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Abstract

We investigate the temporal distribution of polarity reversals of the geomagnetic
field. In spite of the common assumption that the reversal sequence can be modeled
as a realization of a renewal Poisson process with a variable rate, we show that
the polarity reversals strongly depart from a local Poisson statistics. The origin of
this failure can be attributed to temporal clustering, thus suggesting the presence
of long-range correlations in the underlying dynamo process. In this framework we
compare our results with the behavior of different models that describe the time
evolution of the reversals.
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PACS: 91.25.Mf, 91.25.-r, 02.50.-r, 91.25.Cw

1 Introduction

Local paleomagnetic measurements of the geomagnetic field (Merrill et al.,
1996; Hollerbach, 2003; Cande and Kent, 1995) are currently used to extract
informations about the geomagnetic dipole, thus providing information regard-
ing the geodynamo process. Unlike the solar magnetic field, where the polarity
reversals are strictly periodic, with a main period of 22 years, geomagnetic
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measurements reveal a sequence of sudden and occasional global polarity re-
versals in the last 160 million years. The typical duration of reversals is a few
thousand years, that is much shorter than the typical time interval between
successive reversals, which may range from 104 up to 107 years (Merrill et al.,
1996; Cande and Kent, 1995; Valet and Meynadier, 1993). Despite the consid-
erable work performed both on data analysis and on theoretical modeling, the
main fundamental questions concerning the relation between the Earth’s mag-
netic dynamo process and polarity reversals remain still unanswered (Merrill
et al., 1996; Roberts and Glatzmaier, 2000; Moffatt, 1978; Stefani and Ger-
beth, 2005). The nature of the triggers (external or internal to Earth) and the
physical mechanisms giving rise to the reversals, the reason for the long time
variations in the average reversal rate (cf. e.g. Hollerbach (2003); Yamazaki
and Oda (2002)), are all open problems.

The sequence of geomagnetic reversals displays a behavior which seems to be
the result of a chaotic (or stochastic) process. An example of reversal dataset,
namely the well known CK95 database (Cande and Kent, 1995), is shown in
Fig. 1. In principle, the geodynamo should be described by 3D global Magne-
tohydrodynamics (MHD) that self-consistently solve for the fluid flow, ther-
modynamics and magnetic fields with all nonlinear feedbacks (for a review
see Roberts and Glatzmaier (2000) and references therein, and the results
of the recent 15.2 TFlops simulation of geodynamo on the Earth Simulator
(Kageyama et al., 2004; Kageyama and Yoshida, 2005)). However, even the
most advanced numerical codes developed so far do not have a high enough
resolution to be confident that the critical dynamics is being captured by the
simulation, and moreover they are able to simulate only short series of spon-
taneous reversals. Non regular reversals can be observed also in several types
of simplified models, such as purely deterministic toy models mimicking the
dynamics of the dynamo effect with just few modes (Rikitake, 1958; Crossley
et al., 1986; Turcotte, 1992), models of noise-induced switchings between two
metastable states (Schmitt et al., 2001; Hoyng et al., 2002; Hoyng and Duis-
termaat, 2004), or mean-field dynamo models with a noise-perturbed α profile
(Giesecke et al., 2005; Stefani and Gerbeth, 2005).

A statistical approach is extremely useful for the characterization of a complex
process such as the time evolution of the geomagnetic field. Notwithstanding
the paucity of datasets, it was commonly assumed that the reversal sequence is
produced by an underlying Poisson process. This assumption relies on the fact
that the distribution of persistence times, defined as the time intervals between
two consecutive reversals ∆t = ti+1−ti seems to follow an exponential (Merrill
et al., 1996; Hoyng et al., 2002; McFadden and Merrill, 1997; Constable, 2000),
namely P (∆t) = λ exp(−λ∆(t)), where λ represents the reversal occurrence
rate. However, also other distributions are invoked in the literature, see e. g.
Jonkers (2003), where the author claims that the frequency distribution of time
intervals between Cenozoic geomagnetic reversals approximates a power law
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Fig. 1. Bottom: Polarity of the earth’s magnetic field (from today) as in the CK95
record (partial). The black bars are the normal (present) polarity. Top: the proba-
bility density function P (∆t) of persistence times ∆t for CK95 database (statistical
errors are shown as vertical bars).

for large ∆t. Due to the small number of events in the datasets, the probability
distribution function P (∆t), shown in Fig. 1 for the CK95 dataset, does not
clearly show, at a first look, a clear behaviour.

Another interesting feature which has been recently brought to the attention
of the scientific community by Constable (2000) is the time dependence of
the occurrence rate of events λ = λ(t). The author showed that a Poisson
model with a monotonic varying rate, either increasing or decreasing, fails
in describing the reversal process. Nevertheless, reversals could perhaps be
modeled as a renewal Poisson process with a rate that must change sign at
some interval before 158 My (Constable, 2000). In any case, modeling the
variations of λ(t) over the entire time interval is a very delicate issue (cf.
also McFadden and Merrill (1984); Gallet and Hulot (1997); McFadden and
Merrill (1997)). Moreover, when the occurrence rate λ depends on time, it
is difficult to determine the Poisson character of events and to give a clear
physical interpretation to the persistence time distribution (Feller, 1968).

Here, starting from the above empirical evidences, and using a simple statis-
tical test on some databases, we investigate whether a conjecture based on
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the occurrence of a Poisson process for reversals is correct or not. We show
in Section 2 that this is indeed not the case, and that geomagnetic rever-
sals are clustered in time, a result which can be attributed to the presence
of memory in the process generating polarity reversals. In Section 3 the re-
sults obtained from data analysis are compared with those arising from some
dynamical models of the geodynamo. Conclusions are given in Section 4.

It is also worth mentioning that the problem studied in this paper is of broader
interest, as abrupt flow reversals have been observed also in the large-scale
circulation during turbulent Rayleigh-Benard convection (Benzi, 2005; Araujo
et al., 2005; Tsuji et al., 2005; Brown et al., 2005), or in the wind direction
in atmosphere (van Doorn et al., 2000). In all these cases, it is assumed that
reversals are Poisson events.

2 Local Poisson hypothesis

Following the empirical evidence that the rate of reversals is not constant,
we can test, as a zero-th order hypothesis, whether the reversal sequence is
consistent with a Local Poisson Process. More precisely, we will test the hy-
pothesis (hypothesis H0) that the geomagnetic reversals are originated by a
time-varying Poisson process. Since the reversals rate λ(t) is not known, the
test must be independent on the rate λ. This can be done through a method
introduced some years ago in cosmology (Bi et al., 1989) and used more re-
cently in the context of solar flares (Boffetta et al., 1999; Lepreti et al., 2001)
and geomagnetic activity (Lepreti et al., 2004). We consider the time sequence
of reversals as a point-like process and suppose that each reversal occurs at a
discrete time ti. We then introduce in the following way a quantity, which we
denote by h, that is nothing but the suitably normalized local time interval
between reversals.

We define δti as

δti = min{ti+1 − ti; ti − ti−1} , (1)

and τi by

τi =



ti−1 − ti−2 if δti = ti − ti−1

ti+2 − ti+1 if δti = ti+1 − ti
(2)

δti and τi are then the two persistence times following or preceeding a given
reversal at ti. If the local Poisson hypothesis H0 holds, both δti and τi are
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independently distributed according to an exponential probability density:
p(δt) = 2λi exp(−2λiδt) and p(τ) = λi exp(−λiτ) with local rate λi. The
distribution of the variable h defined by

h(δti, τi) =
2δti

2δti + τi
(3)

does not depend on λi.

We define now the surviving function of the probability density

P (h ≥ H) =

∞∫
H

P (h)dh =

∞∫
0

dx2λe−2λx

g(x,H)∫
0

dyλe−λy (4)

where P (h) is the probability density function of h and

g(x,H) = 2x
[
1

H
− 1

]
.

It can be easily shown that, under the hypothesis H0,

P (h ≥ H) = 1−H ,

that is, h is a stochastic variable uniformly distributed in h ∈ [0; 1]. In a
process where τi’s are systematically smaller than 2δti’s, clusters are present
and the average value of h is greater than 1/2. On the contrary, when the
process is characterized by voids, the average value of h is less than 1/2. From
time series, it is easy to calculate the surviving function P (h ≥ H) and the
probability density function P (h).

The test described above was applied to four different datasets of geomagnetic
polarity reversals, namely to the already mentioned CK95, including 185 re-
versals (Cande and Kent, 1995), to H68 with 167 reversals (Heirtzler et al.,
1968), HA97, 127 reversals (Huestis and Acton, 1997) and KG86, 283 events
(Kent and Gradstein, 1986). The probability density function P (h) is reported
in Fig. 2 for all the considered datasets. A significant deviation from the uni-
form distribution can clearly be observed in all the datasets. Moreover, the
different datasets have the same surviving function, showing the robustness of
this result. This departure of polarity reversals from local Poisson statistics is
due the presence of clusters. As a consequence, a clear deviation of the cumu-
lative probability P (h ≥ H) from a linear law, expected under H0, is clearly
seen in Fig. 2. A Kolmogorov-Smirnov (KS) test applied to the cumulative dis-
tributions confirms that the assumed hypothesis H0 is not reliable and must
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Fig. 2. Probability densities P (h) of the stochastic variable h and corresponding sur-
viving functions P (h ≥ H) for all the empirical datasets. The theoretical probability
expected under a Poisson statistics is also shown.

be rejected (the significance level of the KS test being smaller than 0.5% for
all datasets). In order to better emphasize the significance of the deviation of
the data from Poisson statistics, in Fig. 3 we compare the results of the test
performed on the CK95 dataset, with those arising from a dataset obtained
by generating random intervals (from a Poisson deviates) with a variable rate.
This dataset represents an example of renewal Poisson process, as discussed in
Constable (2000). The events variable rate λ(t) is chosen to approximatively
represent the empirical result of Constable (2000). In order to get this be-
haviour, we adopted a piecewise linear fit of the Constable measure, capturing
the decreasing part, the flat part, and the reversed, increasing rate period.
We believe that the details of the curve presented in Constable (2000) do not
affect the statistical properties of the persistence times, which are in any case,
by definition, locally Poisson. We considered a small number of events (250),
of the order of the real dataset. Thus, this plot shows that the deviation of
the CK95 dataset from local Poisson statistics is strongly significant, and the
renewal Poisson process is unable to capture the presence of correlations in
the data. This is also confirmed by a KS test, which does not allow to reject
the H0 hypothesis (the significance level of the KS test being 63% for the
synthetic data).
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Fig. 3. Probability densities P (h) of the stochastic variable h and corresponding
surviving functions P (h ≥ H) for the CK95 dataset and for a renewal Poisson pro-
cess, as described in the text. The theoretical probability expected under a Poisson
statistics is also shown.

3 Modeling geodynamo

In the previous section we showed that clustering is present in the data (cf.
Sec. 2). This indicates that the process underlying the polarity reversals is
characterized by memory effects, due to the presence of long-range correla-
tions. The fact that the dynamics of the fluid earth core is affected by its
history, with generation of correlations in the reversal sequence, is not sur-
prising from a physical point of view. Indeed, a similar behaviour has been
recently observed for the solar dynamo (Dikpati, 2005). However, it should
be pointed out that many different stochastic processes can reproduce the
departure from a Poisson statistics. With the next generations of computers,
it will be hopefully possible that 3D global MHD simulations of geodynamo
will produce datasets with enough reversals to allow us to investigate in de-
tail the occurrence of long-range correlations. In this framework, statistical
analysis on real data, among other, plays a key role in discriminating among
different stochastic processes that can reproduce the departure from poisson
statistics, thus increasing our knowledge of the geodynamo process. A fur-
ther understanding of the phenomenon can be provided by dynamical models
which describe, with only few physical ingredients, some gross features of the
enormous complexity of the geodynamo process. In this perspective, it is use-
ful to compare the statistics of reversals observed in toy models with statistics
obtained on real datasets.
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3.1 The “Rikitake dynamo”

As a first example we investigate the statistical properties of the sequence of
random reversals generated by the two-disk chaotic geodynamo model, also
known as “Rikitake model” (Rikitake, 1958). The model is described by the
following ordinary differential equations

dx

dt
=−x+ yz ,

dy

dt
=−y + x

(
z − 15

4

)
, (5)

dz

dt
=1− xy .

The quantities x(t), y(t) and z(t) represent respectively the two currents and
the dynamo disc angular velocity of the Rikitake dynamo. A sample of the
current x(t), which sign is reversed a number of times, is shown in Fig. 4.
The probability density P (h) of the stochastic variable h, obtained from 489
reversals of the current x(t), is reported in Fig. 4, together with the surviving
function of the distribution P (h ≥ H). The results for the CK95 dataset are
also reported for comparison. It can be seen that a departure from Poisson
statistics is present, which can be related to the correlations produced by
the chaotic dynamics of the model. However, from the different shape of the
distributions (namely the Rikitake dynamo and CK95 dataset) we can infer
that the clustering effects in the Rikitake model seem to be affected by the
presence of sudden jumps in the surviving functions of the distribution of h.
In other words, the reversal time series x(t) seems to present recurrent pairs of
persistence times of equal duration ratios. This effect can be considered a limit
of the Rikitake model, which on the other hand is able to capture the gross
feature of the real data, as far as deviation from Poissonianity is concerned.

3.2 A bistable geodynamo model

The second dynamical model we investigate (Hoyng and Duistermaat, 2004) is
based on stochastic excitation of the axisymmetric component of the magnetic
field. In this model, the ordinary differential equations which describe the time
evolution of the amplitude x(t) and complex amplitude y(t) + iz(t) of the
magnetic field fundamental mode are the following

dx

dt
=(1− x2)x+ V11x+ V12y + V13z ,
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Fig. 4. Top panel: the time evolution of the variable x(t) (in arbitrary units) as
obtained from the Rikitake model. Few reversals of the current are clearly visible.
Time is also given in arbitrary units. Bottom panels: probability densities P (h) of
the stochastic variable h, and corresponding surviving functions P (h ≥ H), for the
Rikitake model and for CK95 dataset. The theoretical probability expected for a
Poisson statistics is also shown.

dy

dt
=−ay − cz + V21x+ V22y + V23z , (6)

dz

dt
= cy − az + V31x+ V32y + V33z .

The Vij(t) are 9 independent random functions of time, with zero mean and
equal r.m.s. magnitude, that are renewed after a time τc. We use the standard
parameters a = 2, c = 5, τc = 0.01, and D =

〈
V 2

ij

〉
τc, where D = 0.4 (Hoyng

and Duistermaat, 2004). The probability density P (h) of the stochastic vari-
able h, calculated by using the times of the random reversals of the amplitude
x(t), and its surviving function P (h ≥ H) are shown in Fig. 5. In this case we
considered 409 reversals. As in previous case, a departure from a Poisson dis-
tribution is observed, due to the correlations introduced through τc. However,
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Fig. 5. Top panel: The time evolution of the variable x(t) as obtained from the
bistable model (in arbitrary units). The reversals of the magnetic amplitude are
clearly visible. Time is also in arbitrary units. Bottom panels: probability densities
P (h) of the stochastic variable h and corresponding surviving functions P (h ≥ H),
for the Hoyng model and for CK95 dataset. The theoretical probability expected
for a Poisson statistics is also shown.

this departure is different from that observed for the data (CK95) and for
the Rikitake dynamo. In this case, in fact, the departure is mainly due to an
excess of very low values of h, as easily seen from P (h), corresponding to pairs
of one short time followed by a very long one (and vice-versa). The remaining
part of the distribution is rather flat, as would be for a Poisson process. The
time behaviour of reversals in this model is then hardly compatible with the
clustering process evidenced through our statistical data analysis.
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3.3 A shell model for MHD turbulence

It is well known that abrupt flow reversals, similar to the field reversals ob-
served in the geodynamo records, occur in some turbulent systems, as for ex-
ample the Rayleigh-Benard convection (Benzi, 2005; Araujo et al., 2005; Tsuji
et al., 2005; Brown et al., 2005), or the atmosphere wind direction (van Doorn
et al., 2000). The problem of reproducing the large-scale reversals in such sit-
uations have been addressed by Benzi (2005), which proposed the existence of
a one-dimensional unstable manifold arising by a large-scale pitchfork bifurca-
tion. The instability is driven by usual turbulence, but, rather than the whole
Navier-Stokes equation, Benzi (2005) considered the GOY hydrodynamical
shell model to describe the typical features of the turbulent energy cascade.
The shell model approach to turbulence is indeed viewed as a consistent and
relevant tentative to describe the energy cascade of turbulence (Bohr et al.,
1998). These models mimic the gross features of the time evolution of spectral
Navier-Stokes or Magnetohydrodynamic (MHD) equations. The 3D hydro-
dynamic GOY shell model has been introduced some time ago by Gledzer
(1973) and by Ohkitani & Yamada (1989) (for a recent review see Biferale
(2003)). The MHD shell model, which coincides with the GOY model when
the magnetic variables are set to zero, has been introduced independently by
Frick and Sokoloff (1998) and Giuliani & Carbone (1998) (see also Giuliani
(1999)). A typical shell model can be built up through the following steps. The
wave-vector space is divided into a finite number N of discrete shells whose
radii grow according to a power kn = 2nk0 (k0 is the fundamental wave vector
and n = 1, 2, . . . , N). Each shell is assigned complex scalar variables un(t)
and bn(t), describing the chaotic dynamics of velocity and magnetic Fourier
modes in the shell of wave vectors between kn and kn+1. A dynamical model
is then written in a way to describe the nonlinear evolution through quadratic
nonlinearities among modes of different neighbouring and next neighbouring
shells, by allowing the same couplings and the invariance of the same quadratic
quantities as in the original magnetohydrodynamic equations

dun

dt
=−νk2

nun + ikn [(u∗
n+1un+2 − b∗n+1bn+2)− 1

4
(u∗

n−1un+1 − b∗n−1bn+1)

−1

8
(un−2un−1 − bn−2bn−1)] + fn (7)

dbn

dt
=−ηk2

nbn + ikn
1

6
[(u∗

n+1bn+2 − b∗n+1un+2) +

(u∗
n−1bn+1 − bn−1un+1) + (un−2b

∗
n−1 − bn−2un−1)] (8)

Here the first terms in the right-hand-sides represent dissipative effects, η and
ν being respectively the resistivity and the viscosity of the MHD flow, while fn

is an external forcing term. This forcing, that drives the fluid flow to become
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unstable at large-scales, is reproduced by a Langevin stochastic equation

dfn/dt = −fn/τ + γ (9)

where τ is a correlation time, assumed to be τ = 1 and γ is a gaussian
stochastic process δ-correlated in time 〈γ(t)γ(t′)〉 = δ(t− t′).

The shell model is able to reproduce the turbulent dynamo effect, that is a seed
of magnetic fluctuations can grow in time (Frick and Sokoloff , 1998; Giuliani &
Carbone, 1998). However the effects of the turbulent small scales fluctuations
on the largest scale, which are of great importance for the description of the
large-scale dynamo phenomenology (Moffatt, 1978) is lost in the MHD shell
model (Giuliani & Carbone, 1998) because of the assumption of locality of
interactions that is one of the main characteristics of the nonlinear energy
cascade in turbulence. Then, in the same spirit as in the model introduced by
Benzi (2005), the evolution equation of the first shell n = 1 for the magnetic
variable b1, is now modified by introducing a cubic interaction that reproduces
the large-scale instability related to the ambient field B0

db1
dt

= −ηk2
nb1 + ik1

1

6
(u∗

2b3 − b∗2u3) + µb1

(
1− b21

B2
0

)
(10)

(µ is a free parameter representing the pitchfork amplitude). In our model
the last term in Eq.(10) can then be viewed as a tentative to reproduce, in a
simple way, the effects of the turbulent small scale fluctuations on the largest
scale.

The simulation is run considering N = 19 shells, B0 = 1, µ = 1 and ν = η =
10−6, all in normalized units. From the time series resulting from the run, we
identify more than

It should be noted that recent results have been obtained considering a shell
model citepalexakis including also non-local interactions citeppoulain. This
interesting approach is owever not considered for the moment.

3.4 α2 dynamo

The last model we consider is a mean-field dynamo model with a spheri-
cally symmetric helical turbulence parameter α, assumed to have at least one
sign change of α(r) along the radius. This model had been shown to provide
asymmetric polarity reversals, a bimodal field distribution, and a positive cor-
relation of field strength and persistence time (Stefani and Gerbeth, 2005). All
these features were attributed to the magnetic field dynamics in the vicinity of

12

Page 12 of 19 



Ac
ce

pt
ed

 M
an

us
cr

ip
t-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 500  600  700  800  900 1000 1100 1200

b
1
(
t
)

t

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(
h
)

h

CK95
shell

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(
h
>
H
)

H

CK95
shell

1-H

Fig. 6. Top panel: the time evolution of the large scale field b1(t) as obtained from
the shell model (in arbitrary units). The reversals of the component are clearly
visible. Time is also in arbitrary units. Bottom panels: probability densities P (h)
of the stochastic variable h and the corresponding surviving functions P (h ≥ H),
for the shell model and for CK95 dataset. The theoretical probability expected for
a Poisson statistics is also shown.

an exceptional point of the spectrum of the non-selfadjoint dynamo operator
where two real eigenvalues coalesce and continue as a complex conjugated pair
of eigenvalues. Such an exceptional point is usually associated with a nearby
local maximum of the growth rate dependence on the magnetic Reynolds
number. Actually, it is the negative slope of this curve between the local max-
imum and the exceptional point that makes the system unstable and drives
it to the exceptional point and beyond into the oscillatory branch where the
sign change happens. The apparent weakness of this reversal model, namely
the necessity to fine-tune the radial profile of α in order to adjust the operator
spectrum in an appropriate way, was overcome in a follow-up paper (Stefani
et al., 2006a). For highly supercritical dynamos the exceptional point and the
associated local growth rate maximum were demonstrated to tend towards
the zero growth rate line where the indicated reversal scenario can be actual-
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ized. Reversals from such a highly supercritical dynamo model were compared
in Stefani at al. (2006b) with paleomagnetic measurements, exhibiting a nice
correspondence of the time-scale and the asymmetry.

Here, we use one of the time-series of (Stefani at al., 2006b), resulting from the
stochastic partial differential equation system for the expansion coefficients of
the poloidal and toroidal axial field components s(r, τ) and t(r, τ):

∂sl

∂τ
=
1

r

d2

dr2
(rsl)− l(l + 1)

r2
sl + α(r, τ)tl , (11)

∂tl
∂τ

=
1

r

d

dr

[
d

dr
(rtl)− α(r, τ)

d

dr
(rsl)

]
− l(l + 1)

r2
[tl − α(r, τ)sl] , (12)

with boundary conditions ∂sl/∂r|r=1 + (l + 1)sl(1) = tl(1) = 0. The helical
turbulence parameter α(r, τ) is assumed to be quenched according to

α(r, τ)=C
αkin(r)

1 + Emag(r, τ)/E0
mag

+ Ξ(r, τ) , (13)

by the magnetic field energy Emag avaraged over the angles:

Emag(r, τ) =
2s2(r, τ)

r2
+

1

r2

(
∂(rs(r, τ))

∂r

)2

+ t2(r, τ) . (14)

The stochastic term Ξ(r, τ) is Taylor expanded,

Ξ(r, t) = ξ1(τ) + ξ2(τ) r
2 + ξ3(τ) r

3 + ξ4(τ) r
4 , (15)

with the noise correlation given by 〈ξi(τ)ξj(τ + τ1)〉 = D2(1− |τ1|/τcorr)Θ(1−
|τ1|/τcorr)δij.

In the following, we will focus on a time series resulting from the particular
choice

αkin = 1.916× C × (1− 6r2 + 5r4), (16)

with dynamo strenght C = 100 and a noise level D = 7. The duration of
the run is 105 diffusion times which corresponds approximately to 20 Billion
years for the Earth if we assume a diffusion time of 200 kyr. Within this
time we observed 56613 reversals. Note that the reversal rate is very sensitive
to the choice of C and D. For example, when replacing D = 7 by D =
6, the mean reversal rate drops by a factor two. More detailed discussion
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on statistical properties of reversals is left for future works. The probability
density P (h) and the surviving function P (h ≥ H) of the stochastic variable h,
calculated by using the times of reversal obtained from the model, are shown
in Fig. 7. The result of the test shows significant deviation from a Poisson
process. The deviation is even enhanced with respect to the CK95 data, but the
main characteristics are well reproduced, as for example the strong evidence
of clustering. This shows that the α2 model is able to capture the statistical
properties of the geodynamo reversals. Anyway, the parameters dependence of
the results still needs to be investigated, so that a more quantitative agreement
between real data and this model could be expected. This study is left for
a future work. It might be noted here that the results of the test are very
robust with respect to the sample length. Indeed, when reducing the dataset
to 160 million years (comparable with the CK95 data), only 442 reversals are
observed, and the test gives the same results as for the complete run (not
shown).

4 Conclusion

In this paper the statistical properties of persistence times between geomag-
netic reversals have been investigated. We performed a statistical test which
showed that geomagnetic reversals are produced by an underlying process
that is far from being locally Poissonian, as conjectured by (Constable, 2000).
Thus, the sequence of geomagnetic reversals is characterized by time corre-
lations. As spontaneous reversals of the geodynamo field have been observed
in high resolution numerical simulations (Kageyama et al., 2004; Kageyama
and Yoshida, 2005), the main results contained in this paper seem to indicate
that such reversals could be related to the non-linear nature of the turbulent
dynamo. In order to confirm this conjecture, we performed the statistical test
mentioned above on four different dynamical models of the geodynamo pro-
cess. First, two “toy” models were considered, namely the Rikitake dynamo
and the bistable model by Hoyng and Duistermaat (2004). Notwithstanding
the high simplified character of these toy models, our analysis has shown that
the departure from Poisson statistics found in the data can be related with the
long range correlations introduced by the chaotic dynamic of the system (Rik-
itake case), and is not fully compatible with the phenomenology of stochastic
resonance (bistable model). Furthermore, two more complex dynamical sys-
tems have been considered, namely a modified shell model reproducing the
non-linear features of the MHD equations, and a turbulent α2 dynamo model.
The results obtained with those two models are in agreement with the data.
In particular, time correlations due to the non-linear character of the models
are observed as clustering of the reversals, which reproduces the behaviour
observed in the geomagnetic reversals. The clustering property, which can be
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Fig. 7. Top panel: the time evolution of the poloidal field s(r = 1) as obtained from
the α2 model, for C = 100 and D = 6. The reversals of the component are clearly
visible. Time is in diffusion time units. Bottom panels: probability densities P (h) of
the stochastic variable h and their surviving functions P (h ≥ H), for the α2 model
with C=100 and C=7, and for CK95 dataset. The theoretical probability expected
for a Poisson statistics is also shown.

visualized as a “devil’s staircase” of very long and very short time intervals
alternating in a random way (De michelis and Consolini, 2003), may be a
signature of “punctuated equilibrium” (Gould and Eldredge, 1993) which, in
turn, is known to be a typical feature of metastable systems. In the α2 model,
this metastability results from the existence of a stable and an unstable fix-
point which are the zeros of the growth rate curve situated to the left and to
the right of its local maximum, close to the exceptional point. This way one
might speculate that the clustering property traces back to metastability and
ultimately to the spectral behaviour of the dynamo operator. However, the
complex nature of the problem still need to be understood.

In this view, our results can be interpreted as a strong evidence for the pres-
ence of correlations between reversal events in the geomagnetic field. Such
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correlations are only observed in models which include non-linear dynamics,
and can be associated with the presence of some degree of memory in the
underlying geodynamo process (Valet et al., 2005; Stefani and Gerbeth, 2005)
which gives rise to clustering of reversals.

We acknowledge useful discussions with A. Noullez.
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