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Abstract

To further elucidate the processes involved in the physiology of bone-protection by 

estrogens, ovariectomized (OVX) rats were treated subcutaneously with 17-

estradiol, the ER-specific agonist (16-LE2) and the ER-specific agonist (8-VE2).

OVX and intact animals served as controls. Biomarkers of bone-formation 

(osteocalcin (OC), osteopontin (OPN)) and bone-resorption (telopeptides of collagen 

type I (CTx), pyridinoline cross-links (Pyd)) were quantified. Bone mineral density

was measured by computed tomography.

OVX-induced bone loss could be antagonized by subcutaneous administration of 

17-estradiol and 16-LE2. Serum levels of CTx, OC and OPN were significantly 

elevated in OVX compared to intact animals and reduced by 17-estradiol and 16-

LE2. Treatment of OVX rats with 8-VE2 did not affect BMD or bone-marker serum 

levels.

Taken together, the complex expression pattern of bone-markers in OVX rats 

following subcutaneous administration of ER subtype-specific agonists indicates that 

17-estradiol exerts its bone-protective effects by modulating the activity of 

osteoclasts and osteoblasts via ERα.
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Abbreviations:

16-LE2 ERα-specific agonist

8-VE2 ERβ-specific agonist

BALP bone specific alkaline phosphatase

b. wt. body weight

CTx C-terminal telopeptide

d day

DAI Daidzein

Dpd desoxipyridinoline cross-links

E2 17β-estradiol/ group substituted with a low dose of E2

ELISA enzyme linked immunosorbent assay

ER estrogen receptor

ERα estrogen receptor alpha

ERβ estrogen receptor beta

Fas Faslodex

GEN: Genistein

HRT hormone replacement therapy

IL-6 interleukin-6 

IDD isoflavone depleted diet

NTx N-terminal telopeptide

OC osteocalcin

OPN osteopontin

OPG osteoprotegerin

pQCT peripheral quantitative computed tomography

Pyd pyridinoline cross-links
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RAL raloxifene

RANK receptor activator of nuclear factor kappaB

RANKL receptor activator of nuclear factor kappaB ligand

s.c. subcutaneous

SERM selective estrogen receptor modulator

TAM tamoxifen

TRAP5b tartrate-resistant acid phosphatase isoform 5b
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Introduction

In the estrogen-deficient state, such as menopause, the balance between bone 

resorption and bone formation shifts towards increased levels of bone resorption.

Hormone replacement therapy (HRT), if started soon after the onset of menopause, 

is effective for reducing or reversing postmenopausal bone loss (Lindsay et al. 1976, 

Fitzpatrick 2006). Besides its use for treatment of postmenopausal symptoms, 

potential benefits of HRT include the prevention of cardiovascular disease and 

dementia (Stevenson 2004). SERMs like Tamoxifen (TAM) and Raloxifene (RAL) are 

known to preserve bone mineral density (BMD) and act in breast tissue as estrogen 

antagonists (Diez-Perez 2006). Unfortunately, in postmenopausal women who take 

TAM the risk of developing endometrial cancer increases (Jordan 2008). Hence, an 

urgent need exists to develop new pharmaceutical agents that mediate the bone-

protective effects of estrogens without increasing the risk of developing breast and 

endometrial cancer.

The anabolic activity of osteoblasts and the pathways through which these bone cells 

activate osteoclasts are affected by estrogens (Girasole et al. 1992) and selective 

estrogen receptor (ER) modulators (SERMs) (Taranta et al. 2002). Moreover, 

estrogens have the ability to decrease the differentiation of osteoclast progenitor cells 

(Sato et al. 2001, Sorensen et al. 2006) and to inhibit the bone-resorbing activity of 

terminally differentiated osteoclasts (Lerner 2006). Since both ER subtypes (ERα and 

ERβ) are expressed in bone tissue (Bland 2000, Bord et al. 2001, Krassas & 

Papadopoulou 2001) it can be assumed that estrogens and SERMs mediate their 

bone-remodelling effects by directly binding to ERs expressed within bone cells 

(Bryant et al. 1999, Diez 2000). Moreover, it has to be taken into consideration that 

skeletal effects of estrogen are not only mediated by classical but also by non-
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classical ER pathways (Syed et al. 2005). Although bone cells express both ER

subtypes, in vitro studies (Zaman et al. 2000) and those conducted in vivo with ER 

knockout mice (Windahl et al. 1999, Lee et al. 2003) or ER subtype-specific ligands 

(Hertrampf et al. 2007) have shown that ERα but not ERβ is required for bone-

protection by estrogens.

It is well described that bone homeostasis depends on the balance of two different 

processes: formation and mineralization of bone matrix through osteoblasts and 

removal of mineralized bone by osteoclasts (Buckwalter et al. 1996, Hadjidakis & 

Androulakis 2006). Trabecular rather than cortical bone is more frequently 

remodelled, which explains why metabolic bone diseases such as osteoporosis are 

mainly observed in bones with comparatively large amounts of trabecular bone 

(Lerner 2006). Activation and induction of differentiation of osteoclast progenitor cells 

by osteoblasts is mediated through the receptor activator of nuclear factor kappaB 

(RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) signalling pathway (Lerner 

2006, Blair et al. 2007). In this context, it was shown that inactivation of RANKL by a 

specific antibody leads to profound and prolonged inhibition of bone-resorption in 

postmenopausal women (Hamdy 2007). Furthermore, ERα but not ERβ is known to 

be involved in the regulation of the ratio of OPG and RANKL (Lindberg et al. 2001b).

The activity of osteoclasts and osteoblasts can be monitored by measuring sensitive 

and specific circulating markers (Allen 2003). Classic markers for bone formation are 

bone-specific alkaline phosphatase (BALP) (Deftos et al. 1991), osteocalcin (OC) 

(Thiede et al. 1994), osteopontin (OPN) (Butler 1989, Sodek et al. 2000, Morinobu et 

al. 2003) and collagen propeptides (PICP,PINP) (Eberling et al. 1992), while serum 

and urinary levels of telopeptides of collagen type I (CTx, NTx), pyridinoline cross-

links (Pyd, Dpd) and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) 
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(Janckila et al. 2001) positively correlate with bone resorption, with high levels 

indicating excessive osteoclastic activity (Coleman 2002, Hanson et al. 1992).

In this context, the aim of the present study was to further elucidate the ER-subtype 

specific molecular mechanisms involved in bone protection. Therefore, OVX rats, a 

suitable animal model for studying processes underlying osteoporosis (Kalu 1991), 

were treated subcutaneously (s.c.) with ER subtype-specific agonists for ERα (16-

LE2) or ERβ (8-VE2) over a period of three weeks. Intact (SHAM) animals, vehicle-

treated OVX animals on an isoflavone depleted diet (IDD) and OVX rats treated s.c. 

with 17β-estradiol (E2) served as controls.

To elucidate the mechanism(s) responsible for bone-protection by estrogens in vivo, 

bone mineral density (BMD) was measured by peripheral computed tomography 

(pQCT) and serum levels of several markers for bone formation (OC) and bone 

resorption (CTx, Pyd) as well as the extracellular glycoprotein OPN, secreted by 

osteoblasts, were assayed using commercial ELISA kits.
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Material and Methods

Substances:

17β-Estradiol (Estra-1,3,5(10)-trien-3,16α,17 β-diol), was provided by Sigma-Aldrich 

(Deisenhofen, Germany). The specific estrogen receptor agonists for ERα (16-LE2, 

3,17-dihydroxy-19-nor-17α-pregna-1,3,5 (10)-triene-21,16α-lactone) and ERβ (8-

VE2, 8-vinylestra-1,3,5 (10)-triene-3,17-diol) (Fig.1) were provided by the Bayer 

Schering Pharma AG (Berlin, Germany) and the pure antiestrogen Faslodex (ICI

182,780) was provided by AstraZeneca (Wedel, Germany).

Diet:

Animals had free access to a diet low in phytoestrogen content (IDD) (SSniff GmbH, 

Soest, Germany) and water. The isoflavone contents of the IDD (Daidzein < 10µg/g, 

Genistein < 10µg/g) have been determined by HPLC analysis in a previous study 

from our laboratory (Hertrampf et al. 2006).

Animals:

Female Wistar rats aged 8 weeks (125-150g) were obtained from Janvier (Janvier, 

Le Genest St Isle, France) and were maintained under controlled conditions of 

temperature (20°C ± 1, relative humidity 50-80%) and illumination (12 h light, 12 h 

dark). All animal experiments were approved by the Committee on Animal Care and 

complied with accepted veterinary medical practice.

Animal treatment and tissue preparation:

Adult animals were ovariectomized (OVX) or SHAM operated at the age of 12 weeks,

weighing 200-220g. After 14 days of endogenous hormonal decline the animals were 
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treated with the test compounds or vehicle for 3 weeks. The animals were randomly 

allocated to treatment and vehicle groups (n = 6). E2 (4µg kg-1b.wt d-1), 16-LE2

(10µg kg-1b.wt d-1) and 8-VE2 (100µg kg-1b.wt d-1) were dissolved in 

dimethylsulfoxide (DMSO) (200µl kg-1b.wt d-1) and corn oil (800µl kg-1b.wt d-1) for s.c. 

administration. For isotype-specific ER activation, we used the selective ER-agonists 

16-LE2 and 8-VE2 (Fig.1). Because these compounds activate both receptors at 

higher concentrations (Hegele-Hartung et al. 2004), doses of 10 µg kg-1b.wt d-1 (16-

LE2) and 100 µg kg-1b.wt d-1 (8-VE2) were chosen respectively. For these doses

activation and subsequent signaling through either ERα or ERβ respectively can be 

anticipated (Hegele-Hartung et al. 2004, Hillisch et al. 2004). Animals were sacrificed 

by decapitation after light anesthesia with CO2 inhalation. Uteri were prepared free of 

fat and the wet weights were determined.

Determination of bone mineral density

The right tibiae were snap frozen in liquid nitrogen. BMD was measured by peripheral 

quantitative computed tomography (pQCT) (XCT Research SA+, StraTec 

Medizintechnik, Pforzheim, Germany). Trabecular density (measured by density 

mode, ROI at 7.5% of bone length), cortical density (ROI at 50% of bone length) and 

total density (ROI at 7.5% and 50% of bone length) of the tibiae were measured ex 

vivo at the end of the study after 3 weeks of treatment.

Quantification of bone markers

Serum concentrations of the bone formation marker osteocalcin (OC) (Thiede et al. 

1994) were assayed using a commercial rat ELISA kit (Metra OC P, Quidel 

Corporation, San Diego, CA).
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Serum levels of telopeptides of CTx and Pyd, that correlate with bone resorption, with 

high levels indicating excessive osteoclastic activity (Coleman 2002, Hanson et al. 

1992) were also analysed using commercial ELISA kits (Serum CrossLaps, Nordic 

Bioscience, Herlev, Denmark; Metra Serum Pyd, Quidel Corporation, San Diego, 

CA). OPN EDTA-plasma levels were also quantified by ELISA (Immuno-Biological 

Laboratories, Hamburg, Germany). All ELISAs were performed using a plate washer 

(HydroFlex Platform, Tecan GmbH, Crailsheim, Germany).

Statistical analysis

Statistical analyses were performed using the SPSS Statistical Analysis System, 

Version 12.0.

All data are expressed as arithmetic means with their standard errors. Statistical 

significance of differences was calculated using one-way analysis of variance 

(ANOVA) followed by a post hoc Tukey HSD test where appropriate. Statistical tests 

were used for comparisons between groups and statistical significance was 

established at P<0.05.
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Results

OVX resulted in a reduction (6-fold) of uterine wet weights compared to SHAM 

animals (Fig.2 A). Treatment of OVX animals with 17β-estradiol (E2) led to a 

stimulation of uterine wet weights (5-fold) relative to untreated OVX animals. In 

contrast to s.c. administration of 16-LE2 (4.5-fold), uterine wet weights were not 

affected by application of 8-VE2 (Fig.2 A).

After 3 weeks, body weights of OVX animals were significantly elevated compared to 

SHAM animals (Fig.2 B). OVX-induced body weight gain could be antagonized by 

s.c. administration of E2 and 16-LE2, but was not significantly different to OVX in the 

group treated with 8-VE2 (Fig.2 B).

Trabecular BMD was significantly reduced in tibiae of OVX animals compared to 

intact (SHAM) rats (Fig.2 C). In contrast to application of 8-VE2, s.c. administration 

of E2 as well as treatment with 16-LE2 over a period of three weeks equally resulted 

in an increased trabecular BMD compared to OVX (Fig.2 C).

Besides reduced trabecular BMD in the tibia, serum levels of the collagen 

degradation product CTx, was signifficantly elevated in OVX animals compared to 

SHAM animals (Fig. 3 B). However, the induced levels of the bone resorption marker 

Pyd detected in OVX animals were not significantly different from SHAM animals 

(Fig. 3 D). Moreover, serum levels of the bone formation markers (OC and OPN) 

were significantly higher in OVX animals (Fig. 3 A and C). In line with E2, but in 

contrast to treatment of OVX animals with 8-VE2, application of 16-LE2 resulted in 

significantly reduced serum levels of CTx, OC and OPN (Fig.3). Pyd serum levels 

tended to be reduced in SHAM and OVX animals treated with 16-LE2 but 



Page 13 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

13

significance was only observed in the group substituted with E2 relative to vehicle-

treated OVX animals (Fig. 3 D).
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Discussion

The aim of the present study was to examine ER subtype-specific effects on bone 

mineral density (BMD) and expression patterns of certain markers for bone resorption 

and bone formation in adult female Wistar rats. OVX rats, a suitable animal model for 

studying processes underlying post-menopausal osteoporosis (Kalu 1991), were 

treated s.c. with ER subtype-specific agonists for ERα (16-LE2) or ERβ (8-VE2). 

Intact (SHAM) and OVX rats on an isoflavone depleted diet (IDD), and OVX animals 

substituted with 17β-estradiol (E2) served as controls.

The validity of our model system of menopause was confirmed by the analysis of 

classical biological endpoints for estrogenic action. For example, treatment with the 

respective compounds affected uterine wet weight in accordance with published 

literature (Pelzer et al. 2005, Hertrampf et al. 2007). 16-LE2 stimulated uterine wet 

weights in a comparable manner to E2 (Fig.2 A) (Hegele-Hartung et al. 2004)

whereas treatment with 8-VE2 did not result in a significant stimulation of the uterine 

wet weight (Hillisch et al. 2004).

Elevated energy intake and increased body weight are both known to be associated 

with reduced levels of estrogens in OVX rats (Heine et al. 2000). In line with previous 

findings from our laboratory, our data shows that OVX rats display a stronger 

increase of body weight compared to E2 and SHAM rats mainly due to an increase in 

the percentage of total body fat (Lindberg et al. 2001a, Hertrampf et al. 2007). In 

contrast to treatment with 8-VE2, application of 16-LE2 resulted in an 

antagonization of body weight increase after OVX (Fig. 2 B). This is in agreement 

with studies using male and female ER knockout mice (ERKO). In these animals 

lipid metabolism-related gene expression in adipose tissue and body fat composition 

are influenced by ER-specific signalling (Ohlsson et al 2000, Heine et al. 2000, 
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Mueller et al. 2001). Our data demonstrate that the estrogen-dependent modulation 

of body weight and composition in wild type animals with natural ratios of both ER 

subtypes is also mainly mediated via ER (Fig.2 B) (Lindberg et al. 2001a, Hertrampf 

et al. 2007).

According to previous findings from our laboratory, treatment with 16-LE2, E2 but 

not 8-VE2 resulted in a significant increase of trabecular BMD compared to OVX 

animals (Fig.2 C), an effect that can be antagonized by the pure antiestrogen Fas 

(Hertrampf et al. 2007). These data are in agreement with studies performed in 

knockout mice: application of E2 did not prevent the development of osteoporosis in

ERKO female (Lindberg et al. 2001a, Lindberg et al. 2002a) and male mice 

(Lindberg et al. 2002b), indicating that the bone-protective effects of E2 are primarily 

mediated by ER. Further, ERα gene polymorphisms are associated with 

osteoporosis in human populations (Gómez et al. 2007).

On the other hand differentiation of bone marrow cells lacking ERα, can be 

stimulated by E2 relatively to the same extent as in wild type cells (Parikka et al. 

2005), indicating ERβ to be involved in bone marrow cell differentiation. Opposing 

effects were observed for longitudinal bone growth after activation of ERα and ERβ 

(Windahl et al. 1999, Lindberg et al. 2001a), suggesting a repressive function for ERβ 

in the regulation of bone growth during adolescence.

Because the impact of the two ER subtypes on bone metabolism is not fully 

understood, this study aimed to examine the impact of ER subtype-specific agonists 

on physiological serum markers of bone resorption and bone formation. 

All tested serum markers were significantly elevated in OVX compared to SHAM and 

E2 animals (Fig.3). In the OVX group substituted with 16-LE2, serum levels of OC, 
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OPN and CTx were significantly lower than in the OVX group, while Pyd levels only 

tended to be reduced (Fig.3).

OC, one of the very few molecules exclusively produced by osteoblasts, is a widely 

used marker for bone formation (Lerner 2006). In postmenopausal osteoporosis bone 

resorption as well as bone formation are increased (Lerner 2006). In line with this are 

our current findings showing that both bone formation markers like OC and OPN as 

well as excretion levels of collagen degradation products (CTx, Pyd) are elevated in 

OVX rats compared to SHAM animals, and decreased in OVX animals treated with 

E2 and 16-LE2 (Fig.3). In contrast to treatment with E2 and 16-LE2, neither serum 

levels of OC and OPN nor those of CTx and Pyd were affected by 8-VE2 application 

compared to OVX (Fig.3).These results indicate that the activation of ERα is mainly

responsible for the estrogenic stimulatory effects on osteoblastic bone-formation and 

inhibitory effects on osteoclastic bone-resorption. This observation agrees with the 

results of Lindberg et al. (2001b) showing that ERα but nor ERβ is involved in the 

regulation of the OPG/RANKL ratio and serum levels of interleukin-6 (IL-6) and 

tartrate-resistant acid phosphatase 5b (TRAP5b). Moreover, it was shown that 

estrogens regulate the life span of mature osteoclasts by inducing apoptosis via ERα 

(Nakamura et al. 2007), and that ERα is required for proliferation of osteoblast-like 

cells in vitro (Lee et al. 2003).

Taken together, the trabecular BMD data of the present study and the complex 

secretion patterns of certain markers for bone-resorption and bone-formation indicate 

that, in contrast to 8-VE2, 16-LE2 mediates bone-protective effects by inhibiting 

OPN and OC secretion in osteoblasts. In addition to reduced OC and OPN serum 

levels, application of 16-LE2 but not 8-VE2 resulted in an inhibition of bone-

resorption, represented by reduced serum levels of CTx and Pyd. 
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The results of the present study lead us to the conclusion that bone-resorption by 

osteoclasts and bone-formation by osteoblasts are both influenced by estrogens and 

estrogenic compounds via ERα but not ERβ. Further studies should be conducted to 

elucidate if ERβ antagonizes ERα-specific signalling in bone or is more likely 

responsible for bone cell differentiation.
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Fig.:2
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Fig.:3
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Figure legends

Fig.1 ER subtype-specific agonists.

Chemical structures of the specific ER agonists for ERα: 16-LE2 and ERβ: 8-VE2.

Fig.2 Physiological end points.

Uterine wet weights (A), Body weights (B) and trabecular bone mineral density (C)

after 3 weeks of treatment.

Abbreviations: SHAM = intact, SHAM operated animals fed IDD, E2 = OVX group 

treated s.c. with 17- estradiol (4µg kg-1b.wt d-1), OVX = vehicle-treated OVX group 

fed IDD, 16-LE2 = OVX group treated s.c. with 16-LE2 (10µg kg-1b.wt d-1), 8-VE2

= OVX group treated s.c. with 8-VE2 (100µg kg-1b.wt d-1). Experimental conditions 

and treatment procedures are explained in detail in Materials and Methods.

* Denotes values significantly different from ovariectomized group (OVX)

P < =0.05, ANOVA, n=6

+ Denotes values significantly different from intact group (SHAM)

P < =0.05, ANOVA, n=6
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Fig.3 Bone markers.

Abbreviations: SHAM = intact, SHAM operated animals fed IDD, E2 = OVX group 

treated s.c. with 17- estradiol (4µg kg-1b.wt d-1), OVX = vehicle-treated OVX group 

fed IDD, 16-LE2 = OVX group treated s.c. with 16-LE2 (10µg kg-1b.wt d-1), 8-VE2

= OVX group treated s.c. with 8-VE2 (100µg kg-1b.wt d-1). Experimental conditions 

and treatment procedures are explained in detail in Materials and Methods.

* Denotes values significantly different from ovariectomized group (OVX)

P < =0.05, ANOVA, n=6


