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Core Flow Modelling Assumptions

Ciarán Beggan ∗ , Kathy Whaler

School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, UK

Abstract

Modelling of core flows at the core-mantle boundary from secular variation requires

a range of both physical and mathematical assumptions in order to derive a solution.

We investigate the role of certain assumptions and an L1 norm iterative inversion

method to derive core flow models. Using three datasets of secular variation, we

separate the effects of: (a) the assignment of observation errors through the data

covariance matrix, (b) the a priori constraints placed upon the solution and (c)

the type of flow regime assumed to be present in the core. Flow is calculated di-

rectly from the time derivatives of the X, Y and Z components of ground-based

observatories rather than Gauss coefficients of the secular variation. We find the

L1 iterative method improves the fit of the secular variation generated by the flow

models to the observed data, compared to the L2 norm (least-squares) method.

Using this method, we find a new class of flow solutions explaining the secular vari-

ation: purely poloidal flows, which fit the input data adequately, and, for one of

our datasets, better than toroidal-only flows. The patterns of motions is very differ-

ent from that seen in previous flow models, which are dominated by their toroidal

component.

Key words: Core Flow, Geomagnetic Field, Regularisation, Secular Variation

Preprint submitted to Elsevier 21 April 2008

* Manuscript



Page 2 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

1 Introduction1

The Earth’s main magnetic field is generally accepted to be generated and2

sustained by dynamo action associated with the motion of the electrically3

conducting fluid outer core. The main field evolves slowly over time; the grad-4

ual decadal timescale change of the main field is known as the secular variation5

(SV). Whether and how the evolution of the field over these timescales can be6

used to constrain the nature of the fluid motion has been a matter of on-going7

research for several decades. Work by Roberts and Scott (1965) formulated8

the problem of determining flow along the core-mantle boundary from mea-9

surements of SV, which was implemented by e.g. Kahle et al. (1967).10

Under the main assumption, termed the frozen-flux approximation, that the11

SV of the main field is due to the simple advection of the field lines through12

fluid motion, disregarding any effects of diffusion (Roberts and Scott, 1965).13

The neglect of diffusion is justified by examining the behaviour of the field14

at large horizontal scales over short time intervals. However, there are short-15

comings to this assumption which are discussed in, for example, Gubbins and16

Kelly (1996), Braginsky and LeMouël (1993) and Love (1999). Furthermore,17

even under the frozen-flux assumption, deducing the flow velocity from the18

field and SV cannot be achieved uniquely, as there are entire classes of flow19

which do not generate any detectable SV outside the core (Backus, 1968).20

Therefore, further assumptions are made about the type of flow at the core-21

mantle boundary (CMB), to reduce the inherent non-uniqueness. Examples22

of non-uniqueness reducing assumptions include steady flows (Voorhies and23

∗ Corresponding author.

Email address: ciaran.beggan@ed.ac.uk (Ciarán Beggan).
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Backus, 1985), toroidal-only (Whaler, 1980), tangentially geostrophic (Hills,24

1979; Le Mouël, 1984) or flows with a particular helicity (Amit and Olson,25

2004). Further assumptions must be made to produce a tractable problem,26

since only a finite quantity of inaccurate data is available. In particular, the27

flow is truncated at a large scale and a regularised solution is calculated via a28

damping (smoothing) parameter.29

We wish to examine the role that underlying assumptions can have on the30

resulting core flow models. The past decade has seen a vast improvement in31

the global quality and quantity of data from satellite measurements. However,32

in this study we employ data from ground-based observatories, in order to33

calculate directly observed SV. This allows us to disregard any concern about34

how to account for the temporal discontinuity in satellite data for any partic-35

ular point on the Earth’s surface. Contamination from sources external to the36

observatory at ground level are well understood. At satellite altitudes, these37

sources can be internal (as well as external) to the orbit, complicating their38

removal. In contrast to most other studies, we invert SV calculated from obser-39

vatory data – rather than spherical harmonic model coefficients – to compute40

flow model coefficients. This allows a more rigorous test of flow assumptions41

made, and incorporation of realistic data uncertainties.42

This paper examines the results of comparisons between combined and toroidal-43

only flows to model the observed SV, using a one-norm minimisation inversion44

technique, initially imposing a minimum global root-mean-square (RMS) flow45

velocity constraint. Poloidal-only flows were also examined, for completeness,46

throwing up a number of interesting results which we will elucidate upon be-47

low. Further, we highlight the competing effects of the various assumptions to48

control the final flow model.49
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2 Method50

The inverse problem of deriving a CMB flow model from observed SV data is51

typically approached through relating spherical harmonic representations of52

the Main Field, SV, and flow (e.g. Kahle et al., 1967; Whaler, 2007). As the53

horizontal velocity averages to zero over the CMB with the radial component54

across the boundary vanishing, the flow can be expressed in terms of poloidal55

(s) and toroidal (t) scalars that can be expanded in spherical harmonics. Their56

coefficients, stored in a vector m, are the flow model coefficients whose values57

we seek using a regularised inversion approach.58

Spherical harmonic SV coefficients ordered in a vector (ġ) are related to flow59

coefficients by ġ = Bm where the elements of B are linear combinations60

of Elsasser and Gaunt integrals, whose multipliers depend on the main field61

coefficients. The vector ġ is related to the SV data on the surface of the Earth62

by d = Yġ. Here, the elements of the data vector, d, are the observed SV63

components (e.g. Ẋ, Ẏ and Ż, where X, Y and Z denote the North, East and64

vertically downwards respectively) expressed in spherical polar coordinates.65

Y has elements which are multiples of spherical harmonics and their θ and66

φ derivatives. Thus, including the observational error (e), the linear inverse67

problem becomes:68

d = Yġ + e = YBm + e = Am + e (1)69

We determine a model by regularised inversion, minimising an objective func-70

tion combining the size, or norm, of the error vector (the error norm), and a71

measure of ‘complexity’ or ‘smoothness’ of the solution (the solution norm).72

We use both the L1 (or Laplacian) norm, which minimises the absolute sum of73
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the errors, and the standard L2 least-squares formulation. Errors in the mea-74

surements can often be correlated, so a data covariance matrix (denoted Ce),75

where the diagonal elements are the variances of the data, is used to capture76

this information.77

L2 minimisation gives78

m̂ = (ATC−1

e A + λD)−1ATC−1

e d (2)79

where D is the regularisation matrix which is used to impose ‘smoothness’. A80

damping parameter, λ, acts to control the importance attached to fitting the81

data versus the imposition of a smooth solution. Regularisation also ensures82

numerical stability of the inversion and convergence when the spherical har-83

monic series for m is truncated. In this study, the flow vector m, the main84

field model g and the intermediate SV model ġ are truncated at degree l = 14.85

Walker and Jackson (2000) provide the motivation to calculate the model by86

an iterative one-norm minimisation method instead. In particular, they offer87

empirical evidence that the distribution of residuals from a historical magnetic88

dataset comprising vector, scalar and directional data is well-described by89

a double-Laplacian probability distribution. Note that Walker and Jackson90

(2000) modelled the magnetic field itself, rather than CMB flow, with data91

being main field rather than SV observations. Here, we examine whether the92

same is true of the distribution of SV residuals.93

We use Walker and Jackson’s (2000) implementation of the one-norm solution.94

The residual errors from the previous iteration are used to specify an additional95

diagonal matrix R, whose elements are Rii =
√

2/|ei|, where ei is the residual96

of the ith datum. R is recalculated at each iteration, hence the data are97
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iteratively re-weighted, reducing the influence of outliers. Relabelling C−1
e as98

E (to maintain consistency with the notation used in Walker and Jackson99

(2000)), the iterative regularised one-norm solution can be written as:100

m̂i+1 = (ATETREA + λD)−1(ATETRE d) (3)101

In this study, two formulations of D are used, both of which measure quadratic102

norms of the flow. The ‘strong velocity norm’ of Bloxham (1988) is a global103

measure of the flow complexity, whose square is104

mT Qm=
∮

CMB

[

(

∇2

huθ

)2

+
(

∇2

huφ

)2
]

dS

=4π
∑

l

[l(l + 1)]3

2l + 1

l
∑

m=0

[(tml )2 + (sm
l )2] (4)

where uθ and uφ are the horizontal flow components.105

An alternative is to minimise the CMB RMS SV. This is typically applied when106

undertaking regularised inversion for SV coefficients (Gubbins, 1983), but can107

also be used for flow modelling (Whaler, 1986). It imposes smoothness on the108

SV predicted by the flow rather than the flow itself. Let a be the Earth’s109

radius, c the radius of the CMB, and with {ġm
l , ḣm

l } the Gauss coefficients of110

the SV, the square of this solution norm can be defined as:111

ġT Q̇ġ =mTBTBm

=
∮

CMB

Ḃ2

rdΩ = 4π
∑

l

(

a

c

)2l+4 (l + 2)2

2l + 1

×
l

∑

m=0

(ġm
l + ḣm

l )2 (5)

112

Equations (4) and (5) can be combined or used separately as required – Q or113
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BTB replace D in (3), e.g. D is diagonal with elements l(l + 3)3/(2l + 1) for114

(4).115

The ‘fit’ of the flow models to the observed data can be measured via the one-116

norm (L1) and two-norm (L2) measures of the error residuals defined (where117

i is the number of observations) as:118

L1 =
N

∑

i=1

|ei| and L2 =

√

√

√

√

N
∑

i=1

(ei)2 (6)119

It is important also to test whether the residuals conform better to a Gaussian120

or double-Laplacian distribution.121

3 Observatory Data122

Three separate SV datasets were considered, all consisting of Ẋ, Ẏ and Ż data.123

The initial dataset, termed Dataset 1, was derived from annual means recorded124

at 172 ground-based observatories for the year 1990. The SV is estimated over125

12 months from July 1989 to June 1990. This assumes that there is little or126

no secular acceleration relative to the size of the SV. Observation errors were127

assigned to be a nominal 1 nT/yr for all stations and components. The second128

dataset, termed Dataset 2, consisted of SV calcuated by the same method as129

Dataset 1, in this case from 176 ground-based observatories, but with a further130

correction applied to remove internal covariance within the data (Wardinski131

and Holme, 2006). The associated observation error for each component was132

estimated by fitting a magnetic field model through a time series of data133

from 1980–2000 and estimating the covariance of misfit to the model for each134

direction. The errors ranged from 0.91 to 103 nT/yr for the X direction, with135

7



Page 8 of 22

Acc
ep

te
d 

M
an

us
cr

ip
t

a median value of 3.8 nT/yr. The Z direction was similarly distributed, while136

the Y direction had the smallest range of values. (The X and Z components137

are often inversely correlated, due to external field contamination.)138

As ground-based observatories are unevenly geographically distributed, a third139

‘global’ synthetic SV data set, consisting of 288 points on the globe sepa-140

rated by 15 ◦ intervals in latitude and longitude, was created. Dataset 3 was141

generated from the IGRF10 spherical harmonic model for the epoch 1990.0.142

The associated observation errors for Dataset 3 were also fixed at a nominal143

1 nT/yr.144

The GUFM1 field model (Jackson et al., 2000) provided the main field coef-145

ficients for the Gaunt and Elsasser (i.e. B) matrices. Calculating toroidal- or146

poloidal-only flow models requires omission of either the Elsasser or Gaunt147

matrix in the formulation of B and solving for the desired toroidal or poloidal148

coefficients respectively. The residual errors for the first iteration of the one-149

norm solution are obtained from an initial starting model calculated from a150

L2 solution of the input data. The value of very small (< 10−4) error residuals151

in the matrix R are set to 10−4 to prevent the formation of ill-conditioned152

matrices, as advocated by Walker and Jackson (2000). No other nonunique-153

ness constraints were imposed on the solution. In common with Walker and154

Jackson (2000), 15-20 iterations were typically sufficient to ensure solution155

convergence. We find that the use of this L1 iterative method vastly improves156

the fit of the model to the data (using the measures in Equation 6 and the157

distribution of the residuals) compared to L2 minimisation, justifying the use158

of this approach.159

8
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4 Comparison of Combined, Toroidal-only and Poloidal-only Flow160

Models161

It has been recognised that toroidal-only flow models can often fit the data162

adequately, though overall they do not fit well enough (Whaler, 1986). A small163

poloidal component in the flow increases the number of degrees of freedom,164

but makes a statistically significant improvement to the data fit. Typically,165

the ratio of the energy of the toroidal to poloidal flow within a combined (i.e166

toroidal and poloidal) flow regime averages at approximately 0.85, under the167

model assumptions from Section 2. An analysis of the individual contribution168

of each flow coefficient shows that, though most of the flow energy is in the169

toroidal coefficients, part of it is in the low degree and order coefficients of170

the poloidal flow, even though overall the total poloidal flow contribution is171

relatively small.172
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Fig. 1. The sum of the absolute values (SAV) of the residual when each coefficient

indicated is not included in the toroidal-poloidal flow solution from Dataset 3. When

all 448 coefficients are present, the SAV is 3.59. Coefficients are ordered t01, t1c
1 , t1s

1 ,

t02, t1c
2 , etc.

Figure 1 shows the sum of the absolute values (SAV) of the residual errors173

from a one-norm solution in which an individual flow coefficient has been174

removed and the resulting difference between the forward model and the ob-175
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served data is calculated. Coefficients are ordered t01, t1c
1 , t1s

1 , t02, t1c
2 , etc, with176

the superscripts c and s denoting coefficients multiplying cosmφ and sin mφ177

respectively. With all 448 flow coefficients present, the SAV is 3.59. A higher178

value thus indicates a worse fit to the data. It can be seen from Figure 1 that179

excluding individual coefficients lower than degree and order 7 has the largest180

effect on the solution, demonstrating that the flow has converged above de-181

gree and order 8, and that some of the low degree and order poloidal terms182

contribute significantly to the data fit. For example, solutions without s1c
3183

(poloidal coefficient 12) fit worse than solutions without t02 (toroidal coeffi-184

cient 4). This observation motivated the comparison of three different flow185

types (i.e. combined, toroidal- and poloidal-only).186

4.1 Minimisation using the ‘Strong’ Velocity Norm187

The results from experiments where the regularising constraint is the minimi-188

sation of the ‘strong’ velocity norm (Equation (4)) are summarised in Table189

1. The solution norm (the square root of Equation (4)) of all the models has190

been set to 2.6 × 105 (km/yr)2, by appropriate adjustment of the damping191

parameter (λ). This corresponds to equalising the ‘roughness’ of the com-192

bined, toroidal- and poloidal-only flows for each dataset, making the three193

flow regimes directly comparable. This value of the solution norm was chosen194

to produce a flow model with a ‘reasonable’ RMS velocity of approximately195

16 km/yr for the combined toroidal-poloidal models.196

The results from Dataset 1 indicate that the combined flow model has a far197

better fit to the observatory data than the toroidal-only or poloidal-only mod-198

els. Surprisingly, the poloidal-only flow model fits the data better than the199

10
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toroidal-only model (that is, the one-norm measure of error is smaller). For200

Datasets 2 and 3, the toroidal-only flow model fits the observations better201

than the poloidal-only model, but not by a large amount.202

The average data misfit (defined as
∑ |ei|/N) for both Datasets 1 and 3 is203

approximately 10 nT/yr. The combined flow model produced from Dataset 2204

has the lowest spread of residuals, thus giving the best overall fit. The average205

data misfit for Dataset 2 is 1.1 nT/yr. It is interesting to note that, despite206

the slower RMS flow velocities, poloidal-only models produce an adequate fit207

to the input SV data.208

Figure 2 illustrates the three different flow models calculated from Dataset 2.209

The accompanying histograms show the residual errors i.e. the difference be-210

tween the flow model prediction of the SV at each observatory and the actual211

data recorded. From inspection of Table 1, it appears that the toroidal-only212

flow and the poloidal-only flow maintain an equally good fit to the observatory213

data, based on the one-norm and two-norm measures. However, comparison214

of the histograms of Figure 2 (e) and (f) indicates that the poloidal-only215

flow model is actually more strongly peaked about zero than the toroidal flow216

model. On the other hand, the poloidal-only model has a larger spread of resid-217

ual values leading to heavier tails than the toroidal-only flow model residuals.218

The flow patterns of the toroidal-only flow model are broadly similar to the219

combined model whilst the poloidal-only model has few visible similarities to220

the full combined model or the poloidal part of the combined flow.221

Analysis of the geographical distribution of the residual errors for the flows222

reveals that the largest deviations occur in the Ẋ component of the observatory223

data, concentrated in the northern regions of Asia and Europe.224
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Dataset Model One-Norm Two-Norm Misfit RMS Vel.

1 TorPol 4099 615 7.9 15.8

Tor 6189 658 12 14.1

Pol 6012 684 11.6 7.7

2 TorPol 366 30 0.7 16.6

Tor 674 49 1.3 14.3

Pol 695 58 1.3 7.9

3 TorPol 3108 199 3.6 15.5

Tor 7792 406 9 13.3

Pol 8600 499 9.9 7.5

Table 1

Fit of flow models to observatory SV data minimising the ‘strong’ velocity norm.

The solution norm of each model is 2.6× 105(km/yr)2. One-Norm, Two-Norm and

Misfit are in nT/yr. RMS Velocity is in units of km/yr.

4.2 Minimisation using the Root Mean Square SV Norm225

The second set of experiments applied the regularising constraint of minimis-226

ing the CMB RMS SV predicted by the model solutions. Due to numerical227

instability, minimisation using this norm (Equation (5)) cannot be undertaken228

directly. Following Whaler (1986) we added a flow constraint, with a very small229

damping parameter, µ, typically two orders of magnitude smaller than the SV230

constraint damping parameter. The flow models from the three datasets were231

12
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Fig. 2. Core-mantle boundary flow Models and Histograms of the residuals to the

observatory SV data for Dataset 2 with the ‘strong’ velocity norm applied. Conti-

nents shown for reference.

solved in the same manner as previously, altering the values of µ and λ until232

the ‘strong’ velocity norms are equal. Table 2 summarises the results. The233

velocity norm has to be set to a much higher value of 5.8 × 106 (km/yr)2 to234

achieve a RMS velocity of approximately 16 km/yr (for the combined flow).235

With this value, the one-norm and two-norm misfit and RMS velocity metrics236

of the solutions from the combined flows are comparable to those in Table237

1. The toroidal-only and poloidal-only flows are, however, significantly poorer238

than the solutions calculated with only the ‘strong’ velocity norm constraint.239

Furthermore, the flow patterns and residual distributions (Figure 3) reveal240

that the solutions are markedly different from those in Figure 2.241

The effects of increased damping via µ and λ to set the strong velocity norm242

13
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equal to 2.6×105 (km/yr)2 (i.e. comparable to the value in Table 1) are shown243

in Table 3. Extremely poorly fitting solutions are produced, compared to both244

Tables 1 and 2. The flows minimising the ‘strong’ velocity norm converge245

around degree 8. In contrast, the toroidal- and poloiadal-only flow models246

generated from the RMS SV constraint have no significant power in any par-247

ticularly dominant degree (their spectra are almost flat), whilst the combined248

models have some power in the lower degrees, but do not converge until degree249

12.250

The last column in Tables 2 and 3 gives the RMS SV generated on the CMB251

for each model. Magnetic field models such as IGRF10 (Macmillan and Maus,252

2005) and CHAOS (Olsen et al., 2006) predict values in the range 60 − 70 ×253

106 (nT/yr)2. The models in Table 1 behave in a similar manner, generating254

SV values between 63 and 200 × 106 (nT/yr)2. As can be seen in Table 2,255

combined flows generate only slightly higher SV than this for a similar RMS256

velocity. In contrast, the SV generated by toroidal- and poloidal-only flows is257

minuscule. For the models in Table 3, the SV generated is orders of magnitude258

smaller. This is due to the extremely slow flow velocities, reflecting the fact259

that the models are not vigorous enough to fit the data well, even though they260

are complex (as reflected by their strong velocity norm value).261

Allowing the toroidal- or poloidal-only models in Tables 2 and 3 to become262

more realistic (by reducing the damping parameters) does generate SV values263

similar to the standard magnetic field models, but at the cost of greatly in-264

creased complexity of the flow. Thus, when using the RMS SV norm, simple265

flows fit the data poorly, while very complex flows are needed to generate a266

realistic amount of CMB SV and improve the fit to observations.267
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Dataset Model One-Norm Two-Norm Misfit RMS Vel. RMS SV

1 Tor+Pol 3925 195 7.6 15.3 239

Tor 11966 882 23 5.1 0.08

Pol 11519 865 22.3 5.3 0.1

2 Tor+Pol 343 29 0.6 16.0 268

Tor 1628 112 3.1 5.1 0.07

Pol 1618 111 3.1 5.3 0.1

3 Tor+Pol 2861 200 3.3 15.6 118

Tor 18132 886 20.9 5.6 0.3

Pol 17923 883 20.7 5.8 0.05

Table 2

Fit of flow models to observatory SV data minimising the Root-Mean-Square Secular

Variation over the CMB. The ‘strong’ velocity norm value of each model is 5.8 ×

106(km/yr)2. RMS CMB SV is in units of 106 (nT/yr)2. Other units as for Table

1.

5 Discussion268

In this study we find a number of new results. Firstly, the allocation of the269

error budget through the covariance matrix has a dramatic effect on the fit of270

the flow to the observations. The observation errors for Datasets 1 and 3 have271

been set equal; a simple but physically unrealistic allocation. In contrast, the272

observation errors in Dataset 2, have been corrected for covariance between273

the X, Y and Z observatory components, to improve the removal of exter-274

15
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Dataset Model One-Norm Two-Norm Misfit RMS Vel. RMS SV

1 Tor+Pol 7632 722 14.8 3.9 1.4

Tor 13811 955 26.8 1.1 0.0005

Pol 13859 957 26.9 1.1 0.0003

2 Tor+Pol 971 75 1.8 3.9 1.4

Tor 1808 121 3.4 1.2 0.02

Pol 1824 122 3.5 1.2 0.02

3 Tor+Pol 15363 761 17.8 3.3 0.5

Tor 23690 1123 27.4 1.0 0.003

Pol 23478 1114 27.2 1.1 0.004

Table 3

Fit of flow models to observatory SV data minimising the Root-Mean-Square Secular

Variation over the CMB. The ‘strong’ velocity norm value has been matched to that

of Table 1. Units as in earlier tables.

nal field contamination. Including additional information about data quality275

through the covariance matrix leads to an improved fit. Tables 1 and 2, and276

the histograms of residuals, indicate that Dataset 2 consistently achieves the277

flow with the best fit to the SV input data.278

Secondly, the choice of solution norm alters the resultant flow pattern sig-279

nificantly, despite an equivalently good fit. Minimisation using the ‘strong’280

velocity norm (Figure 2) produces flows showing patterns similar to those281

of other studies (e.g. Bloxham and Jackson, 1991; Waddington et al., 1995;282
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(f) Histogram of

Flow Model Data

Residuals

Fig. 3. Flow Models and Histograms of the residuals to the observatory SV data for

Dataset 2 minimising the RMS SV predicted by the flow. Note the contrast with

Figure 2.

Holme and Olsen, 2006). However, the flows resulting from minimising CMB283

root-mean-square SV are more complex (Figure 3) and admit only combined284

flow model solutions. They do not match the typical patterns found in other285

core flow studies.286

Thirdly, the existence of seemingly viable and relatively well-fitting poloidal-287

only flow models is a surprising result (Figure 2), given that such flows are288

currently considered physically unfeasible in the core dynamic regime. Note289

that Dataset 3 consists of evenly geographically distributed ‘stations’, indi-290

cating that the conclusions drawn here are not a function of the particular291

distribution of observatories available.292
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Love (1999) developed a dynamo model in which poloidal-only flow dominates293

at the CMB. That particular dynamo model exhibited no SV at the surface,294

but does illustrate that such flows are theoretically possible. In contrast, our295

poloidal-only flows generate sufficient SV to explain the observations. However,296

Gubbins (2007) shows that strong poloidal flows would expel large amounts297

of toroidal flux from the core, thus undermining the frozen-flux hypothesis on298

which flow inversion is predicated. Our poloidal flows may be sufficiently weak299

to overcome this problem.300

Combining these previous results with the findings from this study suggests301

that poloidal-only flows do not provide a good representation of the CMB flow,302

despite the relatively good fit to the SV data. Additionally, this work shows303

that CMB SV values matching those in standard models can be easily achieved304

with velocity norm regularised solutions. In contrast, SV norm regularised305

solutions produce complex flows for a comparable fit to the data with only306

slightly smoother CMB SV. Thus solutions minimising the SV norm have no307

real advantage over those with smooth flows.308

6 Conclusions309

We have employed an L1 error norm iterative minimisation method to invert310

SV data directly for core flow models. We find this approach improves the311

fit of the SV generated by the models to the observed data compared to the312

usual L2 (least-squares) norm. Using SV data rather than spherical harmonic313

SV models allows us to examine better the effects of some flow assumptions314

and constraints imposed upon inversions. Using two datasets of SV derived315

from ground-based observatories and a third consisting of synthetic SV on a316
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regular grid, it is shown that observation errors affect the overall fit of the317

flow model to the input data. In particular, using a dataset for which variable318

observation errors have been calculated for each component by co-estimation319

improves the overall fit (compared to models obtained assuming equal data320

errors).321

The constraints normally imposed in a regularised inversion are also shown322

to influence greatly the resultant flow regime. A constraint which minimises a323

velocity norm of the flow is weaker (i.e. permits a ‘larger’ model space) than a324

constraint that minimises the CMB RMS SV predicted by the flow. The weaker325

constraint allows solutions such as poloidal-only flow models to exist which are326

equally as valid as toroidal-only flow models, in some cases producing a better327

fit to the input data. The stronger constraint produces complex flow regimes,328

which do not match the simpler flow patterns from the weaker constraint329

or results from other studies. Therefore, it probably has little use beyond330

hypotheses testing frozen-flux and flow modelling assumptions. We therefore331

recommend CMB flows are derived by the L1 norm minimisation method with332

a velocity norm constraint.333
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