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Thermal core-mantle interaction: exploring

regimes for ‘locked’ dynamo action

Ashley P. Willis,

Department of Mathematics, University of Bristol, University Walk, Bristol BS8

1TW, UK.

Binod Sreenivasan & David Gubbins ∗

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.

Abstract

Possible effects on the geodynamo of lateral variations in heat flux from the core are

explored, using two different patterns of heat flow from the core. One is based on

lower mantle shear wave velocity and the other is the single spherical harmonic Y 2
2 .

The self-consistent dynamo equations driven by thermal convection in a Boussinesq

fluid are solved. Our choice of parameters is guided by earlier work on non-magnetic

convection. We have already found a nearly steady solution locked to the tomo-

graphic boundary condition that bears a remarkable resemblance to the present

day field; here we seek to understand this locked regime. Numerical considerations

demand an artificially high Ekman number; we choose a low Rayleigh number and

a Prandtl number of order unity. In this regime locking occurs when the underlying

convection has an azimuthal wavelength similar to that of boundary conditions, as

in the non-magnetic case. This is demonstrated where a drifting non-magnetic flow

dominated by m = 8 rolls is converted to locked large scale-flow by the presence of

a self-generated magnetic field. Large but geophysically reasonable variations in the
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flux are required for locking. Dynamo action can fail at very large variation, where

strong thermal winds disrupt the mechanism in this regime. If the Rayleigh number

is too close to critical, the dynamo can fail for low variation, where the flow has

a larger component driven by the boundary condition. Similarly, azimuthal flow at

lower Prandtl numbers blurs the effect of the boundary condition.

1 Introduction

Hide (1967) was the first to suggest that the lower mantle influences the geo-

magnetic field through control of the dynamo. Since then several observations

have been made that point to lower mantle effects: long-term changes in re-

versal frequency have been attributed to changes in the heat flux crossing the

core-mantle boundary (CMB) (McFadden & Merrill, 1984); the large, high-

latitude concentrations of flux (or “lobes”) that constitute the main dipole

have been found to be relatively stable during the historical period (Bloxham

& Gubbins, 1985) and there is a hint that they persist in the paleomagnetic

time average (Gubbins & Kelly, 1993; Johnson & Constable, 1995); virtual

geomagnetic poles (VGP) tend to follow a great circle passing through the

same longitudes as the main lobes (Laj et al., 1991; Love, 1998); and weak

secular variation in the Pacific (Fisk, 1931) (the so-called “Pacific dipole win-

dow”) may have persisted for much longer [(Doell & Cox, 1972), although the

paleomagnetic evidence is disputed (Merrill & McElhinny, 1996)]. The great

circle of stable flux concentrations corresponds roughly to the “ring-of-fire”

∗ Corresponding author.

Email addresses: a.willis@bristol.ac.uk (Ashley P. Willis),

binod@earth.leeds.ac.uk, gubbins@earth.leeds.ac.uk (Binod Sreenivasan &

David Gubbins).
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around the Pacific; it also encloses the Pacific dipole window.

This sparked speculation of a connection between the geodynamo and surface

processes [e.g. Vogt (1975); Larson & Olson (1991)]. Seismic tomography has

revealed a fast “doughnut” in the lowermost mantle beneath the ring-of-fire,

no doubt associated with persistent subduction over many tens of millions of

years. Cold regions in the lower mantle could cause preferential cooling of the

core, downwelling, and concentration of radial magnetic flux at the core sur-

face. This qualitative suggestion has now been explored in many convection

and dynamo studies, mostly by imposing a heat flux or temperature boundary

condition with the same geographic structure as a tomographic model of shear

velocity (VS) in the lowermost mantle [usually that of Masters et al. (1996)].

This assumes shear velocity is determined only by temperature and not by

composition. The dominant pattern is a fast (cold) ring around the Pacific

rim with slow (hot) regions beneath the Pacific and Africa - the sites of the

superplumes. The largest term in a spherical harmonic expansion of the to-

mography is Y 2

2
, and many studies have simplified the boundary condition to

this single harmonic, which carries the advantages of simplicity and symmetry.

The first numerical experiments considered non-magnetic convection with in-

finite Prandtl number (Pr) and temperature boundary conditions. They can

be divided into studies of boundary-driven flow, or thermal winds, and convec-

tion driven from below modified by the boundary anomalies. Thermal winds do

not involve downwelling beneath cold regions but pre-existing convection can:

under the right circumstances convection becomes locked with downwelling

limbs beneath cold boundary (Zhang & Gubbins, 1992, 1993b). At slightly

supercritical Rayleigh number (R) the usual drifting pattern of “Busse” rolls

becomes stationary, or“locked” to the boundary, provided the lateral variation
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in boundary heating is sufficiently strong and the wavelength of convection

with homogeneous boundary conditions is similar to the wavelength of the

boundary anomalies.

Weakening the boundary heating leads, via a saddle-node bifurcation, to peri-

odic solutions in which the pattern of cells drift at a non-uniform rate, slowing

down when the downwelling limbs coincide with cold boundary and speed-

ing up when they coincide with hot boundary. Analogous dynamics apply in

a simple illustration of a submerged pendulum (Zhang & Gubbins, 1993a).

The wavelength of the convection with homogeneous boundary conditions is

largely determined by the Ekman number. Resonances were found when E

was varied and R E held constant. Vigorous convection resulted when the two

wavelengths were equal (resonance) or multiples of each other (secondary res-

onance) (Zhang & Gubbins, 1993b). In a subsequent study Zhang & Gubbins

(1996) found boundary effects to be weaker at finite and low Pr.

Parallel work with heat flux boundary conditions (Gibbons & Gubbins, 2000;

Gibbons et al., 2007) reinforced the importance of matching length scales

between the boundary anomalies and the underlying convection. However,

the response at moderate E is quite different because the dependence of the

most unstable azimuthal wavenumber, mc, or number of convection rolls at

onset, is a much more complicated function of E than it is for temperature

boundary conditions (see Gibbons et al. (2007)).

Addition of a magnetic field in subsequent models was less successful. Olson

& Glatzmaier (1996) failed to find significant effects in magnetoconvection

calculations even with very large lateral variations in heat flux. Nevertheless,

Sarson et al. (1997) found nearly steady solutions in a 2.5D model with low

degrees of freedom in azimuth (a mean mode, a sinusoid, and azimuthal shifts
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of the sinusoid). Fully self-consistent geodynamo simulations with inhomoge-

neous thermal boundary conditions have been used to explore boundary effects

on the frequency of reversals (Glatzmaier et al., 1999), the dominance of the

dipole field in the past when lower mantle conditions were different (Bloxham,

2000a), the Pacific dipole window and secular variation (Bloxham, 2000b;

Christensen & Olson, 2003), the time-average of the geomagnetic field (Ol-

son & Christensen, 2002), preferred VGP reversal transition paths (Kutzner

& Christensen, 2004), and more recently, time-averaged core surface flows

(Aubert et al., 2007). These studies generally support the idea that lower

mantle shear wave velocity correlates with some aspects of the time averaged

field and statistical properties of the secular variation, but there is little evi-

dence of simple locking or boundary resonance in these results, as was found

in the non-magnetic experiments, nor is there any direct similarity between

snapshots of the solutions and the present geomagnetic field. This requires the

similarity between the present geomagnetic field and the time average to be a

coincidence: we think this unlikely.

We therefore sought fully self-consistent dynamo solutions in which the mag-

netic field was locked to the boundary anomalies defined by tomography. Such

a solution was found (Gubbins et al., 2007) in which the characteristic 4 main

lobes persisted for many diffusion times at the same sites as the main lobes

of the geomagnetic field. The correlation is striking, with dynamo and ge-

omagnetic lobes within about 5◦ of each other. The parameters needed for

this “locked” regime are geophysically improbable: we were forced to choose

a large Roberts number q = κ/η = 10, where κ is the thermal diffusivity and

η the electrical diffusivity. However, all geodynamo simulations suffer from

unrealistic parameters as it is impossible to reach the correct E or R, and it

is therefore not surprising that other parameter had to be changed in order to
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obtain geophysically realistic effects.

The previous paper was driven by the observations, with the goal of find-

ing a stationary or quasi-stationary solution that could be compared directly

with the present geomagnetic field. The purpose of this paper is to explore

the “locked dynamo” regimes further in order to understand the physical pro-

cesses involved. The mathematical formulation of our model is described in the

following section. Our initial exploration of the locked solution is described in

Section 3. The regimes conducive and detrimental to locking are discussed in

Section 4. The solution for the seismic shear wave velocity boundary condition

is compared with the solution for the simplified Y 2

2
boundary condition. In the

conclusions we highlight the principal accomplishments of this study.

2 Formulation

A Boussinesq fluid with finite electrical conductivity is modelled, confined

between two concentric spherical surfaces that correspond to the Earth’s inner

core boundary (ICB) and core-mantle boundary (CMB). The radius ratio is

fixed at 0.35 corresponding closely to that of the Earth. Lengths are scaled by

the thickness of the spherical shell d and time by d2/κ, the thermal diffusion

time, where κ is the thermal diffusivity, as we shall be primarily concerned with

the effect of boundary heat flux variation on core convection. The magnetic

field is scaled by (2Ωρµη)
1

2 where Ω is the rate of rotation, ρ the density,

µ the permeability of free space and η is the magnetic diffusivity. The non-

dimensional equations are then

1

Pr
(∂t + u · ∇)u − ∇

2
u=−∇p̂ +

1

q E
(∇ ∧ B) ∧ B

6
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+R Θ r −
1

E
ẑ ∧ u, (1)

(∂t −
1

q
∇

2)B = ∇ ∧ (u ∧ B), (2)

(∂t −∇
2)Θ= S − u · ∇Θ, (3)

where

R =
gαβd5

κν
, E =

ν

2Ωd2
, P r =

ν

κ
, q =

κ

η
, (4)

are the Rayleigh, Ekman, Prandtl and Roberts numbers respectively. Written

in this form, it is clear that the Rayleigh number measures the driving of

the flow through the buoyancy force and that the Ekman number inversely

measures rotational effects of the Coriolis force. Note that the prefactor 1/(qE)

to the Lorentz term in (1) could be absorbed into the scaling for the magnetic

field, and that the Roberts number, q, appears only in the magnetic diffusion

term of (2). The role of the inertial term is inversely measured by the Prandtl

number Pr, but also depends on the magnitude of the flow. Non-magnetic

convection is governed only by the parameters R, E and Pr. For no flow, u =

0, a uniform internal (dimensional) heat source S ′ leads to the temperature

profile

Θ̂ =
β

2
(r2

0
− r2), β =

1

3κ
S ′. (5)

The temperature in (3) has been scaled by βd2 giving the dimensionless vol-

umetric heat source S = 3. No-slip boundary conditions are imposed on the

flow. The inner core is fixed at a uniform temperature, is not free to rotate,

and is electrically conducting. The outer boundary is electrically insulating

with an imposed, laterally varying heat flux. Two patterns of laterally varying

boundary condition are used, one the single spherical harmonic Y 2

2
and the

other a “tomographic” boundary condition based on the shear wave velocity

7
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at the base of the mantle (Masters et al., 1996). The degree of lateral variation

in heat flux is measured by a horizontal Rayleigh number, RH , based on the

maximum lateral variation of heat flux at the outer boundary. The ratio, ǫ, is

therefore

ǫ =
maximum flux variation

mean flux
=

RH

R
, (6)

which is ǫ = 0 for the homogeneous condition. For the tomographic boundary

condition an ǫ = 1 corresponds to peaks of −55% to +45% of the mean radial

heat flux; for the Y 2

2
mode it corresponds to ±50%. The tomographic boundary

condition is plotted in Figure 1.

Velocity and magnetic fields are expressed in terms of toroidal and poloidal

potentials,

B = ∇ ∧ (T r) + ∇ ∧ ∇ ∧ (Pr), u = ∇ ∧ (Tr) + ∇ ∧ ∇ ∧ (Pr) (7)

These potentials are expanded in terms of spherical harmonics in the form,

A(θ, φ) =
∞
∑

l=0

∑

|m|≤l

Alm Ŷ m
l (θ, φ), where, Ŷ m

l (θ, φ) = P
|m|
l (cos θ) eimφ, (8)

where the P m
l are the associated Legendre functions. The spherical harmonics

are normalised such that

2π
∫

0

π
∫

0

(Ŷ m
l )2 sin θ dθ dφ = 2π

2(2 − δm0)

2l + 1
. (9)

Taking the r-component of the induction equation (2) and the r-component

of its curl leads to two second-order equations, one for each of the potentials,

(∂t −
1

q
∇

2)P =
r

l(l + 1)
r̂ · N , (10)

8
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(∂t −
1

q
∇

2)T =
r

l(l + 1)
r̂ · ∇ ∧ N . (11)

where N represents the nonlinear terms on the right hand sides of each equa-

tion. The equations also separate for each of the spherical harmonic modes.

Indices l, m on the potentials in (10) and (11) have been dropped. A property

of spherical harmonics gives ∇2 ≡ ∂rr + 2r−1∂r − l(l + 1)r−2. Division by l on

the right hand side is safe as ∇ ·B = 0 implies no l = 0 harmonic is required.

Nonlinear terms, N , are evaluated in real space and then transformed back

to spectral coefficients. To avoid aliasing of higher wavenumbers introduced

by the nonlinear terms, they are evaluated on extra points according to the

‘three-halves’ rule (Orszag, 1971). The boundary conditions are T = 0 and

(∂r + (l + 1)r−1)P = 0 on the outer insulating boundary; potentials and their

first derivatives are continuous across the boundary to the conducting inner

core.

Taking the r-components of the curl and curl-curl of the momentum equation,

one may write three second-order equations,

(
1

Pr
∂t −∇

2)T =
r

l(l + 1)
r̂ · ∇ ∧ N , (12)

(
1

Pr
∂t −∇

2)P = g (13)

−∇
2g =

r

l(l + 1)
r̂ · ∇ ∧ ∇ ∧ N . (14)

with no slip boundary conditions T = 0, P = 0, ∂rP = 0. Although there

are four boundary conditions on the P and none on g, any difficulty is easily

by-passed using the influence-matrix method, Peyret (2002). They are satis-

fied to numerical precision at little additional expense. Our method is similar

to that of Tilgner (1999). However, rather than another spectral expansion

in radius a seven-point finite difference stencil is used to conserve memory

9
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requirements, improve computation time, and ease parallelisation. The radial

mesh points are located at zeros of the appropriate order Chebyshev polyno-

mial and are clustered near the boundaries. The solution to system (13) and

(14) is expressed as a linear combination of the solutions to three independent

systems, P = P̄ + a PG + b P ′
G, where































X P̄ = ḡ,

Q ḡ = f,































X PG = gG,

Q gG = 0,































X P ′
G = g′

G,

Q g′
G = 0,

(15)

with conditions, gG = 1, g′
G = 0 on the inner boundary, gG = 0, g′

G = 1 on

the outer boundary, and ∂rP̄ = ∂rPG = ∂rP
′
G = ḡ = 0 on both. X and Q

represent the operators on the left-hand sides of (13) and (14). The system

for P̄ is solved at each timestep, where f is the time-dependent right-hand

side of (14). The solutions for PG and P ′
G are independent of time and may

be precomputed. The solution for P satisfying all boundary conditions is the

superposition P = P̄+a PG+b P ′
G, where the coefficients a, b are determined by

the no-penetration condition, P = 0. They are found by solving the influence

matrix equation

















PG(ri) P ′
G(ri)

PG(ro) P ′
G(ro)

































a

b

















= −

















P̄ (ri)

P̄ (ro)

















. (16)

The temperature is also expanded in spherical harmonics and the temperature

equation solved in similar fashion to the induction and momentum equations,

using the same finite difference schemes and evaluating the nonlinear advective

term by the transform method. In the following calculations 55 radial points

were used and, as the Rayleigh number was small, harmonics up to l = 36
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were found to be sufficient. Spectra for the magnetic and velocity fields fell

by approximately 3 orders of magnitude by the truncation point. The locked

dynamo for the tomographic boundary condition (following section) was also

checked for l up to 48, for which no differences were identifiable. The timestep

size was controlled using information from a predictor-corrector method where

the error showed second-order convergence. The code shows excellent agree-

ment with the dynamo benchmark (Christensen et al., 2001) and other recent

dynamo calculations (Olson et al., 1999).

3 Parameter selection: tomographic boundary condition

Under strong rotation, the Ekman number E is small and the primary force

balance is between the magnetic, Archimedean (buoyancy) and Coriolis forces

represented on the right-hand side of equation (1), the so-called MAC or mag-

netogeostrophic balance. This is not the complete story, however, as the Cori-

olis force does not affect components of the flow that are dependent only on

the cylindrical radius from the axis. Strong zonal flows can occur if the iner-

tial term becomes significantly large, which happens when Pr is low (Simitev

& Busse, 2003; Sreenivasan & Jones, 2006). At smaller E and larger Pr the

magnetogeostrophic, or geostrophic balance in the non-magnetic case, is estab-

lished, which has the effect of pushing the resulting flow patterns onto smaller

length scales, much smaller than are likely to be of significance in magnetic

field generation. It is thought, however, that the presence of a strong mag-

netic field may cause the flow to evolve on larger length scales. It has been

suggested that, if the field became sufficiently weak, the flow may begin to

evolve on smaller length scales and that the magnetic field may die altogether

(Zhang & Gubbins, 2000). For the moment, we wish to ensure that the correct
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balance of terms is achieved.

We are guided by the linear stability results of non-magnetic rotating convec-

tion with homogeneous heat flux boundary conditions. Figure 6 of Gibbons

et al. (2007) gives the mode with most unstable azimuthal wavenumber, mc,

as a function of Ekman and Prandtl numbers and ri/ro = 0.4. Here the critical

Rayleigh number, Rc, has been recalculated at ri/ro = 0.35 but the critical mc

appear to be essentially identical. For fixed moderate Pr there is a sharp tran-

sition from mc = 1 to mc of order 10 as E is decreased. This is quite different

from the case of fixed temperature boundary conditions, where the increase

of mc smoothly asymptotes to E−1/3 as E → 0. At low E the difference in be-

haviour between temperature and heat flux boundary conditions disappears,

and the E−1/3 law is followed in both cases, but this regime is numerically dif-

ficult in the non-magnetic case and impractical for dynamo calculations. We

therefore chose E to be smaller than where the jump in mc occurs, at around

2 × 10−4 for moderate Pr. Initially we chose Pr = 1 and E = 1.2 × 10−4,

for which the onset of thermal convection occurs at Rc E = 23.3 and mc = 8.

Nonlinear calculations with non-magnetic convection showed that our flow re-

mained of similar scale provided R was not highly supercritical, progressing

from quasi-periodic rolls to rolls plus an increasing number of chaotic defects

as R/Rc is increased.

Small magnetic fields were added to each of the non-magnetic flows with ho-

mogeneous boundary conditions to test for kinematic dynamo action, but

none was found for values of q up to 100. A dynamo was found at q = 10 by

adding an initial dipolar field large enough for the nonlinear feedback through

the Lorentz force to be significant: compare left-hand plots (for homogeneous

boundary conditions) in Figure 2. Both dynamo and non-magnetic flows are
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highly chaotic, the dynamo much more so, but with longer length-scales. Low-

ering q to 8, the dynamo decayed and the flow reverted to that of non-magnetic

convection.

The next step was to explore the effect of the inhomogeneous tomographic

boundary condition on the dynamo solution, increasing the boundary inho-

mogeneity until a significant thermal coupling was seen. Dynamo solutions at

all values of ǫ generated magnetic fields with flux patches in high latitudes,

at least for short intervals of time. At ǫ = 0.3 only a slight preference in lon-

gitude was observed in these patches; for 0.6 the high-latitude patches would

often stay close to the cold regions, but sometimes drifted away or split in

two; see Figure 3. When ǫ was increased further to 0.9, the field was strongly

locked although not completely stationary — the magnetic flux lobes are sub-

ject to small east-west motions, but of no more than a few degrees — so that

snapshots are representative of the field configuration at any time.

In addition to the flows for homogeneous boundary conditions compared in

Figure 2 are the non-magnetic and dynamo solutions for the tomographic

boundary condition (right-hand plots). Flow is weak below the hot regions

(where the boundary heat flux is low) for both dynamo and non-magnetic

flows. The non-magnetic flow is more chaotic than the dynamo flow, however,

and is smaller scale. The lesser influence of the boundary condition on the

non-magnetic flow may be attributed to a disparity of length scales — the

rolls being much smaller than the dominant m = 2 scale in the boundary con-

dition. In the dynamo, downwellings fix to the boundary condition, the rolls

are larger where the field is stronger. Beneath the cool regions upwellings are

broader and the return flow relatively quiescent. The dominant high-latitude

flux patches occur as a direct result of the downwellings (Olson et al., 1999).
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They are convincingly correlated with those in the observations [see Figure 3

and the discussion in Gubbins et al. (2007)]. Rolls of smaller scale are occa-

sionally shed [for example the patch at approximately 70◦ E in Figure 2(d)]

and correspond to quickly moving equatorial flux patches, of either polarity,

moving predominantly westwards. They occur more frequently in the model

with ǫ = 0.6 where the locking is not as strong (Figure 3). Whether they are

related to similar features in the Earth’s field is unclear at this stage.

4 Regimes for locked dynamo action: the Y 2

2
boundary condition

The tomographic boundary condition is a complicated function involving many

spherical harmonic terms, and perhaps more significantly many azimuthal

wavenumbers. The largest spherical harmonic coefficient is for Y 2

2
, reflecting

the rather symmetrical pattern of a cold ring beneath the Pacific rim and hot

regions beneath the central Pacific and Africa. We therefore imposed a Y 2

2

pattern of heat flux, with maxima at φ = 0, π and minima at φ = ±π/2.

We consider runs with the Y 2

2
boundary condition and initially Pr = 1, ǫ = 1.0

At E = 10−4 and q = 10 locking is observed when R/Rc = 1.43; at E =

5 × 10−5 locking is observed for q = 15 and R/Rc = 1.13. As seen in Table 1,

the dynamo at E = 5 × 10−5 has a larger magnetic Reynolds number, Rm,

which is the most likely explanation for the larger volume-averaged magnetic

field, reflected in the value of the Elsasser number, Λ (≈ 4).

The convection pattern for E = 10−4, ǫ = 1 is shown in Figure 4(b). The

convection is organized into two dominant downwellings slightly to the east of

the longitudes of maximum heat flux. These downwellings draw down toroidal

magnetic field lines producing radial components close the equatorial plane,
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see Figures 4(c,d) and 5. As Bφ changes sign across the equator so the resulting

patches are of opposing sign. Similar features are seen frequently in kinematic

studies above downwellings (Gubbins et al., 2000).

Increasing ǫ to values much greater than 1.5 produces thermal gradients that

upset the m = 2 convection pattern, again leading to failure of the dynamo.

A similar effect has been observed by Olson & Christensen (2002), who found

with both Y 2

2
and Y 0

2
heat flow patterns that dynamo action could not be

sustained when the amplitude of the heat flow heterogeneity exceeded the av-

erage boundary heat flow. When ǫ is lowered to 0.6 or below, keeping all other

parameters the same, the dynamo fails leaving the nonmagnetic convective

pattern shown in Figure 4(a). This result is significant because it implies that

in the low-Rayleigh number regime dynamo action can be sustained in the

locked state by a large enough lateral variation at the boundary. Note that

this failure of dynamo action at smaller ǫ did not occur for the tomographic

boundary condition, but there E was slightly higher. Nevertheless, this sur-

prising result may point to the indirect role played by harmonics other than

Y 2

2
in producing dynamo action; the effect of individual components of the

tomographic boundary condition on the dynamo solution is an ongoing study.

On the other hand, with the smaller R/Rc for this case, it is likely that the

boundary inhomogeneity plays an increased part in driving the flow.

To isolate the effect of inertia on locking we consider the case where ǫ = 1,

R E = 30 and q = 15 are fixed and only Pr is varied. If Pr is sufficiently large

the dynamos operate in an asymptotic regime where the solutions are nearly

identical. Raising Pr from 1 to 2 changes R/Rc from 1.13 to 0.84 for non-

magnetic flow, but the dynamo flows are indistinguishable. Both the magnetic

Reynolds number, Rm ≈ 230 and the Elsasser number, Λ ≈ 4 are almost un-
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changed (see Table 1). This suggests that the dynamo is in magnetogeostrophic

balance. The slightest introduction of inertia, however, is sufficient to disturb

the geostrophy of the downwellings that concentrate the poloidal field at high

latitudes (Olson et al., 1999; Sreenivasan & Jones, 2006). Reducing Pr to 0.67

causes failure of dynamo action. This result highlights the sensitivity of the

dynamo and the important role the downwellings play in the dynamo cycle.

In these regions toroidal field is converted to poloidal field, see Olson et al.

(1999), although this is often not clearly observed in dynamo calculations with

highly supercritical Rayleigh numbers and homogeneous boundaries.

5 Conclusions

Realistic geophysical parameters are low E, high R, and assuming turbulence

acts to equalise the diffusivities, Prandtl numbers of order 1. The value of

the lateral heat flux parameter ǫ is not known, but is chosen to be order 1

in many models, Aubert et al. (2007) suggest a value of 0.3. It is not possi-

ble to reach realistic values for all these parameters in one model, however,

two independent arguments based on estimates of heat flux from the core

(Jones, 2000; Gubbins, 2001) point to an R not as high as was once feared.

Low-E, weakly-diffusive dynamo regimes are explored on the supposition that

they will be a better representation of convection in the Earth’s core, but we

must ensure that they produce magnetic fields that satisfy observational con-

straints. It is also important to identify the conditions under which boundary

inhomogeneities control core convection.

In this study we presented dynamo regimes that nearly lock core convection

and the magnetic field to prescribed boundary inhomogeneities. We did this in
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order to understand the locking process rather than to simulate the geodynamo

directly, but the observations strongly suggest that this regime is relevant for

the geodynamo. A moderate E was essential to simplify the calculations and

allow exploration of a large volume of parameter space. Beyond that, our

choices of E were made to produce convection with azimuthal wavelengths

comparable with those of the imposed boundary conditions. Low R is the

obvious choice when searching for nearly-steady solutions. At moderate to

large Pr for this case the dynamo is in magnetogeostrophic balance. This

leaves only q, which for negligible inertia appears only in the magnetic diffusion

term, and thus must be high enough to allow dynamo action (high q follows

from low magnetic diffusivity, and therefore controls the magnetic Reynolds

number). These considerations determined the choice of parameters for the

locked solution in Gubbins et al. (2007).

Parameter choices are limited by the twin requirement of dynamo action and

locking to the boundary. We find the following general results:

(1) Increasing the lateral heating parameter ǫ much beyond 1 leads to dy-

namo failure, frustrating our quest for a locked solution [also see Olson &

Christensen (2002)]. If R/Rc is too low, then for a boundary driven flow

the dynamo can fail for ǫ too small.

(2) Lowering E makes locking more difficult. A probable reason for this is an

observed reduction in length scale of the convection, as is expected from

asymptotic results for rapidly rotating convection at marginal stability,

giving a disparity of scales with the boundary anomalies. Lowering E

may also raise R/Rc...

(3) Raising R/Rc to moderately high values (∼ 4) here causes the dynamo to

fail, possibly due to a progression to smaller scales or by the introduction
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of inertia. In this harder-driven regime it is likely that a further increase

of R/Rc will again produce dynamo action where, although the fluid

motion is largely decoupled from the boundary inhomogeneity, affects

may be seen in the time average (Olson & Christensen, 2002; Aubert

et al., 2007). Dynamo scenarios which counter the negative affect on

locking, encountered by an increase in R/Rc or a decrease in E, are the

subject of further study Sreenivasan & Gubbins (2007).

(4) Low Pr is also detrimental to locking and dynamo action. This regime

exhibits a rapid azimuthal flow which blurs the lateral boundary varia-

tions.
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E R E R/Rc Pr q ǫ Rm Λ comment

Tomographic BC

1.2 × 10−4 35 1.5 1 10 0.3 110 2.8 drifting dynamo

1.2 × 10−4 35 1.5 1 10 0.6 125 2.0 almost locked, migrating equatorial patches

1.2 × 10−4 35 1.5 1 10 0.9 140 1.4 locked dynamo

Y 2
2 BC

1 × 10−4 35 1.43 1 10 1 181 1.19 locked dynamo

1 × 10−4 35 1.43 1 10 > 1.5 − − strong thermal winds, dynamo fails

1 × 10−4 35 1.43 1 10 0.6 − − reduced boundary driven flow, fails

5 × 10−5 30 1.13 1 15 1 233 3.80 locked dynamo

5 × 10−5 30 0.84 2 15 1 231 4.04 almost same as Pr = 1

5 × 10−5 30 1.18 0.67 15 1 − − increased inertia, dynamo fails

Table 1

Summary of the dynamos with laterally varying boundary heat flux considered in

this study.
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Fig. 1. Tomographic boundary condition, Masters et al. (1996). Seismic shear wave

at the base of the mantle is used as a proxy for temperature in the mantle boundary

layer. Cold patches occurring at the longitudes of the Atlantic and India may in-

duce downwellings, whereas under Africa and the Pacific hot patches may suppress

convection.
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(a) (b)

(c) (d)

Fig. 2. Contour plots of the velocity streamfunction on the equatorial plane for

solutions with E = 1.2 × 10−4, q = 10, R = 1.5Rc, P r = 1. Cases (a) & (b) are

for nonmagnetic convection, and (c) & (d) are dynamos. The figures in the left

panels are for homogeneous boundary heat flux and those in the right panels cor-

respond to inhomogeneous boundary heat flux with ǫ = 0.9. The relatively cold

regions at approximately 70◦ W and 120◦ E correspond to the Americas and east-

ern Asia respectively. The hot regions at 30◦ E and 150◦ W correspond to Africa

and the Pacific. Zero longitude is marked in (b) & (d) and all angles are measured

anticlockwise. The letters C and H represent cold and hot mantle respectively.
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(a) (b)

Fig. 3. The observed field in 1990 (a), Br at the CMB and the model field (b) for

ǫ = 0.6; other parameters are as in Figure 2. In the model plot Br is truncated at

l = 14 for comparison with the observed field. In both plots western high-latitude

patches have drifted slightly from the longitude of the cold boundary region. Several

drifting patches of flux occur near the equator. In the model the northwestern patch

has split in two (over Alaska and California).
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(a) (b)

(c) (d)

Fig. 4. (a) & (b): Equatorial section plots of the radial velocity for ǫ = 0.6 (left)

and ǫ = 1.0 (right). (c) & (d): Horizontal section plots, at a small elevation z = 0.1

above the equatorial plane, of the toroidal magnetic field Bφ and radial field Br, for

the Y 2
2 boundary condition and ǫ = 1.0. The other parameters are E = 1 × 10−4,

R/Rc = 1.43, Pr = 1 and q = 10.

Fig. 5. Radial magnetic field at the outer boundary for the same case as Figure 4.
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