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Axial invariance of rapidly varying diffusionless

motions in the Earth’s core interior

Dominique Jault

LGIT, CNRS, Université Joseph-Fourier, BP 53, 38041 Grenoble Cedex 9, France

Abstract

Geostrophic jets propagating as Alfvén waves are shown to arise in a rapidly rotating

spherical shell permeated by a magnetic field among the transient motions set up by

an impulsive rotation of the inner core. These axially invariant motions evolve on a

time-scale which is short compared to the magnetic diffusion time. The numerical

study is taken as illustrative of a more general point: on such a fast time-scale the

dimensionless number appropriate to compare the rotation and magnetic forces is

independent of the magnetic diffusivity in contrast with the often used Elsasser

number. Extension of the analysis to non-axisymmetrical motions is supported by

published studies of dynamo models and magnetic instabilities.
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1 Introduction

For the last ten years, numerical simulations of the dynamo process in the

Earth’s core have much changed the views on the interplay between magnetic

and rotation forces. In particular, columnar flows almost invariant in the direc-

tion parallel to the rotation axis and localized outside the imaginary cylinder

tangent to the inner core have been found very often even though the Elsasser

number Λ, classically used to estimate the ratio of magnetic to rotation forces,

is of order 1 or larger (see e.g. Olson et al. (1999); Grote and Busse (2001)).

Alignment parallel to the rotation axis is caused by the predominance of ro-

tation forces. Accordingly, columnar flows had been contemplated previously

in the context of weak-field models (Λ ≪ 1) alone (Busse, 1975). The “strong

field regime” (Λ = O(1)) was illustrated by mean-field dynamo solutions, in

which the azimutal angular velocity showed instead large shears in the di-

rection parallel to the rotation axis (Braginsky, 1978; Hollerbach and Jones,

1993; Jault, 1995). These early solutions were either steady or slowly varying

on the magnetic diffusion time in sharp contrast with the current generation

of dynamo solutions.

With large magnetic fields, as measured by Λ, only the geostrophic part of the

velocity field, symmetric about the rotation axis, was expected to be invari-

ant in the direction parallel to the rotation axis. Braginsky (1970) singled out

these motions in the context of magnetostrophic equilibrium, characterized by

the insignificance of inertial and viscous forces compared to magnetic, rota-

tion and pressure forces. He found that as these azimutal velocities shear the

magnetic field, they are subject to a restoring force, provided by the magnetic

field, that ensures wave propagation. This is the mechanism of Alfvén waves
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and indeed geostrophic velocities in a rotating spherical shell permeated by a

magnetic field obey an equation of Alfvén wave type save for geometrical fac-

tors. Braginsky (1970) assigned these torsional Alfvén waves to perturbations

with respect to a slowly evolving basic state characterized by the cancella-

tion of the total action of magnetic forces on the geostrophic cylinders. That

description sets the geostrophic velocities apart. My aim, in this paper, is to

defend another explanation for the emergence of torsional Alfvén waves that

can be generalized to nonaxisymmetric motions, such as the almost axially in-

variant vortices found in recent geodynamo solutions characterized by strong

but rapidly fluctuating magnetic fields. Other examples are outlined in the

discussion part.

In the next section, I introduce the two dimensionless numbers Λ and λ that

measure the relative strength of the magnetic and rotation forces, within a

rapidly rotating body permeated by a magnetic field. I argue that on fast

diffusionless time-scales, the appropriate number is λ. This is illustrated in the

third section, which constitutes the main body of the article. The competition

between magnetic and rotation forces is studied in a rapidly rotating spherical

shell immersed in a magnetic field. Specifically, the axisymmetrical transient

motions set-up by an impulsive rotation of the inner core are investigated for

different values of λ and the Elsasser number. This is followed by a general

discussion, where different problems are listed for which λ rather than Λ is

appropriate to compare magnetic and rotation forces. The paper ends with

concluding remarks.

3
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2 Lehnert versus Elsasser numbers

Elsasser (1946) argued that the magnetic field in the Earth’s core saturates

when the magnetic force becomes comparable to the Coriolis force and sug-

gested the characteristic strength

B =
(

2Ωρ

σ

)1/2

, (1)

where Ω is the angular velocity, ρ is the density and σ is the electrical con-

ductivity. The Elsasser number,

Λ =
σB2

Ωρ
, (2)

has subsequently been used to measure the relative strength of Coriolis and

magnetic forces. In order to derive the relationship (1), the electrical current

density j is estimated as σUB. This is obviously not valid when magnetic

diffusion is negligible compared to induction (j ≪ σUB).

Conversely, magnetic diffusion does not enter the physics of plane magneto-

hydrodynamic waves, of length-scale l that Lehnert (1954) studied. He used

another dimensionless number χ0 = λ−1, with

λ =
B

Ω(µρ)1/2l
, (3)

to measure the relative strength of magnetic and rotation forces. The param-

eter λ, hereinafter referred to as the Lehnert number, can be defined as the

ratio, in a rapidly rotating and electrically conducting fluid permeated by a

magnetic field, of the period of the inertial waves to the period of the Alfvén

waves. Thus, the typical frequency of diffusionless Alfvén waves is λΩ and the

4
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relationship

λ ≪ 1 (4)

states that rotation forces dominate over magnetic forces on fast time-scales.

Cardin et al. (2002) argued that both Λ and λ are important to characterize

geodynamo models.

In the spherical case, it is convenient to specify λ using the outer radius a as

the length-scale l in the definition (3). Denoting by EM the magnetic Ekman

number η/Ωa2 and by E the ordinary Ekman number ν/Ωa2,the relationship,

EM + E ≪ λ, (5)

ensures that Alfvén waves are not rapidly damped by either magnetic or vis-

cous diffusion (ν and η are respectively the viscous and magnetic diffusivities).

Indeed, the ratio of λ to E + EM is the Lundquist number S which indi-

cates how far Alfvén waves propagate before they are quenched by diffusion

(Roberts, 1967). The two numbers λ and Λ are related through the magnetic

Ekman number:

λ2 = ΛEM . (6)

The value of λ appropriate to the Earth’s core is of the order of 3. × 10−5
−

2. × 10−4. Indeed, λ = 10−4 corresponds to a magnetic field strength in the

core interior of the order of 3. mT. Usually quoted values range from 1. mT

(Christensen and Aubert, 2006) to 4. mT (Starchenko and Jones, 2002). Using

EM = 4. × 10−9 yields S of the order of 104
− 5. × 104.
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3 Axisymmetric motions spawned in a spherical cavity by a sudden

impulse of the spin of the inner core

The change of the relative strengths of the magnetic and rotation forces ac-

cording to frequency is well illustrated by the contrast between transient and

steady flows in a differentially rotating spherical shell in the presence of a mag-

netic field. Static solutions have been published in the case of dipolar magnetic

field and small differential rotation, for which the structure of the flow has been

described according to the Elsasser number (Hollerbach, 1994; Dormy et al.,

1998). Kleeorin et al. (1997) have theoretically investigated steady linear so-

lutions when the imposed magnetic field is potential and has dipole parity.

They have identified several asymptotic regimes according to values of the El-

sasser number in the small Ekman number limit. Let us now study transient

structures.

3.1 Model and governing equations

Consider an electrically conducting homogeneous fluid occupying a spherical

shell that is immersed in an imposed steady magnetic field. The ratio of the

inner shell radius b to the outer radius a is b/a = 0.35 as in the Earth’s core.

The solid inner core has the same electrical conductivity as the fluid and the

outer boundary is insulating. The fluid is rotating with the constant angular

velocity Ω. The imposed magnetic field is chosen as:

B= B0∇× (Aeφ) (7)

A= (j1(β11r) − 0.3j1(β12r))P
1
1 (cos θ) − 0.2 j3(β31r)P

1
3 (cos θ) (8)
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where (r, θ, φ) are spherical coordinates, P 1
l are Legendre functions, (jl)l is

the set of spherical Bessel functions of the first kind and βln is the nth root

of jl−1(β) = 0. The basic field, which is shown in figure 1, has been chosen

with the aim of modelling torsional oscillations in the Earth’s fluid core. In

this context, the important quantity (Braginsky, 1970) is

{B2
s}(s) =

1

2π(zT − zB)





∮

zT
∫

zB

B2
sdzdφ



 , (9)

evaluated on geostrophic cylinders of radius s and of top and bottom z-

coordinates respectively zT and zB. Obviously, the choice (8) is arbitrary.

In contrast with the Earth’s case and with the basic state used by Braginsky

(1980) to model torsional oscillations, {B2
s} vanishes at s = a because of the

imposed dipole symmetry with respect to the equatorial plane. Axisymmetry

makes {B2
s} = 0 at s = 0 in contrast with the geophysical case again. In

view of the present study, the main characteristics of the field B defined by

(8) are that it is neither parallel to the rotation axis nor rapidly decreasing

with radius as are current-free dipole fields. The results presented below do

not depend on the details of the geometry of B.

Study the evolution of the velocity field u and of the magnetic field deviation

b after an impulsive increase of the angular rotation ωb of the inner core,

postulating symmetry about the axis of rotation and dipole symmetry about

the equatorial plane:

ur(r, π − θ, φ)= ur(r, θ, φ), uθ(r, π − θ, φ) = −uθ(r, θ, φ),

uφ(r, π − θ, φ)= uφ(r, θ, φ), br(r, π − θ, φ) = −br(r, θ, φ), (10)

bθ(r, π − θ, φ)= bθ(r, θ, φ), bφ(r, π − θ, φ) = −bφ(r, θ, φ).

The amplitude of the initial impulse Ωb is assumed to be small enough so that

7
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the subsequent evolution of the dynamics is independent of Ωb within a scaling

factor. Using B0 as unit of magnetic field, a as length-scale and a(µρ)1/2/B0

as unit of time, the fields u and b are governed by the following linearised

equations in the fluid region:

∂u

∂t
+ 2λ−1

e
z
× u=−∇p + (∇×B) × b + (∇× b) × B

+Pmλ Λ−1
∇

2
u , (11)

∂b

∂t
=∇× (u× B) + λ Λ−1

∇
2
b, (12)

where Pm = ν/η is the magnetic Prandtl number. The field b is defined also

in the inner solid region where:

∂b

∂t
= λ Λ−1

∇
2
b. (13)

Note that the steady-state solutions depend only on the two parameters Λ

and E. The velocity boundary conditions

u=0 , r = a (14)

u= s ωb(t) = s Ωb δ(t − t0), r = b (15)

are written using the Dirac δ function and are appropriate to rigid boundaries.

The set of equations (11) and (12) is discretized and time-stepped from an

initial state of rest:

u = b = 0 (16)

The Dirac δ function is approached as:

1
√

πǫ
e−(t−t0)2/ǫ. (17)

8
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It is a result of the simulations below that the solutions are independent of

the parameter ǫ provided that its value is set small enough.

A poloidal/toroidal decomposition

u=uφeφ + ∇× (upeφ) (18)

b= bφeφ + ∇× (bpeφ) (19)

is employed. The variables are expanded in associated Legendre functions, i.e.

uφ(s, θ) =
lmax
∑

l=0

ul
φ(s)P

1
2l+1(cos θ) (20)

and then discretized in radius. The minimum truncation level lmax is 120

whereas at least 450 unevenly spaced points are used in the radial direction.

3.2 Formation and propagation of geostrophic jets

Let us examine a typical sequence of solutions for a small value of λ. Following

the initial impulse, an almost geostrophic shear sets up, after a few revolutions,

at the cylindrical surface tangent to the inner core, hereafter referred to as tan-

gent cylinder. Induction of an azimutal magnetic field localized at the tangent

cylinder (compare the snapshot (a) to the snapshot (b) in figure 2 occurs about

the end of this period during which the velocity field becomes axially invariant.

It starts from a source at the equator of the inner core. The last two panels

of figure 2 illustrates the following period during which meridional electrical

currents parallel to the tangent cylinder intensify and loop further and further

away from the tangent cylinder. This is the most noticeable feature before

the geostrophic shear splits up. The outer shear readily transforms into a jet

propagating away from the tangent cylinder towards larger cylindrical radii.

9
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Thereafter, the velocity within the jet becomes more and more invariant along

z as time elapses (figure 3). On the other side of the tangent cylinder, a second

shear propagates towards the axis of rotation. Its propagation velocity slows

down as Bs decreases to 0 on the axis. In the event, the inner shear transforms

also into a jet. The comparison (figure 4) with a second sequence of solutions

for the same value of λ but for Λ multiplied by a factor of 12.5 indicates that

the dynamics outside the tangent cylinder is almost independent of Λ. The

flow remains geostrophic even though Λ is O(1). Note that steady flows do

not reproduce this feature. Figure 5 shows zonal flows driven by rotating the

inner sphere at a constant rate for the two values of Λ used to calculate the

transient solutions. For the largest value of Λ, the angular velocity contours

are not parallel to the rotation axis and tend instead to follow the magnetic

field lines, as prescribed by Ferraro’s law of isorotation. Steady solutions are

established after a period lasting a few time units λ−1Ω−1 during which the

flow is geostrophic.

The outer geostrophic jet has finite width δ in the limit ǫ → 0 (see expression

(17) for the definition of ǫ). Investigating the variation of δ with λ, E, and

EM gives an useful insight into the mechanism of generation of the geostrophic

motions. Here δ is arbitrarily defined as the distance along s between the two

cylinders, on both sides of the geostrophic jet, where the angular velocity has

half its maximum value. For the range of parameters that has been extensively

explored, the outer layer is always well characterized from t = 0.17 onwards.

Results are reported for this time. Keeping E constant and Pm = 1, it is found

that δ varies as λ−1/4 (see figure 6). For fixed values of λ and Pm = 1, δ varies

as E
1/4
M . This is illustrated by the figure 7. Indeed, assuming δ ∼ λ−1/4, the

10
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power law δ ∼ E
1/4
M can simply be written:

δ ∼

(

S†
)−1/4

(21)

using the Lundquist number S† = λ(EM)−1. Thus, the width δ is independent

of the angular velocity Ω. We are interested by results for Pm < 1 since ν ≪ η

in the geophysical case and in laboratory experiments as well. Decreasing Pm

from Pm = 1, a slight dependence of δ on Pm is found (figure 8). Extension of

the relationship (21) to solutions for Pm < 1 is supported by these results.

The outer geostrophic jet is radiated from the tangent cylinder, which touches

the inner core on its equatorial circle. There, both the rotation vector and the

magnetic field are parallel to the inner core surface and the Ekman-Hartmann

viscous boundary layer adjacent to the inner core is singular. Thus, it is in-

structive to investigate the influence of the strength of the magnetic field at

the singularity. For this purpose, an axial uniform field can be added to the

magnetic field defined by (8). It is found that the jet is much thickened if the

two fields cancel out at the singularity. Then, the relationship (21) does not

hold. On the other hand, it is also found - in the narrow parameter range

which has been investigated - that the layer shrinks as [Bz(b, 0)]−1/4 as the ax-

ial magnetic field adjacent to the equatorial ring of the inner core is increased.

Taking this result at its face value, the magnetic field strength entering the

relationship (21) would be Bz(b, 0). Putting these results together, it appears

that the magnetic structure adjacent to the equator of the inner core plays

a significant role in the emergence of the two propagating shear layers. The

transformation of the outer shear layer into an independent jet detached from

the inner core is promoted by the axial magnetic field.

11
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Once the outer jet is formed, its time evolution is given by the equations of

Braginsky (1970), which satisfy angular momentum conservation. It is possible

to estimate the angular momentum A(t) = s2
√

1 − s2δuφ(s) carried by the

outer jet from the width δ. For the solutions that have been investigated, A

does not change throughout the propagation of the jet. The strength Bs of the

magnetic field sheared by the jet decreases with s to 0 at s = 1. Thus, the jet

slows down as it approaches the outer sphere equator, which it never reachs.

The scaling (21) has implications for the coupling between the axial rotation

of the Earth’s solid inner core and torsional oscillations (Buffett and Mound,

2005). The time unit λ−1Ω−1 corresponds to 1-10 years for geophysical appli-

cations. A characteristic time
(

S†
)−1/4

(λΩ)−1 can be derived from the length

δ and the Alfvén wave velocity λΩa. It corresponds to the inner core rotation

period below which dissipative processes at the tangent cylinder are impor-

tant. Using a geophysical estimate for S†, the coupling mechanism presented

above between the rotation of the inner core and torsional Alfvén waves is

found to be efficient on periods longer than a few months. Investigation of

magnetic fields with non-dipole symmetry will be a natural follow-up of this

study.

Finally, keeping S† constant and increasing λ, it is found that the structures

radiated from the tangent cylinder lose their geostrophic character for λ ∼

10−2.

12
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4 Discussion

Let us now examine to what extent the parameter λ is also appropriate to

comment on the geometry of fast motions in other problems characterized by

rapid rotation and magnetic field.

4.1 Axially invariant hydromagnetic instabilities occurring at small Lehnert

number

We can discriminate between two approaches that have been followed to study

the stability of a magnetic field in a rotating sphere according to the parameter,

either λ or Λ, used to compare magnetic and rotation forces. Malkus (1967)

recently followed by Zhang et al. (2003) studied hydromagnetic waves in a non-

dissipative fluid (Λ → ∞). As a result, they wrote the condition for stability

as a relationship involving the Lehnert number λ, which has to exceed values

of the order unity. Zhang and Fearn (1994) focused on the rapid rotation limit

(λ → 0) instead. Then, the onset of instability occurs for a critical value of the

Elsasser number Λc. In accordance with the above discussion on the geometry

of the motions in the limit (λ → 0), they found that the (non-axisymmetric)

instability is characterized by nearly two-dimensional columnar fluid motions

despite Λc being O(10).

This result stands when the instabilities are thermally driven. Zhang (1995)

focused his study of rotating convection in the presence of an axisymmetrical

toroidal magnetic field on the limit (E → 0), which amounts to (λ → 0) for

finite values of the Elsasser number Λ. The magnetic Prandtl number is set to

1 and the control parameters are thus Λ together with a Rayleigh number. The

13
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fluid motions, in the limit (E → 0), are almost two-dimensional showing only

slight variations along the direction of the rotation axis whilst Λ is O(1− 10).

The solutions of Olson and Glatzmaier (1995) (outside the cylindrical surface

tangent to the inner core), Walker and Barenghi (1997) (their figures 6f, 7f,

8f, 9f) for different basic states and Zhang and Jones (1996) (their figure 4)

for κ/η ≪ 1, where κ is thermal diffusivity, all present similar features.

4.2 Columnar flow structure in geodynamo models

Obviously, the numbers λ and Λ are less directly relevant to studies of dynamo

simulations than to investigations of models with imposed large-scale magnetic

field. These two estimates of the magnetic field strength come out as output

of the numerical runs instead of being among the initial parameters. It is

nevertheless true that realistic values of λ are reached in numerical models

of the geodynamo as λ does not involve diffusivities. Thus, Christensen and

Aubert (2006) conducted a statistical analysis of a set of geodynamo models

and estimated a parameter defined as λ, using the shell depth as the length-

scale l in (3). Their results correspond to λ varying from 7× 10−3 to 3× 10−2,

keeping the core radius as length-scale. Christensen and Aubert (2006) found

that the narrow range of λ values contrasts with the wide variations of Λ.

They also remarked that measuring the relative strength of magnetic and

rotation forces acting in geodynamo models with the Elsasser number Λ does

not reflect the fact that the Lorentz force depends on the length scale of the

magnetic field whereas the Coriolis force is independent of the length scale of

the velocity field. Conversely, comparing typical periods of the Alfven waves to

typical periods of the inertial waves shows that the relative importance of the

14
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magnetic force augments with decreasing length scales (see the expression (3)

of λ ). In their previous systematical parameter study, Christensen et al. (1999)

had found only one case with strong deviations from columnarity (Λ = 14,

EM = 6× 10−5, λ = 3× 10−2). Together, these results are consistent with the

statement that the extent to which rotation affects the structure of the flow

depends on λ, the motions remaining columnar up to λ = O(3 × 10−2).

4.3 Torsional oscillations in convective dynamo models

Convection columns can excite time-dependent geostrophic motions in dy-

namo models through magnetic and Reynolds stresses. This has been illus-

trated by Dumberry and Bloxham (2003). They separated the axisymmetric

azimutal velocity field obtained from the geodynamo model of Kuang and

Bloxham (1999) - E = EM = 4 × 10−5, Pr = 1 and stress-free boundary con-

ditions - into a mean flow plus a fluctuating component. They showed that

the quasi-static azimutal winds have large gradients in the z-direction. On

the other hand, Dumberry and Bloxham (2003) emphasized the axial invari-

ance of the time-varying zonal flows. Their finding that, outside the tangent

cylinder, the whole length of the geostrophic cylinders accelerates azimutally

as if they were rigid on time-scales τ ∼ 0.1 τD is in line with the small value

of λ in this numerical experiment (τD magnetic diffusion time). Indeed, us-

ing B ∼ 2(2Ωµρη)1/2 (see fig. 10 of Kuang and Bloxham (1999)), we infer

Λ ∼ 10 and λ ∼ 2× 10−2. These geostrophic motions are not Alfvén waves as

Reynolds stresses and viscous forces are as important as the magnetic forces

in the balance of forces acting on the geostrophic cylinders. More recently and

with Earth-like no-slip boundary conditions, Takahashi et al. (2005) argued

15
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indeed that the Ekman number has to be decreased down to E = 8× 10−6 to

make the viscous torque acting on the geostrophic cylinders negligible and the

magnetic torque predominant. Finally, for the same value of E as Takahashi

et al. (2005), but with stress-free boundary conditions and small Prandtl num-

ber Pr = 0.1, Busse and Simitev (2005) found a dynamical state where the

magnetic torques on geostrophic cylinders account for most of the geostrophic

acceleration. Extracting the average magnetic field strength from the figure

18 of Busse and Simitev (2005) gives λ ∼ 5× 10−3 - well in the domain λ ≪ 1

- and Λ ∼ 3. The result that magnetic forces dominate over Reynolds stresses

in the balance of force acting on the geostrophic cylinders can be related to

the observation that the magnetic energy is much stronger than the kinetic

energy in this solution. Thus, sequences where geostrophic motions behave as

torsional oscillations begin to be detected in convective dynamo models. That

requires λ ≪ 1 - to obtain time-dependent geostrophic motions, observed for

λ ∼ 2 × 10−2 by Dumberry and Bloxham (2003) -, small E and, presumably,

kinetic energy weaker than magnetic energy. In these studies, there is no ev-

idence that the quantity {B2
s} measuring the intensity of the magnetic field

sheared by the geostrophic motions and the geostrophic velocities evolve on

separate time-scales. Further work is needed to decide what kind of models

(fully consistent dynamo models with poor separation of scales versus models

incorporating a steady field) better describes the Earth’s core dynamics.

4.4 Torsional oscillations and Taylor states

In this article, torsional oscillations are considered as part of the rapid mo-

tions that are dominated by rotation because magnetic diffusion is negligible.
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Braginsky (1970) had a different line of arguments. He attributed torsional

oscillations to departures from a dynamic equilibrium where the net torque

of the Lorentz force on any geostrophic cylinder is zero (Taylor, 1963). This

condition has to be met, in spherical geometry, when only the Coriolis, pres-

sure, buoyancy and magnetic forces are taken into account (MAC balance).

It is frequently referred to as a “Taylor state”. It describes a dynamo regime

on the long time-scale for which magnetic diffusion is important. Reinstating

the acceleration of geostrophic motions ∂uφ(s)/∂t in the equation for azimutal

velocities, it has been possible to exhibit inviscid solutions of the model-Z of

Braginsky (1978) that are in a Taylor state (Jault, 1995). However, this is

almost the unique instance where a connection between torsional oscillations

and idealized Taylor states has been vindicated. Geodynamo numerical mod-

els showing torsional oscillations that keep bringing back the magnetic field

towards a Taylor state have not yet been found. The two viewpoints differ in-

sofar nonzonal rapid motions are considered. I envision here that they are also

constrained by rotation being almost z-invariant whereas Braginsky (1970)

made no predictions on the geometry of these motions.

5 Concluding remarks

Focusing a numerical study on the transient motions spawned by an impulse

in the rotation of the inner boundary of a rapidly rotating spherical shell

immersed in a magnetic field with dipole symmetry, I have documented the

emergence of geostrophic jets from the cylindrical surface that touches the

inner core at its equator, irrespectively of the value of the Elsasser number.

Both the poloidal motions, of which the vorticity is aligned along eφ, and the
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toroidal motions with shear in the z direction are rapidly eliminated. The

geostrophic layers travel with the velocity λaΩ and are governed, outside the

tangent cylinder, by the equations written by Braginsky (1970). The jet width

scales as
(

S†
)−1/4

. This estimate yields the frequency below which oscillations

of the solid core are communicated to torsional Alfvén waves in the fluid shell.

Using Earth-like parameters, it corresponds to a period of a few months. This

study gives an illustration of the key role played - for fast flows - by the

parameter λ - independent of magnetic diffusivity - put forward by Lehnert

(1954). Conversely, λ is not appropriate to study steady solutions as it cannot

be derived from the two parameters Λ and E that characterize the static

problem.

In the same spirit, I have been able to base a discussion of earlier numerical

studies of magnetic instabilities and dynamos in rotating shells on that pa-

rameter λ. I suggest that the smallness of λ in some of these studies is the

reason for the occurrence of columnar motions aligned parallel to the axis of

rotation and also of geostrophic flows evolving as Alfvén waves. From these

earlier studies, I anticipate that the results presented here can be extended to

the nonaxisymmetric case.

Thus, the parameter λ, instead of the Elsasser number Λ , is the appropri-

ate parameter to compare magnetic and rotation forces when flows evolving

on time-scales much shorter than the magnetic diffusion time are considered.

As the value of λ appropriate to the Earth’s fluid core is O(10−4), I advo-

cate that motions in the core interior with fast diffusionless time-scales are

approximately z-independent and columnar with vorticity aligned parallel to

the rotation axis. That paves the way for dynamical studies of the flows re-

sponsible for the secular variation of the Earth’s magnetic field, generalizing
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to all fast motions what has already been achieved for the geostrophic, axially

symmetric ones (Zatman and Bloxham, 1997).
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Figure Captions

Figure 1. Field lines of the imposed poloidal axisymmetric field.

Figure 2. Contours of the induced azimutal magnetic field for λ = 1.72×10−4,

Λ = 0.52, E = EM = 5.7×10−8 drawn at t = 8.6×10−3(a), t = 1.72×10−2(b),

t = 3.44×10−2(c) and t = 6.88×10−2(d). The contour intervals and the frame

size are identical in all frames. The inner sphere boundary is indicated with a

thick line.

Figure 3. Contours of constant angular velocity for λ = 1.72×10−4, Λ = 0.52,

E = EM = 5.7 × 10−8 drawn at t = 8.6 × 10−2(a), t = 0.26(b), t = 0.52(c)

and t = 1.03(d). The contour intervals are respectively ∆ω, ∆ω/2, ∆ω/5 and

∆ω/10 in the frames a, b, c and d in order to compensate for the attenuation
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of the velocities.

Figure 4. Same as figure 3 for λ = 1.72 × 10−4, Λ = 6.5, E = 1.42 × 10−8,

EM = 4.5 × 10−9 and same progression of contour intervals.

Figure 5. Steady azimuthal flow induced by rotating the inner and outer

boundaries at slightly different rates. Contours of constant angular velocity

for E = 4.5 × 10−7 and Λ = 0.52 (a) Λ = 6.5 (b).

Figure 6. Scaling of the width δ of the outer geostrophic jet with respect to the

number λ. The magnetic Prandtl number is Pm = 1 and the Ekman number

is E = 5.7× 10−8 (crosses) or E = 2.85× 10−8 (+ signs). A line of slope −1/4

is shown for comparison.

Figure 7. Scaling of the width δ of the outer geostrophic jet with respect to

the Lundquist number S† = λ/EM . The magnetic Prandtl number is Pm = 1

and λ is 4.3 × 10−5 (3), 8.6 × 10−5 (×), 1.72 × 10−4 (◦), 3.44 × 10−4 (+),

6.88 × 10−4 (2). A line of slope −1/4 is shown for comparison.

Figure 8. Thickness δ of the outer geostrophic jet with respect to P−1
m for

Pm ≤ 1. and various λ: λ = 4.3 × 10−5 (circles), λ = 8.6 × 10−5 (crosses),

λ = 1.72 × 10−4 (+ signs), λ = 3.44 × 10−4 (squares).
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Figure 1
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Figure 2a
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Figure 2b
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Figure 2c
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Figure 2d
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Figure 3a
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Figure 3b
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Figure 3c
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Figure 3d
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Figure 4a
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Figure 4b
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Figure 4c
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Figure 4d
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Figure 5a
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Figure 5b
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Figure6
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Figure7
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