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Abstract: 

We present here a numerical modelling of dislocations in MgSiO3 perovskite at 30 GPa. The 

dislocation core structures and properties are calculated through the Peierls-Nabarro model 

using Generalised Stacking Fault (GSF) results as an input. The GSF are determined from 

first-principle calculations using VASP. The dislocation properties such as planar core 

spreading and Peierls stresses are determined for the following slip systems: [100](010) , 

[100](001) , [010](100) , [010](001) , [001](100) , [001](010) , [001](110) , [110](001)  and 

[110](110)  of the orthorhombic (Pbnm) perovskite structure. 

Keywords: MgSiO3 perovskite, deformation mechanisms, dislocations, slip systems, first-

principle calculations, Peierls-Nabarro model 

 

Introduction 

The dynamics of the Earth is largely controlled by mantle convection which transports 

radiogenic and primordial heat toward the surface. The lower mantle, which extends between 

670 and 2900 km depths, represents more than 80% of the volume of the Earth and 65% of its 

mass. It is hence a major component of the Earth’s interior and its dynamics is of primary 

importance. Our understanding of the deep Earth has been changed when Liu (1974) obtained 

a perovskite-structured silicate after annealing a pyrope garnet at 27-32 GPa in a diamond 

anvil cell. Since that, numerous phase equilibrium studies have demonstrated that upper 

mantle assemblages decompose into a perovskite-dominated assemblage at pressures 

corresponding to depths below 670 km. MgSiO3 perovskite (with some Fe and Al) is thus 

considered nowadays as the most important mineral for the interior of the Earth. Therefore, 

the rheology of silicate perovskite appears essential in understanding the dynamics of the 

Earth. Unfortunately, investigation of the rheology of MgSiO3 perovskite is rendered difficult 

by the pressure required to reach its stability field and only a few studies have tackled this 

problem (Karato et al. 1990; Chen et al. 2002; Merkel et al. 2003, Cordier et al. 2004). 

Alternatively, many studies (listed below) have been devoted to the study of the mechanical 

properties of materials with the perovskite structure. Their goal was to infer the mechanical 

properties of MgSiO3 perovskite from those of analogue materials based on the assumption 

that perovskites would form an isomechanical group as defined by Frost and Ashby (1982). 

Unfortunately, no clear systematics appeared in the creep properties of perovskite-structured 

materials (see for instance Beauchene & Poirier 1990). The rapid growth in available 

computing power has made possible to calculate the structure and properties of minerals 

under extreme conditions. However, mechanical properties are among the most complicated 
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issues to address given their intrinsic multiscale character. Indeed, plastic flow of solids 

involves the motion and interaction of a large number of crystal defects named dislocations. 

Today, this can be modelled at the mesoscale with the help of three-dimensional Dislocation 

Dynamics (DD) codes (Madec et al 2002, Bulatov et al. 2006). The resulting flow laws 

(representative of the single crystal) must be transferred to polycrystalline aggregates. At this 

scale, self-consistent or standard finite elements simulations can be used to describe stress and 

strain partitioning and interactions between grains. At this point, the greatest challenge is, 

upstream, to model the velocity of dislocations. This parameter is controlled, at the atomic 

scale, by the fine structure of the dislocation core (Hirth & Lothe 1982). The core region of 

dislocations can be obtained numerically in two ways: by direct atomic simulation of a defect-

containing crystal, or by applying the Peierls-Nabarro model, treating dislocations as 

continuum objects. The use of direct atomic simulation is hindered by the lack of reliable 

interatomic potentials under extreme conditions. In what follows, we show how the Peierls-

Nabarro model can be applied to MgSiO3 perovskite to calculate dislocation properties, i.e. 

core structure and Peierls stress. In particular, we want here to highlight the role played by 

orthorhombic distortions on the dislocation structures in MgSiO3 perovskite. 

 

 

Structure and possible dislocations 

The structure of MgSiO3 perovskite consists of a corner-linked network of SiO6 

octahedra with Mg atoms located in a cavity formed by eight octahedra. The structure is 

orthorhombic (space group Pbnm) with a = 4.7754 Å, b = 4.9292 Å and c = 6.8969 Å 

(Horiuchi et al. 1987). This structure differs slightly from the ideal cubic perovskite (space 

group Pm3m) in that the octahedra are tilted and the Mg atoms are displaced from the centres 

of their sites (Figure 1). A pseudo-cubic lattice (with ac ≈ 3.4 Å) is often introduced as it 

provides a unified framework for all perovskites. In the following, the pseudo-cubic setting 

will be referred by the subscript “c” while no indication will be given when the actual 

orthorhombic symmetry will be used. Transformations from cubic to orthorhombic (Pbnm) or 

orthorhombic to cubic directions are given by: 
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Possible dislocations in the ideal cubic perovskite structure have been discussed by 

Poirier et al. (1989) based on structure considerations. Two possible slip systems were 

emphasized: <100 >c 001{ }c and <110 >c 110{ }c . Many deformation experiments and 

transmission electron microscopy (TEM) characterizations have been performed on 

perovskite-structured materials (not only cubic): CaTiO3 (Doukhan & Doukhan 1986; Wright 

et al. 1992, Besson et al. 1996), BaTiO3 (Doukhan & Doukhan 1986; Beauchesne & Poirier 

1989; Lin & Lu 2002), SrTiO3 (Nishigaki et al. 1991, Wang et al. 1993, Mao & Knowles 

1996, Matsunaga & Saka 2000; Brunner et al. 2001; Gumbsch et al. 2001; Zhang et al. 2002a, 

b; Jia et al. 2005), KTaO3 (Beauchene & Poirier 1990), KNbO3 (Beauchene & Poirier 1990), 

YAlO3 (Wang et al. 1999), CaGeO3 (Wang et al. 1999). There seems to be a general trend 

that perovskites slip on <110 >c 110{ }c  at low temperature with an increasing activity of 

<100 >c 001{ }c  (involving climb ?) at higher temperature. Very few deformation experiments 

have been performed on MgSiO3 perovskite due to the high pressure required and to the low 

stability of the quenched material. Cordier et al. (2004) have used the x-ray peak broadening 

technique to investigate dislocations in a MgSiO3 perovskite sample deformed in the 

multianvil apparatus at 25 GPa, 1400°C. [100](001) and [010](001) dislocations were 

identified which belong to the <110 >c 001{ }c  family. 

In this study, we have studied several potential slip systems in the orthorhombic 

structure of MgSiO3 perovskite. They are listed in Table 1 in the orthorhombic and in the 

associated pseudo-cubic reference frame.  

 

The Peierls-Nabarro model 

 

The Peierls-Nabarro (PN) model (Peierls, 1940; Nabarro, 1947) represents a useful 

and efficient approach to calculate the core properties of dislocations based on the assumption 

of a planar core (Schoeck, 2005). It has been shown to apply to a wide range of materials 

(Wang, 1996; Bulatov & Kaxiras, 1997; Von Sydow et al., 1999; Lu et al., 2000, Lu, 2005; 

Miranda & Scandolo, 2005; Carrez et al. 2006; Carrez et al., 2007a and 2007b, Durinck et al. 

in press). 

The PN model assumes that the misfit region of inelastic displacement is planar and 

restricted to the vicinity of the glide plane, whereas linear elasticity applies far from it. A 

dislocation corresponds to a continuous distribution of shear S(x) along the glide plane (x is 

the coordinate along the displacement direction of the dislocation in the glide plane). S(x) 
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represents the disregistry across the glide plane and the stress generated by such a 

displacement can be represented by a continuous distribution of infinitesimal dislocations 

with density ρ(x) for which the total summation is equal to the Burgers vector b. The restoring 

force F acting between atoms on either sides of the interface is balanced by the resultant stress 

of the distribution leading to the Peierls Nabarro (PN) equation: 

K
2π

1
x − x'

dS(x')
dx '

   
      

  
      dx '

−∞

+∞ =
K
2π

ρ(x ')
x − x'

dx '
−∞

+∞ = F(S(x))   (1) 

where K, the energy coefficient is function of the dislocation character. This 

coefficient is calculated within the framework of the Stroh theory (Hirth & Lothe, 1982) to 

take anisotropic elasticity into account. Originally, an analytical solution of the PN equation 

was proposed by introducing a sinusoidal restoring force. This simple case is only rarely 

found however giving the model little practical use. The PN approach was rejuvenated when 

Vitek (1968) showed that the restoring force introduced in the PN model is simply the 

gradient of the GSF γ:  

F(S) = −gradγ S( )     (2) 

In order to obtain the misfit energy corresponding to the Peierls dislocation and to 

determine the Peierls stress, the sum of the local misfit energy has to be done at the position 

of atomic planes parallel to the dislocation line. Indeed, the PN equation holds for an elastic 

continuous medium whereas S(x) can only be defined where an atomic plane is present (e.g. 

Hirth & Lothe, 1982, Schoeck, 1999). The misfit energy can be thus considered as the sum of 

misfit energies between pairs of atomic planes (e.g. Joos et al., 1994, Joos & Duesbery, 1997) 

and can be written as 

W (u) = γ(S(ma'−u)) ⋅ a'
m=−∞

+∞

      (3) 

where a’ is the periodicity of W, taken as the shortest distance between two equivalent atomic 

planes in the direction of the dislocation’s displacement. The Peierls stress is then given by: 

σ P = max 1
b

dW (u)
du

  
   
   

  
  
  
      (4) 

 

Computational techniques and results 

 

First-principle calculation of Generalised Stacking Faults (GSF) 
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Calculations were performed using the ab initio total-energy calculation package 

VASP (Vienna Ab Initio Package) developed by Kresse and Hafner (Kresse & Hafner, 1993, 

1994; Kresse & Furthmüller, 1996a). This code is based on the first-principles density 

functional theory and solves the effective one-electron Hamiltonian involving a functional of 

the electron density to describe the exchange-correlation potential. It gives access to the total 

energy of a periodic system with as a single input the atomic numbers of atoms. 

Computational efficiency is achieved using a plane wave basis set for the expansion of the 

single electron wave functions and fast numerical algorithms to perform self-consistent 

calculations (Kresse & Furthmüller, 1996b). Within this scheme, we used the Generalised 

Gradient Approximation (GGA) derived by Perdrew & Wang (1992) and ultrasoft 

pseudopotentials (e.g. Vanderbilt, 1990 or Kresse & Hafner, 1994). Computation convergence 

better than 4.10-5 eV/atom is achieved in all simulations by using a single energy cut-off value 

of 600 eV for the plane wave expansion. The first Brillouin zone is sampled using a 

Monkhorst-Pack grid (Monkhorst & Pack, 1976) adapted for each supercell geometry in order 

to achieve the full energy convergence. MgSiO3 perovskite unit cell calculations were 

performed using a 4x4x2 grid with a convergence energy less than 0.25 meV for an external 

pressure of 30 GPa. The crystallographic structure of MgSiO3 perovskite was optimised (full 

relaxation of the cell parameters and of the atomic positions within the cell) at 30 GPa and the 

obtained a, b and c lattice parameters are 4.64, 4.65 and 6.7 Å respectively (Pbnm space 

group). Relaxed unit cell structure and atomic positions are then used to determine the elastic 

constants of perovskite and to build GSF supercells. The elastic constants calculated in this 

study are presented in Table 2 and are found in agreement with previous determinations of 

Wentzcovitch et al. 1995, 1998 and Karki et al. 2000.  

 

Calculating a GSF for a given slip system requires a supercell with an adapted 

geometry. Among the several possibilities of supercell construction (Bulatov et al. 2006), we 

have chosen to build all the supercells on a Cartesian reference frame defined by the normal 

to the stacking fault plane (located in the middle of the supercell) and by the shear direction. 

The last direction is then defined as the cross product of the two previous ones. A 6 Å thick 

vacuum layer is then added in the direction normal to the slip plane to avoid interaction 

between repeated stacking fault resulting from the use of periodic boundary conditions. The 

GSF excess energies γ are calculated by imposing a given shear displacement value to the 

upper part of the supercell. The atoms close to the shear plane are allowed to relax in order to 

minimize the energy of the stacking fault. This is obtained by (i) keeping the supercell vectors 
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fixed at the values obtained for a bulk system submitted to the pressure of interest, (ii) 

maintaining fixed the atoms present on the two surfaces (to mimic the action of the 

surrounding bulk and of pressure) and (iii) allowing relaxations of others atoms in the 

directions normal to the shear direction. This calculation method ensures that the relaxation 

scheme is equivalent for the nine GSF calculations previously cited and enables us to study 

the effect of octahedra distortions on the symmetry of the GSF. Finally, the Monkhorst-Pack 

grid is adapted to the supercell parameters. As an example, using a 6x2x4 grid for a 

[100](010) GSF calculation guaranties accuracy better than 0.01 %.   

The GSF calculated along this procedure are presented Figure 2 for the nine slip systems 

considered in this study: [100](010) , [100](001) , [010](100) , [010](001) , [001](100) , 

[001](010) , [001](110) , [110](001)  and [110](110) . 

 

Peierls model 

In this paper, we follow the methodology proposed by Joos et al. (1994) and already 

applied to Mg2SiO4 ringwoodite by Carrez et al. (2006) to determine the disregistry function 

S of any dislocation incorporating the results of GSF calculations. Within this approach, S(x) 

is obtained by searching for a solution in the form:  

S(x) =
b
2

+
b
π

α i ⋅ arctan x − xi

cii=1

N

     (5) 

where αi, xi and ci are variational constants. Substituting this disregistry into the left-hand side 

of the PN equation (1), gives the restoring force  

F PN (x) =
Kb
2π

α i ⋅
x − xi

(x − xi)
2 + ci

2
i=1

N

     (6) 

The variational constants αi, xi and ci are obtained from a least-square minimisation of the 

difference between FPN and the restoring force F calculated from first-principles calculations. 

Practically, the order N of decomposition series is adjusted (usually between 3 and 6) to the 

complexity (symmetry, number of maxima) of the restoring force curves as determined after 

first-principles calculations. For each slip system, we present on Figure 3, the screw 

dislocation core disregistry S and the dislocation core densities ρ (=dS/dx) as a function of the 

distance x to the dislocation core centre.  

 

From the PN model to a representation of the dislocation core 

Page 7 of 19 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

The shear profile S(x) across the dislocation core is given by the PN model. It can be used to 

build an atomistic model of the dislocation core. We start from a perfect crystal. Following 

the Peierls approach, the crystal is split into two parts above and below the glide plane. The 

dislocation is introduced by firstly shifting the initial upper part by a value of b/2. The 

extension of the core (as determined by the Peierls-Nabarro method presented in the previous 

section) is then imposed by adjusting all the atomic positions according to the shear profile 

S(x) calculated in the PN model. As a consequence, the upper part of the crystal is stretched 

whereas the lower part is compressed and a crystal with a dislocation in the centre is formed 

(details of the construction can be found in Hirth & Lothe 1982 or in Wang 1996). At this 

stage, the elastic displacement field associated with the dislocation density ρ (the equation can 

be found in Carrez et al. 2007a) is added at any atomic position, which results in a reduction 

of the atomic plane distortions far from the dislocation centre. Typical examples of edge core 

structures are presented on figure 4. 

 

Discussion 

Plastic deformation of MgSiO3 perovskite: cubic or orthorhombic ? 

One of the first motivations of this work was to assess the influence of the orthorhombic 

distortions on the plastic properties of MgSiO3 perovskite. This influence can be readily 

judged from the visual aspects of the GSF (Figure 2). With the exception of slip systems 

involving the [001] direction, all GSF are asymmetric. This is the result of the octahedra being 

tilted in the orthorhombic structure. Another consequence of the orthorhombic distortions is 

that some Burgers vectors are twice as large as in the cubic perovskite: for instance [110], 

[110] and [001] which correspond respectively to 2 × [100]c , 2 × [010]c  and 2 × [001]c . It was 

expected that this situation would lead to dislocations dissociated into two partials with 

collinear Burgers vectors (Poirier et al. 1989). Indeed, we find that these slip systems are 

characterized by camel-hump GSF (Figure 2) which lead to dislocations being split into two 

collinear partials (Figure 3 and Figure 4b). The stacking fault energy at the minimum of the 

GSF (half-shear) is thus a direct assessment of the distortions as this value would be zero in 

the cubic structure. One can see on Figure 2 that the orthorhombic distortions of MgSiO3 

perovskite cannot be neglected. A direct consequence of these relatively high values of the 

stacking fault energies is that the separation distance between partial dislocations is rather 

small: 15-25 Å (Table 3). One can also directly compare slip systems that would be 

equivalent in an ideal, undistorted, perovskite structure, for instance [100](010)  and 
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[010](100)  (i.e. [110]c (110)c  and [110]c (110)c , see Table 1 and Figures 2a and 2c), [100](001)  

and [010](001)  ([110]c (001)c  and [110]c (001)c , see Figures 2b and 2d), [001](100)  and 

[001](010)  ([001]c (110)c  and [001]c (110)c , see Figures 2e and 2f) or [001](110) , [110](001)  

and [110](110)  ([001]c (010)c ,[010]c (001)c  and [100]c (010)c  respectively, see Figures 2g, 2h 

and 2i). The differences can be appraised from the aspect of the GSF, or more quantitatively 

from the Peierls stresses which can be in some cases significantly different (see for instance 

[100](001)  for which the Peierls stresses are almost twice as large as those of [010](001) ). 

All together, these observations show that the orthorhombic distortions of the MgSiO3 

perovskite play an important role on the dislocation structures and properties. The 

orthorhombic lattice appears to be the only relevant framework to describe the plastic 

properties of MgSiO3 perovskite. One can thus question the relevance of the use of analogue 

materials (with distinct space groups and distortions) in the study of plastic deformation of 

perovskites. Indeed, several authors have noticed significant discrepancies among so-called 

analogues (Poirier et al. 1989, Beauchesne & Poirier 1990, Wright et al. 1992, Wang et al. 

1993, Wang et al. 1999). It appears necessary to investigate the dislocation properties of 

perovskites with different structures in order to assess if some common features can be found 

and can be used within the framework of an isomechanical approach. 

Dislocation core structures 

The shortest lattice vectors in the MgSiO3 perovskite structure are [100] (4.8Å) and [010] 

(4.9Å). The corresponding dislocations appear to have relatively narrow cores (Figures 3a-d): 

of the order of 2-4Å for screw dislocations. Edge dislocations exhibit wider dislocation cores. 

This is a general fact due to the introduction of the Poisson ratio in the relations of edge 

dislocations (Hirth & Lothe 1982). Although that is not readily seen on atomic models, the 

influence of orthorhombic distortions can be found in the fine core structure of dislocations. 

Only [100] dislocations gliding in (001) exhibit a single-peaked dislocation profile. The core 

profile of [100](010) and [010] dislocations could be described as the sum of two, strongly 

overlapping, partial dislocations. These partials are sometimes unlike, leading to an 

asymmetric profile of the dislocation core. As noticed above, orthorhombic distortions imply 

that some Burgers vectors are twice as large as in the cubic perovskite. The next Burgers 

vectors are then [001], [110] and [110] with magnitudes close to 6.9 Å. All these dislocations 

exhibit very comparable core structure with narrow (half-widths of the order of 1-1.5 Å) 

collinear partials separated by a distance of the order of 15-25 Å.  

Peierls stresses 
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One of the merits of the PN model is, beyond the description of the core, to provide 

mechanical data in the form of the stress necessary to move a straight dislocation at 0K over 

the Peierls barrier, the so-called Peierls stress (equation 4). The values of Peierls stresses 

depend on the character of the dislocation line. They are given for edge and screw 

dislocations in Table 3. Edge and screw dislocations do not generally exhibit the same Peierls 

friction and this is observed with MgSiO3 perovskite. However, we see that Peierls friction for 

edge and screw dislocations stay generally within a factor of two. It is not expected thus that 

edge and screw segments will exhibit very different mobilities and dislocation loops are likely 

to expend quasi-isotropically. Among the slip systems investigated, two appear to be easier to 

activate: [100](010)  and [010](100) . On the opposite side, [001](100)  and [001](010)  appear 

to be the hardest slip systems (remembering that the harder character is likely to control the 

activity of a given slip system). In between, the difference in Peierls friction is not large 

enough to exclude any slip system a priori. In particular, one finds here the two slip systems 

identified by Cordier et al. (2004) in experimentally deformed MgSiO3 perovskite. It is 

interesting to note that the magnitude of the Burgers vector is not enough to constrain the 

mechanical properties as, for instance, [100](001)  and [001](110)  or [110](001)  exhibit very 

similar Peierls stresses despite significantly different Burgers vectors. This is probably due in 

part to the fact that dislocations with larger Burgers vectors are dissociated, a factor which is 

known to enhance dislocation mobility.  

Let us compare Peierls stresses in MgSiO3 perovskite with other silicates. Carrez et al. (2006) 

have calculated the Peierls stresses in Mg2SiO4 ringwoodite at 20 GPa following the same 

procedure as the present one. The Peierls stresses for ½<110> screw dislocations in Mg2SiO4 

ringwoodite lie in the range 10-34 GPa. We don’t observe a strong contrast between the 

intrinsic resistances to plastic shear of these two silicates although the shear mechanisms are 

markedly different. Mg2SiO4 ringwoodite, is a silicate based on SiO4 tetrahedra for which 

plastic shear can be achieved without shearing the strong tetrahedral units (and hence the Si-O 

bonds). The situation is very different with MgSiO3 perovskite as all slip system involve 

shearing the Si-O bonds of the SiO6 octahedra. It must be remembered however that Si-O 

bonds are longer, and hence weaker, in octahedra than in tetrahedra. Together with the ability 

of some dislocations to dissociate in MgSiO3 perovskite, that might explain the relatively 

modest strength contrast between Mg2SiO4 ringwoodite at 20 GPa and MgSiO3 perovskite at 

30 GPa. A more wide comparison can be done by normalizing mechanical data. This is 

usually achieved by dividing stress (here the Peierls stress) by an appropriate modulus (Frost 

and Ashby 1982). We use the shear modulus µ[uvw](hkl) calculated in anisotropic elasticity for 
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each slip system. Using this approach, we find that the Peierls stresses fall in the range 0.04-

0.19 for screw dislocations and 0.04-0.29 for edge dislocations. This is very comparable with 

values previously calculated for other silicates: forsterite (0.08-0.4 for [100] dislocations and 

0.02-0.09 for [001] dislocations, see Durinck et al. in press), ringwoodite (0.01-0.2 from 

Carrez et al. 2006) and MgSiO3 post-perovskite (0.001-0.01, see Carrez et al. 2007b). In 

particular, we don’t observe any drastic difference in mechanical properties between 

tetrahedra- and octahedra-based silicates. 

 

Concluding remarks 

We have used the Peierls-Nabarro approach to propose the first model of dislocation core 

structures in orthorhombic MgSiO3 perovskite calculated at 30 GPa.  

- We show that the orthorhombic distortions have a significant influence on the 

dislocation core fine structure as well as on the Peierls friction. Hence (and contrary to 

what was implicitly assumed in Cordier et al. 2004), the plasticity of MgSiO3 

perovskite must be described within the frame of orthorhombic symmetry only.  

- Most dislocations exhibit a tendency for core spreading ([100](001) is the only 

exception). This tendency is strongly controlled by the orthorhombic distortions 

(octahedral tilting). Only [001], [110] and [110] show clear dissociation into well-

defined partial dislocations. Following the example of bcc metals and [001] 

dislocations in forsterite, this ability of [001] dislocations to spread into several planes 

raises the question of a possible three-dimensional core. This issue which shows the 

limits of the present modelling has profound implications on dislocation mobilities 

and calls for further studies. 

- The difference in mobility between slip systems (inferred here from the Peierls 

friction) is not so marked that some slip systems can be excluded a priori in further 

modelling of MgSiO3 perovskite plasticity. 

- The present study casts some light on the observation that perovskites do not 

constitute an isomechanical group. This approach should be extended to other 

perovskite-structured materials to better highlights the differences and possible 

similarities between these materials. 

Page 11 of 19 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

References: 

Beauchesne, S. and Poirier, J. P., 1989, Phys. Earth Planet. Int., 55, 187. 

Beauchesne, S. and Poirier, J. P., 1990, Phys. Earth Planet. Int., 61, 182. 

Besson, P., Poirier, J. P. and Price, G. D., 1996, Phys. Chem. Minerals, 23, 337. 

Brunner, D., Taeri-Baghbadrani, S., Sigle, W. and Rühle, M., 2001, J. Am. Ceram. Soc., 84, 

1161. 

Bulatov, V. V., Cai, W., Baran, R. and Kang, K., 2006, Phil Mag, 86, 2847. 

Bulatov, V. V. and Kaxiras, E., 1997, Phys. Rev. Lett., 78, 4221. 

Carrez, P., Cordier, P., Mainprice, D. and Tommasi, A., 2006, Eur. J. Mineral., 18, 149. 

Carrez, P., Ferré, D. and Cordier, P., 2007a, Nature, 446, 68 

Carrez, P., Ferré, D. and Cordier, P., 2007b, Phil Mag., DOI 10.1080/14786430701268914 

Chen, J. H., Weidner, D. J. and Vaughan, M. T., 2002, Nature, 419, 824. 

Cordier, P., Barbe, F., Durinck, J., Tommasi, A. and Walker, A. M. 2005. Plastic deformation 

of minerals at high pressure: multiscale numerical modelling. In: Mineral behaviour at 

extreme conditions (edited by Miletich, R.). EMU Notes in Mineralogy 7. Eötvös University 

Press, Budapest, 389. 

Cordier, P., Ungár, T., Zsoldos, L. and Tichy, G., 2004, Nature, 428, 837. 

Doukhan, N. and Doukhan, J. C., 1986, Phys. Chem. Minerals, 13, 403. 

Durinck, J., Carrez, P. and Cordier, P., (in press), Eur. J. Mineral. 

Frost, H. J. and Ashby, M. F., 1982, Deformation-mechanism maps.(Oxford: Pergamon 

Press). p.166. 

Gumbsch, P., Taeri-Baghbadrani, S., Brunner, D., Sigle, W. and Rühle, M., 2001, Phys. Rev. 

Lett., 87. 

Hirth, J. P. and Lothe, J., 1982, Theory of dislocations.(New York: John Wiley & Sons, Inc).  

Horiuchi, H., Ito, E. and Weidner, D. J., 1987, Am. Mineral., 72, 357. 

Jia, C. L., Thust, A. and Urban, K., 2005, Phys. Rev. Lett., 95, 225506. 

Joos, B. and Duesbery, M. S., 1997, Phys. Rev. Lett., 78, 266. 

Joos, B., Ren, Q. and Duesbery, M. S., 1994, Phys. Rev. B, 50, 5890. 

Karato, S. I., 1990, Geophys. Res. Lett., 17, 13. 

Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S. and Baroni, S., 2000, Phys. Rev. B, 62, 

14750. 

Kresse, G. and Furthmüller, J., 1996a, Phys. Rev. B, 54, 11169. 

Kresse, G. and Furthmüller, J., 1996b, Comput. Mat. Sci., 6, 15. 

Kresse, G. and Hafner, J., 1993, Phys. Rev. B, 47, 558. 

Page 12 of 19 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

Kresse, G. and Hafner, J., 1994, Phys. Rev. B, 49, 14251. 

Lin, M.-H. and Lu, H.-Y., 2002, Mater Sci Eng A-Struct Mater, A333, 41. 

Liu, L., 1974, Geophys. Res. Lett., 1, 277. 

Lu, G. 2005. The Peierls-Nabarro Model of Dislocations: A venerable theory and its current 

development. In: Handbook of Materials Modeling. Volume 1: Methods and Models (edited 

by Yip, S.). Springer, 1. 

Lu, G., Kioussis, N., Bulatov, V. V. and Kaxiras, E., 2000, Phys. Rev. B, 62, 3099. 

Mao, Z. and Knowles, K. M., 1996, Phil Mag A, 73, 699. 

Matsunaga, T. and Saka, H., 2000, Phil Mag Letters, 80, 597. 

Merkel, S., Wenk, H. R., Badro, J., Montagnac, G., Gillet, P., Mao, H. K. and Hemley, R. J., 

2003, Earth Planet Sci Lett, 209, 351. 

Miranda, C. R. and Scandolo, S., 2005, Comp. Phys. Comm., 169, 24. 

Monkhorst, H. J. and Pack, J. D., 1976, Phys. Rev. B, 23, 5048. 

Nabarro, F. R. N., 1947, Proc. Phys. Soc. Lond., 59, 256. 

Nishigaki, J., Kuroda, K. and Saka, H., 1991, Phys. Stat. Sol. (a), 128, 319. 

Peierls, R. E., 1940, Proc. Phys. Soc. Lond., 52, 34. 

Perdew, J. P. and Wang, Y., 1992, Phys. Rev. B, 45, 13244. 

Poirier, J. P., Beauchesne, S. and Guyot, F. 1989. Deformation mechanisms of crystals with 

perovskite structure. In: Perovskite: a structure of great interest to geophysics and materials 

science (edited by Navrotsky, A. & Weidner, D.). AGU, Washington DC, 119. 

Schoeck, G., 1999, Philos. Mag. A, 79, 2629. 

Schoeck, G., 2005, Mater. Sci. Eng. A, 400-401, 7. 

Vanderbilt, D., 1990, Phys. Rev. B, 41, 7892. 

Vítek, V., 1968, Phil. Mag., 18, 773. 

von Sydow, B., Hartford, J. and Wahnström, G., 1999, Comp. Mat. Sci., 15, 367. 

Wang, J. N., 1996, Mater. Sci. Eng. A, 206, 259. 

Wang, Z. C., DupasBruzek, C. and Karato, S., 1999, Phys Earth Planet Interiors, 110, 51. 

Wang, Z. C., Karato, S. and Fujino, K., 1993, Phys Earth Planet Interiors, 79, 299. 

Wentzcovitch, R. M., Karki, B. B., Karato, S. and DaSilva, C. R. S., 1998, Earth Planet Sci 

Lett, 164, 371. 

Wright, K., Price, G. D. and Poirier, J. P., 1992, Phys. Earth Planet. Int., 74, 9. 

Zhang, Z., Sigle, W., Kurtz, W. and Rühle, M., 2002, Phys. Rev. B, 66, 214112. 

Zhang, Z., Sigle, W. and Rühle, M., 2002, Phys. Rev. B, 66, 094108. 

Page 13 of 19 



Ac
ce

pt
ed

 M
an

us
cr

ip
t

 

Orthorhombic Cubic 

[100](010)  [110]c (110)c  

[100](001)  [110]c (001)c  

[010](100)  [110]c (110)c  

[010](001)  [110]c (001)c

[001](100)  [001]c (110)c  

[001](010)  [001]c (110)c

[001](110)  [001]c (010)c

[110](001)  [010]c (001)c

[110](110)  [100]c (010)c

 

Table 1: Slip systems investigated in the present study indexed in the orthorhombic (Pbnm) 

and pseudo-cubic settings. 

 

C11 C22 C33 C44 C55 C66 C12 C13 C23 

592 672 617 235 203 192 214 197 216 

 

Table 2: Elastic constants (in GPa) of MgSiO3 perovskite calculated at 30 GPain this study. 
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Screw dislocations Edge dislocations  

Slip system 

ISS 

(GPa) σP  (GPa) ξ (Å) ∆ (Å) σP  (GPa) ξ (Å) ∆ (Å) 

[100](010)  43.2 15.5 3 - 7 4.3 - 

[100](001)  62.7 39 1.8 - 18 2.5 - 

[010](100)  40.9 8 4 - 7 5.3 - 

[010](001)  59.4 22.5 2.4 - 10 3.5 - 

[001](100)  82.1 23 1 13.1 58 1.3 16.4 

[001](010)  74.4 44 0.95 15.3 67.5 1.25 20.4 

[001](110)  61.2 39.5 1.3 19.2 20 1.7 24 

[110](001)  56.7 34 1.4 12.7 17 1.9 16.5 

[110](110)  61.2 33.5 1.3 12 36 1.6 15 

 

Table 3: Ideal shear stress (ISS defined as the maximum of the restoring force F) and 

dislocation properties at P = 30 GPa. σp is the Peierls stress, ξ is the half-width of the 

dislocation (or partial) distribution and ∆ is the partial separation (only given when partials 

are well-defined). 
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Figures 

 

 

 

 

 

 

 

 
Figure 1: Structure of the orthorhombic, MgSiO3 perovskite viewed down [001]. The Pbnm 

orthorhombic unit cell is represented together with the pseudo-cubic lattice vectors as 

defined in the text. Note that cortho = 2ccubic. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 2: GSF calculated in MgSiO3 perovskite at 30 GPa for the following slip systems: 

a) [100](010)    -   b) [100](001)    -   c) [010](100)    -   d) [010](001)    -   e) [001](100)  

f) [001](010)    -   g) [001](110)    -   h) [110](001)    -   i) [110](110)  
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 3: Dislocation density ρ (solid line) and disregistry (dotted line) for screw 

dislocations in MgSiO3 perovskite calculated at 30 GPa for the following slip systems: 

a) [100](010)    -   b) [100](001)    -   c) [010](100)    -   d) [010](001)    -   e) [001](100)  

f) [001](010)    -   g) [001](110)    -   h) [110](001)    -   i) [110](110)  
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a) 

 

 
b) 

Figure 4: Atomic model of two dislocation cores. Silicon lattice planes are highlighted for an 

easier recognition of the dislocation. Small grey spheres, light grey spheres and black 

spheres correspond respectively to silicon, magnesium and oxygene atoms. 

a) [100](001)  dislocation. The structure is viewed down [010] 

b) [001](010)  dislocation. The structure is viewed down [100] 
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