. small leaves, in

the vicinity of the particles defining the interface.

We calculate the signed distance between the interface and the subset of nodes of the

octree located in the vicinity of the interface. This subset is built by determining the

leaves of the octree that contain the particles used to track the interface deformation.

The function is called a level set function; its sign (+1 or -1) is propagated to the other

nodes of the octree. Level set functions are widely used in finite element analysis of two

phase flows for example (Sussman et al., 1994). To each interface are then associated an

octree and a level set function. All the octrees and their level set functions are merged

to form a global octree with a collection of level set functions, one per interface. This

global octree forms the basis of the finite element grid (the solve octree or Os) on which

the Stokes and temperature equations are solved. The values of the level set functions are

used to estimate on which side of the surface lies any node of the octree and thus whether

an element (a leaf of the octree) is cut by any or several of the surfaces.

To calculate the value of the level set function corresponding to a given interface on the

nodes of a given octree, we use the particles representing the surface, their normals and the
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associated Delaunay triangulation. For each triangle connecting three particles, we first

compute the normal to the triangle, (nx, ny, nz) at the centre of the triangle (xc, yc, zc);

we then find the leaves of the octree cut by the triangle; for each node, (x0, y0, z0) of each

leaf, we call (xp, yp, zp) the orthogonal projection of the node (x0, y0, z0) onto the plane of

the triangle; we then consider three cases, depicted in Figure 7:

1. (xp, yp, zp) falls within the triangle, i.e. it is to the right of the planes defined by

each of the sides of the triangle and its normal; in this case the level set function,

φ0, is the signed distance to the plane of the triangle given by

φ = (x0 − xc)nx + (y0 − yc)ny + (z0 − yc)nz (26)

2. (xp, yp, zp) lies to the left of one of the edges of the triangle and its orthogonal

projection onto that side lies between the two particles defining the edge; in this

case the level set function is the distance to the edge, its sign is determined by

the dot product of the mean of the normals attached to the two particles and the

projection direction;

3. (xp, yp, zp) lies outside at least one of the edges of the triangle and its orthogonal

projection onto any of the two sides lies outside the two particles defining any of the

two edges; in this case the level set function is the distance to the closest particle

defining the triangle and its sign is determined by the dot product of the normal

attached to the particle and the projection direction.

Note that in order to define a consistent ‘left’ and ‘right’ side to a plane defined by a side

of the triangle and its normal, one needs to be consistent in ordering the particles within

each triangle. We also wish to point out that our method differs from those based on

updating the level set function nodal values directly by advection of the values computed

at the previous time step, such as in so-called ‘fast-marching algorithms’ (Adalsteinsson

and Sethian, 1995). In our algorithm, the level set function is not updated but computed

from the surface geometry at each time step.

[Figure 7 about here.]
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Octree refinement

Grid adaptivity

The solve octree constructed from the union of the individual interface octrees is further

refined according to a set of criteria:

• refinement based on the previous time step/iteration solution;

• imposed refinement in a series of rectangular boxes defined by the user;

• imposed refinement on the faces of the unit cube to accurately represent complex

boundary conditions for example.

which leads to the creation of the solve octree Os, i.e. the octree whose leaves are used

to perform the finite element discretization of the equations to be solved.

In what follows we have used functions of the velocity field known on the previous solve

octree Ops (corresponding to the last timestep/iteration) to improve the resolution of Os.

In particular, the second invariant E ′2 of the strain-rate tensor ε̇ is measured for each leaf

i of Ops, and Emax is its maximum on the whole octree. Having defined a tolerance τ

(typically of the order of a few percents), the center of each leaf i of Ops that satisfies

(E ′2)i ≥ τ Emax
2 defines a location in space where the solve octree is further refined to a

prescribed level L.

Progressive adaptive grid

Were we to use the solution obtained at uniform level (typically 5) to refine the grid to a

much larger level (let’s say 9) of discretization, the resulting grid would more than likely

exceed the memory limit on most computers. Instead the refinement has to be done in

a more progressive manner. We use the following algorithm. The solve octree is first

initialised at a uniform level Lu (typically 5), so that the octree counts (25)3 = 32768

leaves. According to the refinement criterion presented in the previous paragraph, only

a subset of leaves will be refined to a given level L > Lu. The value of L progressively

increases one unit at a time to reach the authorised maximum level Lmax. This increase

takes place when both following statements are true:
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• for a given grid the nonlinear iterations performed on this grid have converged, i.e.

the L2-norm of the velocity field difference between two consecutive iterations k and

k + 1 is less than a given parameter η.

∥∥∥{v}k+1 − {v}k
∥∥∥
2
< η (27)

• the refinement based on Ops has lead to a solve octree Os whose number of leaves

Ns is close to the number of leaves Nps of Ops, i.e.∣∣∣∣∣Ns −Nps

Ns +Nps

∣∣∣∣∣ < χ (28)

where χ is a user supplied parameter; if this condition is not fulfilled it means that

the octree O is not yet at equilibrium with the calculated strain rate field; it will

be modified accordingly and a further iteration performed.

Schematically, the code structure is built upon three nested loops, as sketched on

Figure 8: the outer one is the timestepping, the second one is the progressive adaptive

grid construction, and the inner third one is the nonlinear iterations.

[Figure 8 about here.]

The free surface

In problems involving a free surface, one of the interfaces (the one representing the free

surface) is given special properties. All degrees of freedom corresponding to nodes be-

longing to elements completely contained in the ‘void’, i.e. the space above the interface,

are removed from the equation set to be solved. The finite elements (or cells) that are

cut by the free surface are named ’cut cells’. Material properties for the parts of the cut

cells above the free surface are set to values approximating ‘void behaviour’: extremely

low viscosity (10−8× smallest rock viscosity), nil density, and extremely high thermal

diffusivity (106× rock diffusivity). Zero stress boundary conditions are imposed on the

top surface of the model.

Furthermore, the geometry of this special interface can be modified to represent ero-

sional processes, i.e. the transport of mass at the surface of the Earth by processes such as
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fluvial incision, transport and deposition, hill-slope processes and/or ice erosion. At the

end of each time step, the position of the particles on the interface corresponding to the

free surface is thus modified to take these processes into account. The level set function

of the free surface is constructed first and used to adjust the position of the particles

on all other interfaces in case they are located above the free surface. This ensures that

internal interfaces are also affected by erosion if they are advected towards the free sur-

face by tectonic or erosional processes. Any erosional model can be used to compute the

geometry of the free surface; in the current version of the code, the simplest erosion model

only has been implemented: a reference level, zr, is set above which erosion/deposition is

instantaneous. We are currently coupling DOUAR to a much more sophisticated surface

processes model, CASCADE (Braun and Sambridge, 1997).

DivFEM

From the values of the level set functions, the position of each element with respect to

each interface is known as well as possible intersections between the element and the

interfaces. This information is used to determine the material making up the element,

assuming that interfaces are material boundaries. When an element is intersected by one

or several interfaces, the values of the level set functions at the nodes of the elements

are used to compute the part or volume of the element that is occupied by each of the

materials. These volumes are used to perform the volume integration of the finite element

equations (Equations 15). We call this procedure the divFEM (division of Finite Element

Method).

To determine the volume that is on the positive side of the interface cutting a given

element (the cut cell), an octree division of cut cells is performed down to level l. Within

each of the resulting leaves (cubes) an 8-point Gauss integration scheme is used to perform

the required volume integrals. The level set function is interpolated to the internal nodes

and used to determine which part of the volume (positive or negative) each sub-cell belongs

to. The relative positive volumes, α, in the remaining cut cells are estimated using the
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following approximate formula:

α =
1

2


8∑

i=1
φi

8∑
i=1
‖φi‖

+ 1

 (29)

In those cut cells, material properties are averaged if possible, otherwise the property

corresponding to material representing the largest volume in the cut cell is used.

To test the accuracy of the divFEM, we perform simple 2D Rayleigh-Taylor instability

tests for which an analytical solution exists (Van Keken, 1993). We computed the growth

rate of a small periodic perturbation (10−4× the vertical size of the problem) of the

interface separating two fluids of equal viscosity (1) and differing densities, the lower fluid

being lighter than the upper one. The relative error between the analytical solution and

that obtained with the divFEM method for increasing levels of octree division within the

element is shown in Figure 9. In practice, we limit the elemental octree division to level

l = 3, thus minimizing the relative error introduced by divFEM to less than 10−3.

[Figure 9 about here.]

Material memory

In many geodynamical problems, we need to track dynamic material properties, i.e. those

that are derived from the solution of the equations but need either to be integrated over

time, such as accumulated strain, or simply to be stored for computation of geological

observables in a post-processing stage, such as the pressure-temperature-time paths of

particles reaching the surface at the end of the model run. This is performed by inject-

ing a large cloud of particles inside the computational domain, the density of which is

dynamically adjusted to achieve a balance between accuracy and efficiency.

At every time step, the number of particles in any leaf of the solve octree is imposed

to remain between two set limits (commonly 8 and 27). Injection of each new particle is

performed by randomly injecting 10 test particles inside the element/leaf among which

one only is kept, i.e. the one furthest away from the preexisting particles and the

boundaries of the element. Local particle density is also used to perform the removal

operation. At the end of each time step, the particles are advected by interpolation of the
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computed nodal velocities, using the same algorithm as used for the particles defining the

interfaces; the strain (second invariant of the strain tensor) is updated by interpolation

of the derivatives of the velocity field. For consistency, both interpolations are performed

using the finite element interpolation functions.

When new particles are injected, the strain (or any other field carried by the particles)

is interpolated from the existing particles onto the nodes of the solve octree and inter-

polated back onto the new particles. This method may lead to some numerical diffusion

which is however limited by the high density of the solve octree leaves (and thus high

density of particles) in regions of diverging flow/deformation. Further improvement of

this method is however required.

Direct solver

The most time consuming part of a large-scale three-dimensional finite element computa-

tion is the solution of the large set of coupled algebraic equations generated by the finite

element discretization of the partial differential equations and, in the case of non-linear

problems, their linearization. This system is represented in matrix notation as Ax = b

where x is the solution vector, b is the right-hand side vector and A is a matrix containing

the coefficients multiplying the unknowns in each of the coupled equations.

It is common practice to use iterative methods based on a spectral acceleration called

multi-grid to obtain an approximate solution to these equations. Such solvers are tuned

to the nature of the set of equations to solve as their convergence rate is affected by

the nature and conditioning of the system to be solved or matrix A to be inverted. For

nonlinear problems or those characterized by large changes in material properties across

interfaces, and, in particular, those characterized by a free surface, convergence may be

slow.

A direct solver is based on the factorization of the matrix A in either of two forms,

depending on its symmetry: A = LT L for symmetric matrices and A = LU for non-

symmetric matrices where L is a lower triangular matrix and U the corresponding upper

triangular matrix. After factorization, two successive backsubstitutions are performed to

obtain the solution vector: LT y = b (or Uy = b in the case of a non-symmertical system)
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and Lx = y. These require a relatively small number of arithmetic operations compared

to the factorization step.

Direct solvers have the following advantages:

1. They can solve ill-conditioned matrices (robustness to ill-conditioning)

2. They can reuse the factorized matrix and apply it to the solutions of multiple right-

hand sides.

3. They can be used as black boxes with little or no need for tuning by users.

4. They are versatile and application independent, being based on algebra and graph

theory rather than on any specific construction of the system of equations. For

example, they can handle broad classes of systems (e.g. symmetric definite positive

systems). Any grid or method of connecting equations can be used.

5. They have a high computational intensity and can execute well in hierarchical com-

puter memories. Computational intensity is loosely defined here as the ratio between

the time spent to perform arithmetic operations and the time spent to bring data

into and out of the registers.

Direct methods have the following drawbacks:

1. They typically need to build the entire matrix of the system, which means that big

systems may not fit in memory and not be usable.

2. Memory requirements for the storage of the numerical factor (number of nonzeros in

the Cholesky matrix) grow very fast as the number of equations/ grid size increases,

especially in 3D.

3. Same observation for the operation count.

4. Their abstraction ignores/sacrifies the specifics of the problem.

5. They are harder to parallelize efficiently on a large number of processors

6. The solution has to be completely recomputed in non-incremental methods (i.e. those

requiring the computation of the matrix A at each iteration, as is the case in

DOUAR)
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We elected to use a direct solver mostly because these are well suited for highly non-

linear problems or those characterized by ill-conditionned matrices. In DOUAR, the

ill-conditionning of the matrix arises from the presence of the free surface and the incom-

pressibility. This choice limits us in the size of the problems they can be solved. For

instance, our 256Gb RAM cluster is limited to the solution of approximately 2,000,000

simultaneous equations.

Two such direct solvers have been used, WSMP (Watson Sparse Matrix Package)1

(Gupta, 2000) and MUMPS (MUltifrontal Massively Parallel sparse direct Solver)2 (Amestoy

et al., 2001). For reason of ease of access to the source code, we selected MUMPS but

did not perform extensive tests to determine which of the two solvers leads to better

performances in our problems. We noted however that such solvers make extensive use

of basic scalar and parallel algebraic functions (BLAS, BLACS and SCALAPACK) and

that their efficiency is thus mostly affected by the quality of the implementation of such

low level routines on the computer used for the computations. MUMPS can be used to

solve symmetrical and non-symmertical systems and is thus used in its symmetrical form

to solve the Stokes equations and its non-symmetrical form to solve the energy equation.

Parallelization

The construction of the finite element matrix is fully parallelizable because all the infor-

mation required to build the finite element matrix is known at the nodes of the element

(such as the level set function values). The advection of the particles used for interface

tracking as well as those carrying the material memory is also fully parallelizable. The

non-uniform octree discretization limits the number of particles in the 3D cloud which,

in turn, allows for its complete storage in all processors. This greatly simplifies the inter-

processor communication required to perform operations on the cloud particles (such as

their advection).

Calculating the value of the level set functions in the vicinity of the interface they

represent is also fully parallelizable as each leaf of the octree cutting a given interface is

treated separately and independently. The propagation of the sign of the level set function

1http://www-users.cs.umn.edu/~agupta/wsmp.html
2http://graal.ens-lyon.fr/MUMPS/
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to the other nodes of the octree cannot be parallelized as it is, by nature, a sequential

operation. Consequently, it has to be performed by all processors; this operation can

be sped up by performing a series of tests through the entire collection of elements in

alternating orders:

START=1 and END=nleaves

BEGIN LOOP

Do LEAF = START to END

If (any LSF(LEAF) 6= 0) then

Where LSF(LEAF) =0 LSF(LEAF)=sign(any non nil LSF(LEAF))

End if

End do

swap START with END

If (LSF(any node) = 0) goto BEGIN LOOP

FINISH

Rectangular punch problem

In order to illustrate how the octree refinement algorithm works practically, to justify its

implementation in DOUAR and to demonstrate its efficiency, we have carried out nu-

merical experiments of two-dimensional and three-dimensional punches indenting a rigid,

perfectly plastic von Mises half-space. The analytical solution to the two-dimensional

problem is to be found in many textbooks (Hill, 1950)(Kachanov, 2004), or (Freudenthal

and Geiringer, 1958) for a more mathematical approach.

Moreover, since the late 1970’s, a simple analogy has been made between the tectonics

of Asia and the deformation of a rigidly indented rigid-plastic solid: India is analogous to

the indenter and the great strike-slip faults, such as the Kunlun Fault System, correspond

to slip lines (Molnar and Tapponier, 1975). This analogy has been the subject of physi-

cal (Davy and Cobbold, 1988) and numerical modelling (Houseman and England, 1993,

among many others) and has given rise to an abundant literature. More recently, GPS

data seem to indicate that the velocity measurements fit to a certain degree an indenter

type of velocity field (Zhang et al., 2004).
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In the two-dimensional case, the analytical solution is known, and the slip-line solution

is shown on Figure 10. The slip lines consist of a curvilinear mesh of two families of lines,

which always cross each other at right angles. The velocity distribution and stress state

can be determined from the geometry of these lines. An undeformed wedge of material

forms an active so-called “Rankine zone” below the punch with angles π/4. This wedge

pushes material outwards, causing passive Rankine zones to form with angles π/4. The

transition zones are circular.

In order to carry out two-dimensional simulations with our 3D code, we have set no-slip

boundary conditions on the walls of the cube so that no flux of material is allowed outside

the unit cube, and we have imposed a velocity v = (0, 0,−w) for nodes whose coordinates

(x, y, z) verify x ∈ [0 : 1], y ∈ [−∆y/2,∆y/2] and z = 1. In fact, this corresponds to

replicating the 2D punch problem (plane Oyz) in the third dimension (along Ox).

The (dimensionless) parameters used to run the simulations are: gravity g = 0, punch

width ∆y = 0.08, viscosity µ0 = 104, imposed velocity w = 1.0, penalty λ = 108,

refinement ratio τ = 0.06, von Mises yield σ0 = 1, convergence criterions η = 10−5

(Eq. 27), and χ = 0.025 (Eq. 28) . In the absence of gravity, the value of the density ρ is

meaningless.

In Figures 11a,b are presented the solutions obtained on the final grid of maximum

level Lmax = 8. One sees that the code has captured the slip-lines reasonably well : the

lightblue colour indicates regions where E ′2 is maximal, the velocity norm shows a rigid

wedge and two regions on each side of constant velocity, and the velocity field displays

three regions of apparent rigid movement and two of rotation, as expected.

In Figures 11c-j are shown the succession of increasing level grids that were built in

order to reach the final grid. Figure 11c represents the portion of the initial uniform grid

of interest. The solution is first computed on this grid, and is used to refine a new grid

down to level 6 (Figure 11d). Once the solution is obtained on this grid, and as long as

the refinement based on this solution leads to an octree that does not comply with the C2
criterion, the process is iterated, until we reach a stable grid (Figure 11e). It is then used

to generate a level 7 grid (Figure 11f). After some grid iterations, the algorithm carries

on to level Lmax = 8 (Figures 11 i and j).

It should be that this algorithm allows for grids to evolve to a given maximum level
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of refinement, and that, given the set of refinement parameters input by the user, it

computes the best/smallest grid satisfying the conditions, hence ensuring that no memory

is wasted. The transition from level 7 to level 8 grids is a good illustration of this process:

the refinement criterion based on the velocity field computed on grid h) overestimates the

grid structure i) that ultimately evolves into j). Similar qualitative results have already

been obtained previously by Zienkiewicz et al. (1995) with mainly adaptive triangular

meshes.

[Figure 10 about here.]

[Figure 11 about here.]

While these simulations prove that the code captures the physics of such a classical

problem, they are quite heavy in terms of cpu time and memory usage because of the

redundant nature of the setup (we are in fact performing what others may call a pseudo-

2D punch). No exact solution exists for the three-dimensional square punch, even in

the simple case of an isotropic homogeneous weightless plastic material. Many authors

have tackled this problem numerically since it is encountered in bearing capacity calcu-

lations which are an important part of the design of foundations (Taiebat and Carter,

2000) (Taiebat and Carter, 2002) (Salgado et al., 2004) (Gourvenec and Randolph, 2003)

(Gourvenec et al., 2006). However, it is important to notice that most of these three-

dimensional experiments have been performed on carrefully chosen grids, giving rise to

different sets of tailored grids for square, rectangular and circular footings.

In Fig. 12 is shown the full octree at Lmax = 9, in the case of a square punch. One

clearly sees that the structure is highly refined close to the punch area, while a vast

proportion of the unit cube is remained at the uniform level Lu = 5.

[Figure 12 about here.]

Using the same simulation parameters as in the two-dimensional case, we have per-

formed two square punch experiments. The first one is usually called smooth as only the

z-component of the velocity is imposed on the nodes under the punch, while the second

one is called rough since all three components are assigned (the x- and y− components

are set to zero).
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[Figure 13 about here.]

In both cases, the boundary conditions imposes fourfold symmetry, with displacements

orthogonal to the edges but also symmetric about the diagonals. In Figures 13a and b

are shown the material displacement (blue colour gradient) as well as the velocity field on

a plane perpendicular to the edges and passing through the center of the square.

As observed already by Gourvenec et al. (2006), a double-wedge Hill-type deformation

pattern is observed in the smooth case, while a simple-wedge deformation pattern appears

in the rough case. The obtained velocity fields clearly indicate the different direction of

material displacement below the punch. The material displacement is also much shallower

in the smooth case than in the rough case, while its extent on the sides of the punch is

larger in the latter case.

Folding experiments with a free eroding surface

To demonstrate the surface tracking capabilities of DOUAR, we have performed a folding

experiment in which a thin layer of non-linear (n = 3) viscous material is embedded

in another, less viscous, non-linear fluid. The thickness of the layer (h = 0.02) and the

viscosity ratio (r = 192) are chosen such that a folding instability develops at a wavelength

(λ ≈ 0.4) that is fully contained within the unit box in which the experiment is performed.

Similar experiments have already been performed in three dimensions to investigate the

importance of an imposed velocity in a direction perpendicular to the shortening (folding)

direction (Kaus and Schmalholz, 2006). Here, the system is further characterized by a

free surface located at distance ∆z = 0.05 from the top of the competent layer and

subjected to very efficient erosion, i.e. regions of positive topography are instantaneously

eroded and the resulting mass is instantaneously and uniformly deposited in the regions

of negative topography simulating surface processes and assuming mass conservation. An

initial small perturbation in the layer thickness is imposed in the upper quarter of the

model (x and y < 0.5) to force the folding to initiate near the center of the model as

well as to introduce an asymmetry in the system and produce a non-cylindrical fold. The

evolution of the model is shown in Figure 14.

[Figure 14 about here.]
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The non-linear viscosity leads to the formation of a single, asymmetrical fold which

grows rapidly and leads to the exhumation of the folding layer, first in the right corner of

the experiment (as seen from the reader’s point of view), then in the front corner. Further

shortening leads to complete erosion of the folding layer along the left boundary of the

model and the concomitant filling of the depression created by the down-going limb of the

fold near the center of the model. The folding instability arises from the presence of the

more competent layer; as deformation progresses and the layer is exhumed, the instability

stops (Figure 14e) and shortening is accommodated by pure shear of the entire model

leading to a progressive tightening of the fold (Figure 14f to h).

Tracking interfaces can also be used to compute the stratigraphy within the evolving

basin by injecting interfaces at regular time intervals that have the same geometry as the

free surface. These surfaces are then passively advected like any other interface and eroded

with the free surface, if necessary. The resulting stratigraphy is shown in Figure 15. In

the bottom part of the basin (closest to the reader), a broad depression has formed and

evolved monotonically with time. In the upper part of the basin (furthest from the reader)

the situation is drastically different: the depression is much narrower and the shortening

has led to the formation of a central ridge separating two sub-basins. This asymmetry

results from the initial perturbation introduced in the model and the non-linear viscosity

of the viscous material involved which has led to the localization of the deformation in

the upper part of the model.

[Figure 15 about here.]

Discussion and conclusions

We have presented here a new three-dimensional finite element code for solving Stokes

equations in the context of geological problems that are characterized by a free surface.

The design of this tool was driven by the need to track complex interfaces as well as

material properties. Efficiency is achieved through the use of a regular but non-uniform

octree division of space and a direct solver. We have shown the results of some compu-

tations for problems which either have an analytical solution against which the accuracy

and resolution of the new code can be tested or which demonstrate the flexibility and
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suitability of the code to be used to solve interesting geological problems.

Further development and testing is however required, as well as improvements to

algorithms that have already been implemented in the code. In particular, the following

are required

• A more robust algorithm to triangulate the particles on curved interfaces; the current

method is efficient and adapted to many problems but breaks down where the

surface geometry is complex, i.e. characterized by extreme curvature. Note that the

triangulation of the particles on the surface is only required to compute the value

of the level set function associated with the surface onto the nodes of the octree

attached to the surface. We have already tested meshless methods that compute

the level set function values from the position of and normal attached to a finite

(reduced) set of particles. This requires solving a local minimization problem to

find, for example, the best fitting quadratic surface representing the geometry of

the interface.

• A more precise algorithm for the advection of the particles that would allow the use

of longer and thus fewer times steps;

• An implicit or semi-implicit algorithm for the advection of the free surface. In

problems characterized by a free surface, the time step is limited by the stresses

generated by the deformation of the free surface in comparison to the viscous stresses

produced in the fluid by the deformation/flow. In cases where the internal density

differences driving the flow are much smaller than the density difference across the

free surface, this restriction may lead to small steps that are impractical. This

implies, in turn, that the size of the problems characterized by a free surface is

currently limited.

Finally, further work is also required to improve the predictive capabilities of DOUAR,

and, in particular, to use the accurate P-T and deformation paths derived from the track-

ing of Lagrangian, material particles, to produce estimates of thermochronological ages,

metamorphic grade distribution, integrated strain patterns, or other geological observ-

ables.

Yet, as we have shown in theis paper, DOUAR currently represents an efficient and
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reasonably accurate method to solve various large-scale problems, as presented here, and

holds promise for the solution of more demanding fully 3D thermo-mechanical problems

in geodynamics.
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Figure 1: Example of a simple octree discretization of the unit cube. The unit cube is
divided in 8 sub-cubes, which can be arbitrarily divided into 8 sub-sub-cubes, and so
on. The sub-cubes that remain undivided at the end of the construction of the octree
are called leaves which are used here as finite elements with which the partial differential
equations are solved.
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"bad face"

8 level L+1 leaveslevel L leaf

Figure 2: The interface between two sets of leaves of different level is called a ‘bad face’.
These bad faces contain nodes that belong to the smaller elements on one side of the face
and not to the larger element on the other side of the face. These nodes are colored in
black and grey on the figure. Using the finite element method, one can only solve for
velocity components and temperature on nodes that belong to elements on both sides
of the face (the white nodes). To obtain values at the incompatible nodes, one needs
to impose additional linear constraints that constrain the solution at the grey mid-side
nodes to be the mean of the two adjacent red nodes, and the solution at the central black
node to be the mean of the four corners nodes.
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Figure 3: Example of an octree designed to represent a spherical shell of unit radius. The
octree in the top panel has been constructed so that the region surrounding the shell is
discretized with ‘leaves’ of level 6. The octree depicted in the bottom panel has been
“smoothed”, i.e. the condition that no two adjacent leaves (or elements) can vary in size
by more than one level of octree division has been applied.
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x

n

Figure 4: One of DOUAR’s main feature is its ability to track interfaces. All interfaces
are tracked through a set of particles defined by their coordinates x and their normal to
the interface n. The particles are connected by triangles.
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triangulation is considered for the ‘n-circle” test/property of the Delaunay triangulation,
as illustrated here. The two adjacent triangles shown in the left panel are “Delaunay” as
the particle on one side of the edge is not contained within the circle defined by the other
three particles; the triangles in the central panel are not Delaunay and their common edge
must be “flipped” as indicated in the right panel.

42



Page 43 of 52

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 6: Geometry and triangulation of an originally flat surface deformed by a prescribed
periodic and incompressible velocity field. The bottom panel is a close-up of a region
(indicated on the top panel) where the surface curvature has become very large.
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Figure 7: Graphical description of how the level set function is estimated by projection
of the nodes (x0) of the octree onto the plane of the triangles connecting the particles
located on the interface (x1, x2, x3). Three cases are considered depending on the location
of the projection (xp). See text for details of the method.
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time iterations

grid iterations

nonlinear iterations

1) compute Eulerian velocity:

2) refine and advect Lagrangian surfaces

a) build the new FE grid:
- initialise the octree as a coarse uniform grid at level Lu
- for each leaf il, if (level(il < L) and R(il) =true) then refine il
- embed surfaces in the octree

b) solve nonlinear problem on this grid:

c) if grid converged, L=min (L+1,Lmax)

• build new FE matrix
• solve system

repeat until velocity convergence on grid

Figure 1: Schematic overview of DOUAR structure for the mechanical part: the
three imbricated loops are represented, as well as the ALE character of the code

2

Figure 8: Schematic overview of DOUAR structure for the mechanical part: the three
nested loops are represented, as well as the ALE character of the code
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Figure 1: Schematic overview of DOUAR structure for the mechanical part: the
three imbricated loops are represented, as well as the ALE character of the code

2

Figure 9: Error in calculating the growth rate of a Rayleigh-Taylor instability in 2D using
the divFEM. The problem was solved on a regular 32×32×32 mesh. The error decreases
strongly with the level of octree division l,within each element.
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Figure 1: Schematic overview of DOUAR structure for the mechanical part: the
three imbricated loops are represented, as well as the ALE character of the code

1

Figure 10: Prandtl’s rigid-plastic solution. The indenter is shown in light grey while the
material that has a non-zero velocity is shown in dark gray. α and β slip lines intersect
each other at π/2 angles.
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 11: Cross-section of the octree at x = .5 and for z < .2. a) - b) E ′2 field and
velocity norm field computed on finest grid ; c) - d) first and last generated grid at level
5 ; e) - f) first and last generated grid at level 6 ; g) - h) at level 7 ; i)- j) at level 8.
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Figure 12: Final octree (Lu = 5, Lmax = 9) generated by DOUAR for the square punch
computations. Colour (from blue to red) indicates E ′2
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a) d)

b) e)

c) f)

Figure 13: Cross-section of the octree at x = .5 and for z < .2. a) and d) E ′2, b) and
e) velocity norm and c) and f) velocity direction. a)-c) rough interface; d)-f) smooth
interface. See comments in the text for further description of these results.
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a)

h)g)

f )e)

d)c)

b)

Figure 14: Results of a 3D folding experiment in a material subjected to surface ero-
sion/sedimentation. a) to h) represents equally spaced time steps in the evolution of the
system. The folding layer is progressively exhumed at both ends of the model leading to
change in shortening mechanism from folding and growth of a mechanical instability (a
to e) to simple pure-shear shortening (f to h). The free surface is not represented but
corresponds to regions where the two surfaces of the folding layer are intersected by an
horizontal surface.
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d)c)

b)

Figure 15: Final stratigraphy of the basin formed during the folding experiment described
in Figure 14. a) The three stratigraphic markers are shown as semi-transparent cyan
surfaces. b) to d) Each of the three stratigraphic markers is shown as an opaque cyan
surface.

52


