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Abstract 

Infection and inflammation are relevant entities of male factor infertility. Bacterial 

infections are mostly the consequence of an ascending infection of the genito-urinary 

tract which can ultimately lead to epididymo-orchitis. Bacterial toxins and the innate 

immune responses directed against them may have a significant impact on male 

reproductive function. Toll-like receptors (TLRs) constitute the major family of pattern 

recognition receptors that play a pivotal role in innate immunity. In the testis, TLRs are 

not only found in immune cells such as macrophages and dendritic cells, but also in 

testicular somatic cells and to a lesser extent in germ cells. In this review we describe 

relevant bacterial pathogens found in testicular and male reproductive tract infection, new 

data on the localisation and potential functions of TLRs, recognition and response to 

bacteria with a special emphasis on uropathogenic E. coli. Mechanisms by which 

uropathogenic E. coli subvert innate immune responses in the testis are discussed using 

information derived from animal model studies.  
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Relevant pathogens causing testicular dysfunction 

 Following some controversy in the past it is now accepted that bacterial and viral 

infections of the male reproductive tract contribute significantly to impaired fertility. 

Bacterial infection of the male genital tract often results from ascending canalicular 

infections of the male excurrent ducts and can manifest itself as urethritis, 

prostatitis/vesiculitis, epididymitis or epididymo-orchitis. Bacteria eliciting epididymo-

orchitis are either sexually transmitted or originate from urinary tract infections (Purvis & 

Christiansen, 1993; Weidner et al., 1999; Anders & Patole, 2005; Ludwig, 2008). Among 

sexually active men younger than 35 years with a medical history of urethral discharge, 

the most prevalent pathogens related to epididymo-orchitis are Chlamydia trachomatis 

and Neisseria gonorrhoeae (Weidner et al., 1999; Ludwig, 2008; Ochsendorf, 2008). 

Apart from sexually transmitted infections, the most common cause for epididymo-

orchitis is genito-urinary tract infection with E. coli and other Enterobacteriaceae 

especially in older men. Uropathogenic Escherichia coli (UPEC) are among the most 

frequently isolated microbial agents in urinary tract infections, whereas in semen the 

subtype of E. coli is rarely specified (Wiles et al., 2008). 

Bacterial epididymo-orchitis represents a relevant clinical entity in andrology and 

urology. A prevalence of 600,000 cases of acute epididymitis per year has been reported 

in the USA (Krieger, 1984). According to Collins et al. (Collins et al., 1998) 

epididymitis/orchitis accounted for 0.30% of all consultations to office-based physicians 

of all specialties in the USA, and was ranked fifth among genitourinary diagnoses in 

those aged 18-50 years. In a recent urological outpatient study, epididymitis accounted 

for approximately 1% of visits, with 80% of these patients having symptoms longer than 

3 months (Nickel et al., 2002). Inflammation of the testis as a complication of acute 

epididymitis due to ascending, canalicular bacterial infections is common and may occur 

in up to 60% of affected patients (Ludwig et al., 2008; Schuppe et al., 2008). Of note, 

whereas acute testicular inflammation is symptomatic, most patients with subacute or 

chronic impairment are asymptomatic (Schuppe et al., 2008). Treatment of the acute 

phase of disease, i.e. bacterial epididymo-orchitis, is based on antibiotic and 

antiphlogistic pharmacotherapy (Weidner et al., 2002). Even after successful intervention, 

however, the inflammatory reaction can chronify silently in both testes with major 
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functional and structural damage of the seminiferous tubules and subsequent infertility 

(Weidner et al., 1990; Osegbe, 1991; Fijak & Meinhardt, 2006; Schuppe et al., 2008). 

Hence, it is almost certain that genital tract inflammation/infection including the chronic 

form contributes to a larger extent to the cohort of patients with “idiopathic” infertility 

(Schuppe & Meinhardt, 2005; Haidl et al., 2008). Until now, however, the clinical 

identification of chronic genital tract inflammation/infection has been hampered by the 

lack of symptoms and non-invasive diagnostic tools.  

 

Uropathogenic E. coli  

 E. coli, the most common facultative gram negative bacteria in the human fecal 

flora, usually resides in the colon as a harmless commensal. From a clinical point of view, 

E. coli of biological importance to humans can be broadly classified as (1) commensal E. 

coli (i.e. intestinal colonizers), (2) intestinal pathogenic E. coli (i.e. enteric or 

diarrheagenic strains), and (3) extraintestinal pathogenic E. coli (ExPEC) (Russo & 

Johnson, 2000). E. coli is a highly clonal species represented by 4 major phylogenetic 

groups comprising A, B1, B2 and D (Johnson & Russo, 2005). Diarrheagenic E. coli 

occur almost exclusively in A, B1 and D as well as other ungrouped phylogenetic groups, 

while uropathogenic and other extraintestinal E. coli are present within the B2 group. 

Uropathogenic Escherichia coli (UPEC) are the most frequent cause of urinary tract 

infection and are responsible for 70–90% of the anticipated 150 million urinary tract 

infections diagnosed annually (Stamm & Norrby, 2001). UPEC have acquired specific 

virulence attributes such as adhesins, α-haemolysin, siderophores and polysaccharide 

coatings (Eisenstein & Jones, 1988; Johnson, 1991; Johnson & Kuskowski, 2000; 

Johnson & Stell, 2000; Russo & Johnson, 2000). These factors confer upon UPEC the 

ability to avoid or subvert host defenses, colonize and invade host tissue, perturb host 

physiology, invade host tissues, and/or aggravate a deleterious host inflammatory 

response, thereby causing disease (Russo & Johnson, 2000). These UPEC virulence 

factors are usually encoded on the chromosome of UPEC and are often part of large, 

unstable chromosomal regions, known as pathogenic islands (PAIs) (Blum et al., 1994; 

Swenson et al., 1996; Hacker et al., 2003; Dobrindt et al., 2004). Currently nine PAIs 

have been described, but the majority of virulence determinants are located on only five 
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PAIs. Indeed, all virulent factors such as toxins, adhesins, an ion siderophore system, 

proteases, capsule and LPS are expressed on five PAIs present in UPEC CFT073 strain. 

The role in pathogenicity of these PAIs have been tested in a murine model. Mutational 

analyses of these PAIs have shown that deletion of a single PAI did not significantly 

affect the survival of infected mice. Deletions comprising two or three PAIs, however, 

significantly reduced the virulence potential of these strains (Brzuszkiewicz et al., 2006). 

The two UPEC strains 536 and CFT073 have been completely sequenced and 

several of their PAIs have been studied in detail (Hacker et al., 1983; Mobley et al., 1990; 

Kao et al., 1997; Guyer et al., 1998; Rasko et al., 2001; Dobrindt et al., 2002; Schneider 

et al., 2004). The complete genome sequence analysis of UPEC strain CFT073 has 

revealed extensive mosaic structure in terms of the distribution of backbone gene 

conserved in E. coli, and “foreign” genes, which probably have been acquired 

horizontally (Welch et al., 2002). The genome E. coli strain CFT073 consists of a single 

circular chromosome of 5,231,428 bp and is 292 bp larger than that of strain 536.  

 

Testicular innate immunity and defense mechanisms to bacterial infection 

 The excurrent ducts can provide a gateway for ascending microbial infections, 

which can manifest itself as urethritis, prostatitis, epididymitis or epididymo-orchitis. It is 

therefore not surprising that in 13-15% of all cases of male factor infertility infection and 

inflammation of the male genital tract are considered as primary cause or co-factor of 

fertility disturbances (WHO, 1987; Nieschlag & Behre, 2000; Dohle et al., 2005). On the 

other hand, the testis is an immunologically privileged organ protecting the auto-antigens 

of the meiotic and haploid germ cells, which first appear after the establishment of self-

tolerance at the time of puberty (Head et al., 1983; Filippini et al., 2001; Hedger & 

Meinhardt, 2003; Fijak & Meinhardt, 2006). Immune privilege is attributed to tissues 

such as the eye, brain and fetal-maternal interface which prevent the spread of 

inflammation, because even minor incidences can threaten organ integrity and function 

(Girling & Hedger, 2007). It is therefore somewhat paradoxical that microorganisms can 

disrupt immune privilege causing impairment of spermatogenesis. At the cellular level 

testicular macrophages in the interstitial space, Sertoli cells and to a lesser extent 

peritubular cells have been implicated in both the maintenance of immune privilege and a 



Page 6 of 24

Acc
ep

te
d 

M
an

us
cr

ip
t

 6 

primary role in local inflammatory responses (Figure 1) (Fijak & Meinhardt, 2006). The 

direct pathologic effects resulting from the bacterial invasion are often aggravated by the 

inflammatory process (Schuppe & Meinhardt, 2005; Girling & Hedger, 2007). 

Consequently it is important to understand the mechanisms by which immunocompetent 

cells in the testis recognize infectious agents and how bacterial pathogens try to diminish 

an inflammatory response by interfering with testicular defence pathways (Figure 1 and 

2). 

  

Toll like receptors and innate immunity 

 All living beings are exposed constantly to microbial agents that are present in 

nature and need to deal with the invasion of these organisms into the body. The reliable 

detection of microorganisms is a complex and daunting task because of their molecular 

heterogeneity and rapid evolution. All vertebrates have developed immune responses to 

protect against potential microbial invasion. The vertebrate immune response can be 

functionally divided into innate and adaptive immunity, with the innate immunity being 

the first line of defense against microorganisms. Adaptive immune responses are on the 

contrary slower responses mediated by T and B cells which express highly diverse 

antigen receptors. Innate immunity had been considered as a nonspecific system, and 

until recently less attention has been paid towards the abilities of this system to contain 

insults. However, the discovery of pattern recognition receptors, which detect pathogens 

through evolutionary conserved pathogens-associated-molecular-patterns has greatly 

advanced the concept of innate immunity. Toll-like receptors (TLRs) and intracellular 

nucleotide-binding oligomerization domain proteins are two classes of pathogen 

recognizing receptors involved in innate immune detection. 

 The discovery of the TLRs was initiated by the finding of Toll, a gene product 

essential for the development of embryonic dorsoventral polarity in drosophila 

(Hashimoto et al., 1988). Subsequent studies have revealed that Toll plays a critical role 

in the antifungal responses of flies (Lemaitre et al., 1996). So far, 13 different members 

of the TLR family have been identified through data base search in mammals (10 in 

humans and 12 in mice) (Akira & Takeda, 2004; Beutler, 2004). TLR expression was 

found in various immune cells such as macrophages, dendritic cells, B cells, T cells, mast 
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cells, monocytes, neutrophils, eosinophil and even on non immune cells such as 

fibroblast and epithelial cells (Applequist et al., 2002). Expression pattern of TLRs is not 

constant, but varies relatively quickly in response to the presence of their respective 

ligands. Among the characterized TLRs, TLR1, 2, 4, 5 and 6 are expressed on the cell 

surface and appear to exclusively identify bacterial and fungal components that are not 

made by the host, whereas TLR3, 7, 8 and 9, located in intracellular endosomes, 

specifically detect nucleic acids of pathogens (Akira et al., 2006).  

 The TLRs are type 1 integral membrane glycoproteins classified on the basis of 

considerable homology in the cytoplasmic domain to that of the interleukin type 1 

receptor (IL-1R), termed the Toll/IL-1R homology domain (Bowie & O'Neill, 2000). The 

cytoplasmic domain of TLRs and IL-1Rs have a conserved region of approximately 200 

amino acids, which is known as the Toll/IL-1R (TIR) domain (Slack et al., 2000).  

 

Toll like receptor expression in the testis 

The innate defence of the testis like that of other organs hinges on recognition of 

bacterial products by members of the Toll-like receptor (TLR) family. In view of the 

paradox immune status of the testis with its obvious susceptibility for infection and 

inflammatory responses in an immune privileged environment (Fijak & Meinhardt, 

2006), it is surprising that only few studies have examined the role of TLRs in this organ 

thus far (Girling & Hedger, 2007). It is only recently that expression of TLR 1-11 was 

shown in total rat testis, epididymis and vas deferens (Palladino et al., 2007) and of TLR 

1-9 in human testis samples (Nishimura & Naito, 2005). Riccioli et al. (Riccioli et al., 

2006) reported expression of TLR 2-6 mRNA in mouse Sertoli cells. Stimulation of 

TLR2, 3 and TLR5 by agonists resulted in increased ICAM-1 and MCP-1 expression as 

well as the activation of the NFκB pathway adding further credential to a central role of 

the Sertoli cells in testicular immunology (Riccioli et al., 2006; Starace et al., 2008).  

In our own studies, a comprehensive expression analysis of TLRs and the adaptor 

molecule MyD88 in rat testicular cells by RT-PCR showed that testicular macrophages 

and dendritic cells express the mRNAs of all TLRs, while germ cells and somatic cells 

were usually positive for varying sets of two to three TLRs. Notably, TLR3 expression 

was most prominent in all testicular cells, except Leydig cells and spermatids, where only 
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weak expression was evident (Bhushan et al., 2008). This indicates a strong capacity of 

recognizing double stranded viral RNA in the testis. These results are largely in 

agreement with TLR expression in total testis of other species as well as in rat 

(Nishimura & Naito, 2005; Rodriguez-Martinez et al., 2005; Palladino et al., 2007), even 

though we could barely detect TLR4 and TLR6 synthesis in rat Sertoli cell as previously 

reported for the mouse by Riccioli et al. (Riccioli et al., 2006). The broad distribution of 

TLRs in the testicular cells indicates that they provide wide range detection of bacteria 

and viruses and play an important role in the innate immune system of the testis (Figure 1) 

(Girling & Hedger, 2007). 

 

Toll like receptor signaling pathways 

The engagement of TLRs by microbial agents activate a common signaling 

pathway that culminates in the activation of nuclear factor-kB (NFκB) transcription 

factors, as well as the mitogen-activated protein kinases (MAPKs) extracellular signal 

regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). TLR ligand binding 

induces receptor dimerization and conformational changes which are required for the 

recruitment of the adaptor molecule to the TIR domain. Four TIR domain containing 

adaptor molecule have been identified to date; i.e. myeloid differentiation primary-

response protein 88 (MyD88), MyD88 adaptor like protein (MAL), TIR-domain 

containing adaptor protein inducing IFNβ (TRIF) and TRIF related adaptor molecule 

(TRAM) (Oshiumi et al., 2003; Yamamoto et al., 2003). Recently, a fifth adaptor 

molecule, sterile α and armadillo motif containing protein (SARM) has been identified, 

which negatively regulates TLR signal transduction (Carty et al., 2006). MyD88 is the 

key signaling adaptor molecule for all Toll like receptors with the exception of TLR3 and 

certain TLR4 ligands, which activates signaling through TRIF adaptor molecule. The 

respective TLRs signaling pathway involved is broadly classified into MyD88 dependent 

signaling pathway or MyD88 independent signaling pathway (Figure 2).  

 

The MyD88-dependent pathway is similar to IL-1 receptors signaling pathways 

and the cytoplasmic domain of TLRs and IL-1 receptors share a common region which is 
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therefore termed Toll/IL-1 receptor (TIR) domain. The TIR signaling domain is 

instrumental in TLR signaling as upon binding to the ligand, MyD88 is recruited to the 

TIR domain of TLRs. MyD88 binding results in a signaling cascade which finally 

mediates ubiquitination and degradation of IκBα via activation of various kinases and 

other intermediates. Subsequently, NFκB translocates to the nucleus and activates 

expression of multiple pro-inflammatory cytokines such as archetypical IL-1, IL-6 and 

TNFα (Figure 2).  

To activate the MyD88-independent signaling pathway, the N-terminal region of 

the TRIF adaptor molecule interacts with the TRAF family-member-associated NF-κB 

activator (TANK) binding kinase 1 (TBK1) via TRAF3. Activated TBK1 in concert with 

inducible IκB kinase (IKKi also called IKKε) and two noncanonical IKKs phosphorylate 

IRF3 (Fitzgerald et al., 2003; Sharma et al., 2003). Phosphorylated IRF3 form 

homodimers which translocate into the nucleus, resulting in the expression of a set of 

IFN-inducible genes such as IFNα/β, IP10 and RANTES (Figure 2).  

 

Impairment of testicular and sperm function by E. coli 

The effects of E. coli on the male genital tract have been investigated to some 

extent in experimental and clinical studies. There are several in vivo as well as in vitro 

studies showing a negative effect of E. coli on human sperm function such as motility and 

acrosome reaction (Auroux et al., 1991; Merino et al., 1995; el-Mulla et al., 1996; Huwe 

et al., 1998; Kohn et al., 1998; Diemer et al., 2003). A direct inhibitory effect of E. coli 

on progressive motility was found to depend on bacterial concentration, and analysis by 

electron microscopy revealed multiple adhesions of E. coli to spermatozoa with a 

variable degree of ultrastructural damage present (Diemer et al., 1996). It has been shown 

that E. coli attaches to the superficial structures of human spermatozoa via type 1 

adhesion molecules present on both bacterial pili and spermatozoa, respectively, that can 

be inactivated by preincubation with mannose (Wolff et al., 1993; Diemer et al., 1996; 

Diemer et al., 2000). Bacterial adhesion resulted in ultrastructural alterations and damage 

of the plasma membrane including the sperm head and acrosome. Defects in the 

acrosome, the mid piece, and the sperm tail apparently result in diminished motility and 

impaired fertilizing capacity of the affected gametes (Diemer et al., 2003). Oxidative 
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stress and apoptosis of spermatozoa was also observed following incubation with E. coli 

(Villegas et al., 2005; Fraczek et al., 2007). In rat in vivo models the retrograde 

inoculation of E. coli into the vas deferens promoted clinically recognizable acute orchitis 

characterized by severe degeneration of germinal epithelial cells, tubular atrophy, 

moderate inflammation and mild interstitial fibrosis with subsequent testicular damage 

(Demir et al., 2007). These findings are associated with a decrease in testicular volume 

and sperm concentration in comparison to control testes (Ludwig et al., 2002; Demir et 

al., 2007).  

 

Uropathogenic E. coli (UPEC) subvert testicular immune response 

 Uropathogenic Escherichia coli (UPEC) have been shown to evade host innate 

immune response by inhibiting NF-κB activation in testicular cells and urothelial cells 

ultimately leading to suppression of cytokine secretion (Bhushan et al., 2008; Billips et 

al., 2008). In clinical UPEC isolates 15 out of 17 strains revealed this ability (Billips et al., 

2007). Many studies have shown that virulence factors of pathogens induces NFκB 

suppression in host cells by targeting multiple signaling pathways and limit the host cell 

inflammatory responses (Ruckdeschel et al., 2001; Collier-Hyams et al., 2002; 

Yoshimura et al., 2002). Yersinia pestis injects a virulence factor (YopJ) in the host cell 

and blocks NFκB activation and MAP kinase signaling by binding and preventing the 

activation of  the upstream MAP kinases (MKKs) and IKKβ kinases (Orth et al., 1999; 

Orth et al., 2000). Simultaneously, YopJ can suppress the expression of cytokines while 

inducing apoptosis during infection. Our work and that of others suggest that UPEC may 

also produce a virulence factor which is similar to YopJ in its ability to suppress the 

NFκB signaling pathway. This hypothesis is supported by the fact that the suppressive 

capability required UPEC to be viable, as heat-killed bacteria failed to suppress epithelial 

responses (Hunstad et al., 2005).  

 

By using in silico bioinformatics a hitherto uncharacterized open reading frame 

harbouring a Toll IL1R (TIR) domain has been documented in the UPEC CFT073 

genome (Cirl et al., 2008). Further analysis revealed that the TcpC protein encoded in the 

SerU island of the UPEC strain CFT073 contains a TIR domain in the C-terminal region. 
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The TIR domain is universal to TLRs and required for docking of adaptor proteins 

MyD88, Mal and TRIF to trigger signal transduction such as MAPK activation. 

Interestingly, during the infection of kidney cells TcpC impaired this TLR signalling 

pathways by direct binding to MyD88 resulting in suppressed proinflammatory cytokine 

secretion (Cirl et al., 2008).  

Sertoli cells, peritubular cells and testicular macrophages, all centrally implicated 

in the testicular defense system were found to express TLR4 (Bhushan et al., 2008) 

(Figure 1). TLR4 is the sensor of LPS, a major component of gram-negative bacteria cell 

wall. It is therefore surprising that incubation with UPEC or commensal non-pathogenic 

E. coli (NPEC) did not result in the release of the proinflammatory cytokines IL-1α, IL-6 

and TNFα despite of the partial activation of the MyD88-dependent TLR4 signaling 

pathway which is known to lead to their synthesis. Our data suggest that the lack of 

proinflammatory cytokine production is likely due to active suppression of the MyD88-

dependent NFkB pathway by UPEC at various levels of the signaling cascade depending 

on the cell type infected (Bhushan et al., 2008). All four examined cell types (Sertoli cells, 

peritubular cells and testicular and peritoneal macrophages, Figure 1) respond to 

incubation with UPEC, but not with NPEC, with elevated TLR4 protein levels. In 

peritubular cells and peritoneal macrophages as control downstream signaling after 

UPEC exposure is initiated as MAP kinases p38 and/or JNK are activated. These two 

kinases normally trigger transcription of proinflammatory genes including IL-1, IL-6 and 

TNFα by activation of nuclear transcription factors AP1 and NFAT. Stimulation of 

MyD88 pathway in peritubular cells and peritoneal macrophages culminates in 

degradation of IκBα with subsequent transfer of p65 unit of NFκB to the nucleus 

(Bhushan et al., 2008). In spite of activation of both MAP kinases and NFκB the 

transcription of proinflammatory genes is blocked. In Sertoli cells and testicular 

macrophages the MAP kinases are activated, but not the NFκB pathway, thus supporting 

the observation that lack of proinflammatory cytokine secretion is not related to lack of 

pathogen recognition, but more likely to virulence factors that block downstream 

transmission of proinflammatory signals. It seems that in testicular macrophages and 

Sertoli cells, NFκB activation is already blocked before or at the point of activation of 

IκB kinases. In PM and PTC however the MyD88 – NFκB dependent cytokine 
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production must be abrogated at the start of gene transcription or at the 

posttranscriptional level (Bhushan et al., 2008). 

Further support for an UPEC induced cytokine suppressing mechanism in the testis is 

derived indirectly from our observation that co-incubation of peritoneal macrophages 

with UPEC fully inhibited LPS or NPEC induced production of IL-1α, IL-6 and TNFα 

(Figure 2). Similarly, IL-6 synthesis was found abrogated by UPEC strain UTI89 in 

bladder epithelial cells (Hunstad et al., 2005) with inhibition of the classical NFκB 

pathway, albeit without evidence at which point this may occur (Klumpp et al., 2001). 

Unlike PM, all testicular cells were unresponsive to both LPS and NPEC challenge in 

terms of IL-1, IL-6 and TNFα secretion, however, we could detect upregulation of MCP-

1, TGFβ and COX-2 at least in TM.  

Recent analysis of TLR4 signaling has revealed that LPS can induce a similar 

response as seen by stimulating TLR3, which senses double stranded viral RNA, by 

producing type I IFN such as IFN-α, IFN-β and IFN-response genes like MCP-1, IFN-γ-

inducible protein 10 (IP10) and RANTES (Kawai et al., 2001). This so-called MyD88-

independent pathway involves another adapter molecule TRIF which activates the TRIF-

related adapter molecule (TRAM), causing phosphorylation of interferon regulated factor 

(IRF)-3 in infected cells. After transfer to the nucleus phosphorylated IRF-3 induces an 

antiviral and apoptotic response in various cells that is characterized by the production of 

endogenous type I IFNs and chemokines (Han et al., 2004; Ruckdeschel et al., 2004; De 

Trez et al., 2005; Kaiser & Offermann, 2005; Rasschaert et al., 2005; O'Neill & Bowie, 

2007). This demonstrates that upon initial triggering by a pathogen, anti-viral and anti-

bacterial pathways can merge by using common adapter molecules. In fact, infection of 

rat testicular somatic cells with Sendai virus, closely related to the mumps virus causing 

orchitis in humans, resulted in elevated levels of MCP-1, IP10 and IFNα mRNA (Dejucq 

et al., 1995; Le Goffic et al., 2002), a response very similar to that after UPEC challenge 

in this study. In the process of investigating a potential activation of the TLR4-

TRIF/IRF3 pathway we found MyD88 independent nuclear translocation of IRF3 in all 

testicular cell types after treatment with UPEC, but not with NPEC (Bhushan et al., 2008). 

Furthermore, upregulation of IP10, RANTES and MCP-1 in peritubular cells as well as 

of IFNα/β and IP10 in testicular macrophages and Sertoli cells clearly indicated that 
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UPEC infection fully activated the TRAM-TRIF-IRF-3 alternative pathway resulting in 

transcription of these genes. This upregulated synthesis of chemokines may provide an 

explanation for the observed influx of leukocytes in bacterial orchitis (Mukasa et al., 

1995).  

 

In summary, UPEC-dependent inhibition of the cellular NFκB pathway 

suppresses production of proinflammatory cytokines in the testis. However, subsequent 

inflammation is subverted by effective activation of the MyD88-independent pathway 

resembling an anti-viral immune response, thus promoting bacterial survival and 

virulence. In view of the immune privileged status of the testis, this analysis provides 

mechanistic insight into the process by which cytokine secretion is abrogated at different 

stages in the signalling pathways in different cell populations of the testis. 
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Legend Figure 1 
 
Simplified schematic representation of the testicular immune environment. A cross-

section of the seminiferous epithelium consisting of Sertoli cells (SC) and germ cells 

(GC) with surrounding peritubular cells (PTC) is visible. The adjacent interstitial tissue 

contains the testicular leukocytes, amongst which monocytes/macrophages (MΦ) are the 

most abundant immune cell type followed by T cells and NK cells. Mast cells (MC) are 

found in rodents only in small numbers under the capsule, but are more frequent in 

human where they are interspersed throughout the interstitial space. Dendritic cells (DC) 

together with monocytes/macrophages serve as ‘professional’ antigen-presenting cells 

which can incorporate and process antigen for presentation to CD4+ regulatory or 

‘helper’ T cells. Bacterial infections are usually ascending canalicular reproductive tract 

infections. Within the lumen of the seminiferous epithelium bacterial pathogens are in 

direct contact to haploid germ cells and Sertoli cells. During infection bacteria can pass 

through the blood-testis barrier (BTB) or intracellularly and reach the PTC and interstitial 

cells. Binding of conserved microbial molecular patterns such as lipopolysaccharide to 

Toll like receptors triggers the innate immune response.  

 
 
 
Legend Figure 2 
 
Simplified model of the Toll-like receptor 4 (TLR4) signalling pathway. Bacterial 

lipopolysaccharide (LPS) triggers common TLR signaling through an adaptor protein, 

myeloid differentiation primary response gene 88 (MyD88), that recruits other 

intermediate molecules, which in term activate mitogen activated protein (MAP) kinases 

such as p38, JNK and ERK1/2. Furthermore, NFκB is translocated to the nucleus, where 

it directs transcription of the TLR-response cytokines IL-1, IL-6, TNFα. In addition to the 

common MyD88-dependent pathway, TLR 3 and TLR4 can utilize an alternative 

MyD88-independent signaling pathway where nuclear translocation of the transcription 

factor IFN-regulated factor (IRF-3) activates the expression of genes typical for anti-viral 

responses such as interferon (IFN)α/β and interferon γ induced protein (IP)-10. 

UPEC=uropathogenic E. coli. 
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