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Abstract

Advances in our knowledge of the biology of skeletal stem cells, together with an increased understanding of 

the regeneration of normal tissue offer exciting new therapeutic approaches in musculoskeletal repair. 

Skeletal stem cells from various adult tissues such as bone marrow can be identified and isolated based on 

their expression of a panel of markers associated with smooth muscle cells, pericytes and endothelial cells. 

Thus skeletal stem cell-like populations within bone marrow may share a common perivascular stem cell 

niche within the microvascular network. To date, the environmental niche that nurtures and maintains the 

stromal stem cell at different anatomical sites remains understood. However, an understanding of the 

osteogenic and perivascular niches will inform identification of the key growth factors, matrix constituents 

* Manuscript

mailto:roco@soton.ac.uk
http://www.mesenchymalstemcells.org/


Page 2 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

2

and physiological conditions that will enhance the ex vivo amplification and differentiation of osteogenic stem 

cells to mimic native tissue critical for tissue repair. This review will examine skeletal stem cell biology, the 

advances in our understanding of the skeletal and perivascular niche and interactions therein and the 

opportunities to harness that knowledge for musculoskeletal regeneration.

Keywords: skeletal stem cell, perivascular, niche, tissue regeneration, osteoprogenitor, 

1. Introduction

The cell responsible for bone formation, the osteoblast, is derived from a marrow stromal fibroblastic stem 

cell. These marrow stromal fibroblastic stem cells exist postnatally, are multipotent and have the ability to 

generate myelosupportive stroma, osteoblasts, adipocytes, chondrocytes, smooth muscle cells and 

astrocytes (Fig. 1). This population of cells are also referred to as osteogenic stem cells, marrow stromal 

fibroblastic cells, bone marrow stromal stem cells, mesenchymal stem cells, stromal precursor cells and, 

more recently, skeletal stem cells (Caplan, 1991; Bianco and Robey 2001; Barry and Murphy 2004; reviewed

in Oreffo et al., 2005; Sacchetti et al 2007).  Although mesenchymal stem cells (undifferentiated multipotent 

cells of the mesenchyme) appears to have gained wider acceptance in recent years, this term is however 

nonspecific and the term skeletal stem cell will be used throughout this review to restrict description to stem 

cells from bone marrow  able to generate all skeletal tissues (Sacchetti et al 2007). Advances in our 

understanding of skeletal stem and progenitor cells, development of isolation protocols from a variety of 

tissues and differentiation strategies offer the potential to open a new frontier in regenerative medicine, 

which aims to replace cells and tissues in a broad range of conditions associated with damaged cartilage, 

bone, muscle, tendon and ligament. The term ‘stem cell’ can be applied to a remarkably diverse group of 

cells, which, regardless of their source, share two characteristic properties. A capacity for prolonged or 

unlimited self-renewal under controlled conditions, and the potential to differentiate into a variety of 

specialised cell types. However, while skeletal stem cells hold enormous promise for future cellular-based 

tissue engineering applications, their rarity and limited ex vivo growth potential has restricted their wide 

spread clinical use. In order to understand the biology of the skeletal stem cell an appropriate homogenous 

population is a prerequisite and, similarly, an understanding of their developmental environment or niche. 



Page 3 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

3

The attraction in the use and manipulation of skeletal stem cells lies in their apparent lack of immunogenicity, 

which has increased the attraction in the use of these cells in skeletal tissue repair. This review concentrates 

on the characterisation and properties of skeletal stem cells, their environmental niches and interactions 

therein and how this can inform their potential application using regenerative medicine strategies to the 

currently unmet needs of bone regeneration in an increasing ageing population. 

2. Human bone marrow-derived skeletal stem cells: phenotype and characteristics

It is more than forty years since Alexander Friedenstein demonstrated that adult bone marrow contains rare 

(1 in 104-105 bone marrow mononuclear cells/ BMMNC) clonogenic precursors associated with the soft 

fibrous tissue of the marrow stroma (Friedenstein et al., 1966, 1970; Friedenstein 1980). These cells were 

originally described as colony forming units-fibroblastic/ CFU-F (Owen and Friedenstein, 1988). Under 

appropriate culture conditions, undifferentiated CFU-F differentiate into multiple stromal lineages (Fig. 1) 

including osteoblasts, chondrocytes, adipocytes, smooth muscle cells, astrocytes, endothelial cells, and 

more recently, beta-pancreatic cells and neural cells, although formation of beta-pancreatic cells and neural 

cells remains highly contentious (Azizi et al., 1998; Ferrari et al., 1998; Pittenger et al., 1999; Lin et al., 2000; 

Majumdar et al., 2000; Bianco and Robey, 2001; Reyes et al., 2001, 2002; Heng et al., 2004; Fellous et al 

2007; Davani et al., 2007).  While it is also generally accepted that skeletal stem cells give rise to a hierarchy 

of developmental cell populations including; the determined osteoprogenitor cell (DOPC), preosteoblast, 

osteoblast and ultimately, the osteocytes, a unique, specific single cell-surface marker that specifically 

identifies the skeletal stem cell has remained elusive. This, understandably, has led to a degree of conflicting 

data in the literature concerning the characteristics of the skeletal or mesenchymal stem cell. Nevertheless, it 

is generally accepted that adult human skeletal stem cell do not express haematopoietic markers CD45, 

CD34, CD14, CD11, adhesion molecules such as CD31 (PECAM-1), CD56 (NCAM-1), CD18 (LCAMB), and 

co-stimulatory molecules such as CD80, CD86, CD40. However, these cells do express CD105 (SH2/ 

Endoglin), CD73 (SH3/ 4), CD44, CD90 (Thy-1), CD71, the STRO-1 antigen, as well as the adhesion 

molecules CD106 (VCAM-1), CD166 (ALCAM), ICAM-1 and CD29 (Haynesworth et al., 1992; Galmiche et 

al., 1993; Pittenger et al., 1999; Conget and Minguell, 1999; Le Blanc et al., 2003; Barry and Murphy, 2004)

(Table 1).
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To circumvent some of the issues around the characterisation of the skeletal stem cell, a number of groups 

have attempted to generate antibodies recognising subsets of human marrow stromal cells using 

conventional hybridoma technology (Bruder and Caplan, 1990; Simmons and Torok-Storb, 1991; 

Haynesworth et al., 1992; Yamaguchi and Kahn, 1993; Gronthos et al., 1994; Bruder et al., 1997; Joyner et 

al., 1997; Bruder et al., 1998; Filshie et al., 1998). Of the current available antibodies that recognise stage-

and/ or lineage-specific stromal antigens, to date, STRO-1 is the most extensively used. STRO-1 is a 

monoclonal antibody that recognises a cell-surface trypsin-resistant antigen expressed by a subset of freshly 

isolated bone marrow mononuclear cell (BMMNC) that includes essentially all adherent, high growth-

potential CFU-F (Simmons and Torok-Storb, 1991; Gronthos et al., 1994). Other antibodies reported to 

recognise antigens expressed by the CFU-F population include the endoglin/ CD105 - a type III TGF-

receptor (Robledo et al., 1996); HOP-26 (Joyner et al., 1997) recognising CD63 – a lysosomal membrane 

glycoprotein of the tetraspanin superfamily (Zannettino et al., 2003); SB-10 (Bruder et al., 1997), which 

recognises the activated leukocyte adhesion molecule (ALCAM) CD166 (Bruder et al., 1998); and the 

antibody recognising CD49a, the -1 integrin subunit (Deschaseaux and Charbord, 2000).  Letchford and 

colleagues reported  a unique strategy involving the use of phage display to generate antibodies recognising 

stem cell-enriched bone marrow mononuclear cell populations resulting in the identification and preliminary 

characterisation of a novel antibody termed C15 (Letchford et al., 2006). Although C15 was not selective for 

skeletal stem cell/ CFU-F, C15 immunoreactivity was strongly associated with areas of active bone formation 

where it was shown to bind to osteoblasts and their putative precursors in the proximal bone marrow 

(Letchford et al., 2006). Recently, Gronthos and co-workers identified a novel monoclonal antibody, STRO-3, 

which was shown to bind to tissue nonspecific alkaline phosphatase (TNSALP), a cell-surface glycoprotein 

usually associated with cells of the osteoblast lineage (Gronthos et al., 2007). STRO-3 was found to identify

a high proportion of bone marrow derived skeletal stem cells that possessed extensive proliferative and 

multilineage differentiative capacity (Gronthos et al., 2007).

The STRO-1 antibody was demonstrated to bind to approximately 10% of the BMMNC isolated from bone 

marrow aspirates of normal donors (Simmons and Torok-Storb, 1991). In suspensions of formalin-fixed 

human bone marrow cells, HOP-26 immunoreactivity was demonstrated in <10% of the nucleated population 

at day 1 of culture, in >95% of the cells at day 3 of culture and in <1% of the nucleated cells of day 28 
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cultures (Joyner et al., 1997). In a separate study by Majumdar and co-workers, the proportion of CD105/ 

Endoglin+ cells in BMMNC populations was determined between 3% and 1.8% (Majumdar et al., 2000). It 

was also noted that over 60% of CD105+ BMMNC co-expressed the STRO-1 antigen (Majumdar et al., 

2000). In our group, the proportion of STRO-1+ cells isolated from BMMNC populations using MACS 

(magnetic activated cell sorting) was determined at 7  3.8% (Howard et al., 2002). Using flow cytometry 

however, the average proportion of STRO-1+ cells in BMMNC, freshly isolated from bone marrow samples of 

osteoporotic and osteoarthritic individuals, was determined at 11  3% in our group (Fig. 2).

In BMMNC populations, freshly isolated from femoral reamings of osteoarthritic patients undergoing routine 

surgery, the proportion of antigen-positive cells for STRO-1, HOP-26, SB-10 and anti-CD49a was 27%, 46%, 

19% and 5% respectively (Stewart et al., 2003). In this study, Stewart and co-workers also demonstrated co-

expression of the STRO-1 antigen by the CD49a+ BMMNC fraction. The high level of HOP-26 

immunoreactivity observed by Stewart and co-workers, in comparison to that demonstrated by Joyner et al. 

(1997), was attributed to the greater sensitivity of the flow cytometry protocol, and the finding that CD63 was 

ubiquitously expressed by bone marrow cells of both haematopoietic and non-haematopoietic origins 

(Stewart et al., 2003). Flow cytometric analysis by Letchford and co-workers determined the average 

proportions of STRO-1+, CD49a+ and C15+ fractions in BMMNC at 15%, 5.4% and 4.4% respectively 

(Letchford et al., 2006). A recent study by Zannettino and co-workers established that the STRO-1 bright+

fraction of human bone marrow lacked expression of CD34, CD45 and glycophorin-A, markers associated 

with haematopoietic progenitor cells (Zannettino et al., 2007). In vivo, the STRO-1 bright+/ CD34-, STRO-1 

bright+/ CD45- and STRO-1 bright+/ glycophorin-A- fractions were all capable of forming lamellar bone 

structures and vascularised fibrous tissue supporting adipose formation and a haematopoietic active bone 

marrow (Zannettino et al., 2007).

While variations in cell/ tissue origin and analysis methods may account for the differences in average 

percentages of STRO-1+ cells reported by the various studies (Simmons and Torok-Storb, 1991; Howard et 

al., 2002; Stewart et al., 2003; Letchford et al., 2006) summarised in Table 2, it is also important to note that 

the STRO-1+ fraction of cells is a heterogeneous population containing other cell types of both stromal and 

haematopoietic origin (Simmons and Torok-Storb, 1991; Gronthos et al., 1994; Stewart et al., 2003;

MacArthur et al., 2006). Similarly, expression of the STRO-1 antigen, CD63 and CD49a, and the proliferation 
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and differentiation capabilities of these enriched fractions in vitro have been reported to be donor-dependent 

(Gundle and Beresford, 1995; Walsh et al., 2000) although, remarkably, expression of CD166 appears to be

donor independent and the molecule is expressed by 95% of BMMNC (Bruder et al., 1997; Stewart et al., 

2003). Until a selective antibody is derived, the application of cocktails of antibodies to enhance MSC 

enrichment remains a route currently under investigation in a number of laboratories. 

3. Identifying the skeletal stem cell niche

The stem cell niche is the functional, anatomic location in which stem cells are maintained, typically in a 

quiescent state, prior to division and generation of proliferating, repopulating differentiated cell populations. 

Stem cell niches, identified in a number of different adult tissues, including bone marrow, skin and dental 

pulp, are often highly vascularised sites (Spradling et al., 2001; Shi and Gronthos, 2003). It has been 

previously hypothesized that one possible niche for precursors of osteoblasts may be the microvasculature 

networks of the bone marrow (Doherty et al., 1998). Pericytes are relatively undifferentiated cells associated 

with the walls of small blood vessels, and serve as blood-flow regulators in the microvasculature. Previous 

studies have proposed that pericytes may be precursors of endothelial and/ or smooth muscle cells, but the 

exact developmental relationship between all three cell lineages is obscure during angiogenesis (Nehls et 

al., 1992; Schor et al., 1995). The pericyte-associated cell-surface antigen, 3G5, is highly expressed by a 

large proportion of haematopoietic cells from human bone marrow, but only a minor proportion of bone 

marrow stromal cells are found to express 3G5 (Shi and Gronthos, 2003). Cultured bovine pericytes however 

are STRO-1+, indicating the fidelity of STRO-1 as a marker of primitive skeletal progenitors derived from 

diverse tissues (Doherty et al., 1998). Pericytes isolated from bovine retinal capillaries exhibit the potential to 

differentiate into a variety of cell types including fibroblasts, osteoblasts, chondrocytes and adipocytes 

(Brighton et al., 1992; Schor et al., 1995; Doherty et al., 1998). Mounting evidence therefore suggests that, in 

addition to participating in the maintenance of blood vessel homeostasis, pericytes may also represent 

multipotential MSC (Nehls and Drenckhahn, 1993; Schor et al., 1995; Doherty et al., 1998).

Bone marrow derived skeletal stem cells have been described to have a vascular smooth muscle cell-like 

phenotype in vitro (Dennis et al., 2002). In accordance with these findings, freshly isolated human bone 

marrow STRO-1+ cells were demonstrated to lack expression of von Willebrand factor (an endothelial 
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marker), but were positive for -smooth muscle actin (smooth muscle cell and pericyte marker) and CD146

(endothelial, smooth muscle cell and pericyte marker) (Shi and Gronthos, 2003). The study by Shi and 

Gronthos (2003) also demonstrated ectopic bone formation when STRO-1+ cell populations co-expressing 

CD146 were transplanted with hydroxyapatite/ tricalcium phosphate ceramic powder into 

immunocompromised mice for 3 months. To aid this process it will be necessary to understand the 

chondrogenic and perivascular niches, critical in elucidating the fundamental conditions necessary to 

selectively maintain and expand primitive skeletal populations in vitro and thus harness their reparative 

capacity.

3.1 The chondrogenic niche

Chondrogenesis is the process involving skeletal stem cell differentiation, and proceeds through the 

determination of cells and their aggregation into prechondrogenic condensations, differentiation into 

chondrocytes, and chondrocyte maturation.  These complex spatial and temporal sequences of events are 

co-ordinated by the effects of hormones, morphogens, and cytokines through their respective receptors, 

along with extracellular matrix components and cell-cell and cell-matrix interactions (Knudson, 1998; Djouad 

et al., 2007). Expression markers associated with chondrogenesis include transcription factors such as Sox-

9, and extracellular matrix genes such as aggrecan, collagen types II and IX (Foster et al., 1999). Critical in 

the chondrogenic process, are Bone Morphogenetic Proteins (BMPs), members of the transforming growth 

factor-β (TGF-β) superfamily. Interplay between the BMPs and FGFs has been shown to inhibit Ihh 

expression, while promoting hypertrophic differentiation and suppressing the proliferative capacity of 

chondrocytes.  Thus studies indicate BMPs bind to a type II receptor that is present on the cell membrane of 

their target cell and recruit a type I receptor forming a heterotetrameric-activated receptor complex.  This 

phosphorylated type I receptor, in turn phosphorylates a set of intracellular substrate signalling proteins 

(SMAD family) and following translocation into the nucleus results, ultimately, in targeted gene regulation 

(Cao and Chen, 2005; Granjeiro et al., 2005; Wan and Cao, 2005).  FGF signalling pathways induce the 

expression of Sox-9 in primary chondrocytes and in undifferentiated cells.  FGF2 has been recognized as a 

mitogen for cells of the chondrogenic lineage, and more recently FGF18 has been demonstrated to act as a 

trophic factor for articular chondrocytes and to have significant anabolic effects on chondrocytes both in vivo
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and in vitro, including increased deposition of matrix proteoglycans and type II collagen and also stimulated 

cell proliferation (Ellsworth et al., 2002; Davidson et al., 2005).  Furthermore, cartilage-derived 

morphogenetic proteins (CDMP, also known as growth/differentiation factor-5 (GDF-5)) play a pivotal role in 

joint formation and in the developing appendicular skeleton (Provot and Schipani, 2005), and the Wnt and 

Wnt-related family of signalling proteins are also involved in chondrogenic differentiation and in adult 

cartilage homeostasis (Tuan et al., 2002; Jorgensen et al., 2004).  Essential for cartilage formation is Sox-9, 

one of the earliest markers of chondrogenesis and a key regulator for the expression of type II collagen and 

aggrecan as well as a number of other cartilage-specific matrix proteins (Kou and Ikegawa, 2004; Lefebvre 

et al., 1997; Goldring et al., 2006).  Other factors such as the Hox, Pax, Forkhead, homeodomain-containing 

families have had roles identified in the chondrogenesis process but further characterization is required to 

understand their precise functions (Jorgensen et al., 2004). Alsalameh et al., (2004) and Fickert et al., (2004) 

have detailed the presence subpopulations of cells with characteristics of skeletal progenitor cells in normal 

and osteoarthritic cartilage. The percentage of skeletal progenitor cells present in cartilage was reported to 

represent 3.5% of the constituent cells (Alsalameh et al., 2004). The constituents of the cartilage matrix, 

which constitutes a specific niche composed of extracellular matrix proteins include, notably, proteoglycans, 

matrix metalloproteinases, chemokines, integrins, cadherins, lipids, inorganic components as well as 

collagens and fibrillar proteins are thought to be pivotal in the crosstalk between progenitor cells and the 

extracellular matrix and critical in the chondrogenic process (Foster et al., 1999; Djouad et al., 2007). The 

chondrogenic niche thus encompasses all these extracellular elements and soluble factors immediately 

surrounding the stem cell and progenitor populations, and it is this microenvironment, and the  cell-cell and 

cell-matrix communication, that regulates the maintenance of the stem cell pool and specific commitment 

towards specific lineages through intrinsic and extrinsic factors (Djouad et al., 2007; Kolf et al., 2007).

Interestingly, to date, there has been no evidence of an identifiable extracellular matrix protein capable of 

maintaining the skeletal stem cell in an undifferentiated and naïve phenotype. Further clues as to the 

composition of the chondrogenic niche can be drawn from in vivo observations on the chondrocyte. Thus, in 

vivo, chondrocytes are responsible for the maintenance of articular cartilage, by synthesizing and degrading 

all extracellular matrix components, and replace degraded matrix molecules through catabolic and synthetic 

activities in order to maintain the correct architectural structure and biomechanical properties (Temenoff and 
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Mikos, 2000; Aigner et al., 2006). Chondrocytes exist in a low oxygen tissue environment in the absence of a 

vascular supply or innervation within discrete cavities or lacunae embedded within a dense extracellular 

matrix. A further degree of complexity is that the functions of chondrocytes are dependent on their location.  

Thus, the main function of chondrocytes that occupy supporting structures is the secretion and maintenance 

of an extracellular matrix, whereas chondrocytes that are located in the epiphyseal plates are associated 

with growth (Archer and Francis-West, 2003). It is therefore the interactions, not fully elucidated, between the 

chondrocyte and the cartilage extracellular matrix in the cartilage niche that regulate and maintain native 

cartilage tissue.  

3.2 The Perivascular Niche

The perivascular niche consists of endothelial and or pericyte cells which influence residing adjacent cell 

types during critical cellular and tissue development (Nikolova et al., 2006a). The close proximity to all cells 

and the high permeability of the endothelium allow for efficient metabolic exchange between blood and 

tissues (Cleaver & Melton, 2003). However, endothelial cells are found in direct contact with certain cell 

types indicating a role greater than merely suppliers of nutrients and oxygen (Palmer, 2000). During 

development, haematopoiesis and vascularisation occur simultaneously where; endothelial cells (EC) and 

hematopoietic stem cells (HSC) originate from the same progenitor cell, the hemangioblast (Robertson et al., 

1999; Lacaud et al., 2001; Hristov and Weber, 2004). During vasculogenesis ECs develop into tubules 

surrounded by a vascular basement membrane. A lumen develops and attaches to the circulatory system 

activating a signalling cascade to attracts mural cells (pericytes or smooth muscle cells) to stabilise the 

vessel (Foo et al., 2006) and to express factors which reproduce the effects of the vascular niche.

In development, proximal interactions of endothelial and progenitor populations in tissues such as 

the heart, brain, liver, bone and blood indicate that signals generated by the microvasculature affect these 

progeny cells (Cleaver & Melton, 2003). The primitive progeny of HSC is located adjacent to the endosteal 

surface of trabecular bone (Taichman, 2004) and hence linked to the adult bone and marrow. HSC that fail to 

express a calcium-sensing receptor fail to localise to the endosteal niche, indicating that the bone matrix 

mineral content plays an important role in the osteoblastic niche (Adams et al., 2006). Osteoblasts, reticular 

cells, fibroblasts and adipocytes all function to create a niche for HSC, controlling numbers and 
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differentiation (Balduino, 2005). However, HSC are known to interact with other stromal cells including ECs. 

The ablation of osteoblasts in transgenic mice leads to extra-medullary hematopoiesis (Visnjic et al., 2004) 

indicating the existence of HSC niche in other tissue. HSC were thought to reside in niches adjacent to the 

endosteum. However, identification of long term repopulating HSCs by CD-150+ (signalling activation 

lymphocyte molecule (SLAM) family) showed that CD-150+ positive cells were located at the osteoblastic 

surface of trabecular bone and co-localised to the  sinusoidal ECs of vascular tissue (Kiel, 2005) a site that 

has been identified as the regulatory region for megakaryocyte progenitors (Avecilla et al., 2004). HSC 

remain quiescent in the endosteal zone but in the central vascular niche differentiation and mobilization to 

the circulation occurs (Abkowitz et al., 2003). Indeed, identification of two cell populations, Human bone 

marrow stromal cells (BMSCs) and dental pulp stem cells (DSPCs) have been shown to reside in 

perivascular niches (Shi and Gronthos, 2003). In thrombocytopenia, upregulation of stromal-cell-derived 

factor (SDF-1) and VEGF activate matrix metalloproteinase-9 (MMP-9), converting the membrane-

associated kit ligand into soluble kit Ligand (sKitL) resulting in the translocation of HSCs to the vascular 

niche where they undergo cell cycling, differentiation and translocation to the vascular system via sinusoids 

(Heissig et al., 2002; Visnjic et al., 2004). Conversely, MMP-9-/- mice fail to release sKitL and HSC motility is 

impaired (Heissig et al., 2002).  

Approximately two thirds of HSC in the bone marrow and spleen are adjacent to sinusoids (Kiel et 

al., 2005).  Sinusoidal vessels are characterized by a highly permeable thin wall consisting of a single layer 

of endothelial cells which are supported in part by a vascular membrane, pericytes, and reticular cells

(Tavassoli, 1981, Nikolova et al., 2006a). Sinusoids surrounded by reticular cells secrete high amounts of a 

chemokine, SDF-1 (CXCL12) which is required for the maintenance of HSC (Sugiyama et al., 2006). 

Deletion of CXCR4 (receptor for SDF-1/ CXCL12) results in a reduction of HSCs and increased sensitivity to 

myelotoxic injury (Sugiyama et al., 2006). Localisation of HSC to the endosteum or vascular regions is 

usually associated with SDF-1 secreting reticular cells. Perivascular cells express significantly higher levels 

of SDF-1 than osteoblasts or endothelial cells (Sugiyama et al., 2006). These two pieces of evidence 

indicate that the vascular and endosteal niches exploit a number of common mechanisms for maintaining 

HSCs.
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During embryogenesis mice deficient in SDF-1 have a reduced capacity of hematopoietic 

colonization of BM by HSC from the peripheral circulation (Nagasawa, 2000). Equally, EC induced 

expression of SDF-1 can rescue the defective hematopoietic colonization of BM signifying that bone marrow 

EC are essential for HSC colonization of the fetal BM (Ara et al., 2003). HSC and Haematopoietic progenitor 

cell (HPC) mobilization is highly regulated by the osteoblastic and vascular niches (Adams and Scadden 

2006). Controlled level changes of SDF-1 in the BM ensure that quiescently maintained HSC migrate from 

the osteoblastic niche to the vascular niche facilitating trans endothelial migration to the vascular circulation 

via the sinusoids. Equally, homing of HSC is simply the reverse of this process (Lapidot et al., 2005; 

Cancelas and Williams, 2006). Mobilization and recruitment of HPCs to the vascular niche requires

endothelium FGF-4 as well as SDF-1. An elevated concentration gradient of O2 and FGF-4 from the 

osteoblastic niche to the vascular niche may influence HSC/HPC recruitment, proliferation and trafficking 

(Ceradini and Gurtner, 2005; Yin and Li, 2006). The basement membrane surrounding sinusoidal EC may 

yet provide a niche to support proliferating stem and osteoprogenitor cells. As the membrane also expresses 

heparin sulphate proteoglycans, it may increase the growth factor levels of FGF-4 and SDF- 1 which are

critical to HSC (Kopp et al., 2005).

Bone marrow endothelial cells (BMECs) support proliferation and differentiation of HPCs in vitro

(Rafii et al., 1994, 1995, 1997) and may be unique to the vascular niche in bone marrow.  In contrast to other 

tissue-derived endothelial cells, BMECs are potent inducers of HPC adhesion and migration (Imai et al., 

1999a; Yong et al., 1998). BMECs have a high surface expression of SDF-1, express lower levels of vWF 

and constitutively express adhesion molecules such as VCAM-1 and E-selectin. Their tissue specific heparin 

sulphate proteoglycan patterns and adhesion molecule profiles (VCAM-1, ICAM-1, E-selectin and P-

selectin), functionally cause homing of the  hematopoietic progenitor cell (expressing VLA-4, LFA-1 and 

hyaluronan binding cellular adhesion molecule) (Mazo et al.,1998) homing to the BM via a homeostatic 

mechanism ensuring a constant flux of such cells into the BM (Imai et al., 1998; Imai et al., 1999b; Rood et 

al., 1999; Peled et al., 2000; Netelenbos et al., 2001; Yu et al., 2003).

The interaction of endothelial cells, HSC and stromal lineages are required for the homeostasis of 

HSC and skeletal stem cells at specific sites in the 3D microenvironment of adult bone marrow (BM). 



Page 12 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

12

Recently, a functional interplay has been identified between the development of angiogenesis, skeletal 

progenitors in BM sinusoids and the formation of the hematopoietic microenvironment (HME) in vivo

(Sacchetti et al., 2007). Melanoma-associated cell adhesion molecule (MCAM/CD146) expressing 

subendothelial cells in human BM stroma (upon transplantation) were able to transfer the HME to heterotopic 

sites concomitantly with the development of identical subendothelial cells within a small bone structure. 

These subendothelial stromal cells in the developing heteroptopic BM occur with the inception of sinusoids 

(Sacchetti et al., 2007) and produce Angiopoietin-1 (Ang-1), a pivotal molecule of the HSC niche involved in 

vascular remodelling (Davis et al., 1996). Indeed, Ang-1 as well as VEGF, SDF-1 and FGF4 play a critical 

role in BM regeneration after myelosuppresion (Han et al., 2006). 

HSCs expressing Tie-2 have recently been shown to respond to Ang-1, inducing HSCs to tightly 

adhere to stromal cells preventing HSC cell division (Arai et al., 2005). Equally, in vivo, Ang-1 reduces the 

activity of HSCs allowing them to attach to the bone surface whereby they become protected in the HSC 

compartment from factors that reduce hematopoiesis (Arai et al., 2005). Additionally, human BM-derived 

skeletal stem cells express Tie-1 allowing them (under proinflammatory induction) to be chemoattracted by 

Ang-1, but not by VEGF, demonstrating a fundamental difference between endothelial cells and skeletal 

stem cells (Ponte et al., 2007).  However, under mechanical stimuli, skeletal stem cells can initiate an 

angiogenic reaction via VEGFR and FGFR signalling cascades (Kasper et al., 2007). 

TNF alpha induces MSC migration towards chemokines CCR2, CCR3 and CCR4 effecting the 

activation and homing to injured tissues (Ponte et al., 2007). Indeed, vascularisation was demonstrated by

using cell guidance and homing of MSCs within 3D scaffolds with addition of VEGF, SDF-1 and BMP-6 

without prior cell seeding (Schantz et al., 2007). Understanding the interactions of EC, HSC and skeletal 

stem cells and the “niches” that allow for this complex orchestration to take place will ultimately enhance the 

ways bioengineers develop constructs for bone regeneration. Importantly, the correct isolation of bone 

marrow progenitors will play a critical role in the functionality of future cell therapy and therapeutic tissue 

engineering strategies (Seeger et al., 2007).

4. Tissue Regeneration – clinical need and tissue engineering
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An understanding of the osteogenic, chondrogenic and perivascular niches is critical in the identification of 

the key growth factors, matrix constituents and physiological conditions that will enhance tissue 

regeneration. This has gained prominence given the demographic challenges of an advancing aged 

population and the need for innovative approaches to augment and repair skeletal tissue. It is estimated that 

by 2020, 20% of the UK population will be over 65 and with this demographic challenge, the numbers of hip 

fractures worldwide are projected to increase from 1.7 million in 1990 to 6.3 million in 2050. Furthermore, in 

the UK there are over 50,000 primary hip replacement operations each year at a cost of £250million (Javaid 

and Cooper, 2001). From a patient's perspective, the ultimate goal is replacement of their damaged skeleton 

with autogenous material, harvested with minimal morbidity. With autogenous bone, a lack of sufficient 

material, the failure of complete remodelling and difficulties in shaping the bone graft to fill the defect, often 

precludes the universal use of autogenous bone for orthopaedic applications while allogeneic bone, carries 

potential risks of cell-mediated immune responses to alloantigens and of transmission of pathogens such as 

HIV / prion mediated contamination. Against this backdrop, tissue engineering using skeletal progenitor 

populations has emerged as a promising approach for skeletal tissue formation (reviewed in Oreffo et al.,

2005). In principles this involves the combination of living cells within a natural or synthetic scaffold, to 

produce a three dimensional living tissue construct which is functionally, structurally and mechanically equal 

to, if not better than, that which it has been designed to replace (Stock and Vacanti, 2001; Logeart-

Avramoglu et al., 2005).  Human bone marrow stromal cells injected percutaneously for the treatment of 

tibial non-unions and avascular necrosis of the hip have met with some success, while, animal studies have 

shown that tissue engineering techniques using autologous skeletal populations seeded onto a scaffold can 

lead to skeletal tissue regeneration at a defect site (Bruder et al., 1998, Arinzeh et al., 2003; Dai et al., 2005;

den Boer et al., 2003). 

4.1 The Chondrogenic niche informing skeletal regeneration

Cartilage degeneration as a result of trauma or degenerative diseases such as osteoarthritis is a major 

healthcare problem and due to the aneural, avascular and alymphatic nature of articular cartilage 

spontaneous repair is limited.  Furthermore, the potential for spontaneous repair is observed to decrease 

with age as mature cartilage shows a decrease in chondrocyte activity.  Tissue regeneration strategies, 



Page 14 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

14

coupled with the ability to isolate human chondrocyte populations, offers a significant, yet achievable, 

challenge to engineer cartilage at the required site.  The process of tissue engineering is influenced by 

inductive signals and the presence of appropriate growth factors.  Therefore a number of growth factors can 

be used to stimulate the differentiation along a particular lineage or to enhance the production and deposition 

of extracellular matrix molecules that parallels in vivo physiology.  Previous studies have demonstrated that 

TGF-β-induced chondrogenesis involves a rapid deposition of a cartilage-specific extracellular matrix (Barry 

et al., 2001) and that more specifically; chondrogenic differentiation of skeletal stem cells is rapidly induced 

in the presence of TGF-β2 or β-3, with an increase in aggrecan and type II collagen. BMPs also induce 

differentiation of skeletal stem cells into chondrogenic lineage cells (Wan and Cao 2005).  BMP-2 has been 

shown to induce extracellular matrix synthesis, whilst BMP-7 has been shown to restore proteoglycan 

synthesis by chondrocytes (Wan and Cao 2005).  Furthermore, IGF-I has been shown as the main anabolic 

growth factor of normal cartilage, and FGF signalling pathways induce Sox-9 expression in primary 

chondrocytes and in undifferentiated cells (Goessler et al 2005).

Further requirements for tissue regeneration are a supportive scaffold and alginate polysaccharide capsules 

offer a 3D structure for the encapsulation and organization of cells exploiting this paradigm and can not only 

support a range of cell skeletal cell types but allow presentation of specific stimuli to direct the formation of a 

desired tissue as well as allowing mechanical integrity to a cell-tissue construct (Caterson et al., 2001;

Alsberg et al., 2002;, Green et al., 2005). We have used human skeletal progenitors encapsulated within 

alginate/chitosan polysaccharide templates to promote chondrogenesis and looked at the potential to begin 

to create artificial microenvironments (Pound et al., 2006, 2007). Following the additional encapsulation of 

types I and II collagen, large regions of extracellular matrix have been generated that stained positively for 

cartilage proteoglycans and type II collagen, demonstrating chondrogenic differentiation (Fig 3). Additionally, 

constructs developed regions of matrix that stained positively for type I collagen, bone sialoprotein and 

osteoid formation, demonstrating the potential to promote chondrogenic and osteogenic differentiation and 

extracellular matrix formation with implications for skeletal regeneration and application (Pound et al., 2006, 

2007). Furthermore, encapsulation of Sox-9 transfected bone marrow stromal and chondrogenic cells, in 

alginate templates, generated enhanced cartilaginous extracellular matrix, positive for Sox-9 and type II 

collagen, in comparison with templates encapsulated with untransfected cells (Babister et al 2008).  These 
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findings further emphasise the need to understand the interactions between cells and the extracellular matrix 

components of the chondrogenic niche and their importance in tissue regeneration strategies as specific 

factors regulating native tissue generation, maintenance and repair will provide invaluable insights into 

regeneration of cartilage defects.

4.2 Perivascular niche informing skeletal tissue regeneration

The interaction between the osteoblast/endothelial cell and perivascular niche and resultant effects on stem 

cell maintenance and production will ultimately improve the way new tissue engineered bone and vascular 

constructs are generated and implanted. EC signalling is a critical mechanism during the development and 

repair of bone (Gerber and Ferrara, 2000). VEGF, a potent angiogenic factor, couples hypertrophic cartilage 

remodelling, ossification and angiogenesis during endochondral bone formation (Gerber et al., 1999). In 

bone fractures the osteoblastic and vascular niches are severely compromised.  Without the recruitment of 

osteoprogenitor and vascular cells and the development of a bone callus (this may in turn provide a unique

osteoblastic/vascular niche) at the fracture site, bone repair will be severely impaired. Creating a tissue 

engineering construct that provides a niche with a combination of growth factors, stem cells and a biomimetic 

scaffolds would be a critical step in the regeneration of bone. While a variety of materials have been used for 

bone regeneration together with skeletal stem cells and osteoprogenitors, including ceramics or materials 

based on hydroxyapatite, ceramic forms of -tricalcium phosphate and composites of both hydroxyapatite 

and -tricalcium phosphate, there has been relatively little work on creating specific niche environments. 

There has been work on trying to exploit biological cues that are necessary to mimic the cell-bone matrix 

interactions with the generation of biomimetic scaffolds based on poly(lactic acid) (PLA) poly(-lactic-co-

glycolic acid) (PLGA) as well as poly(glycolic acid) (reviewed in Pearson et al., 2002). In our studies we have 

used a simple strategy of combining select growth factors encapsulated within scaffolds to thus engineer

scaffolds that release growth factors such as VEGF, BMP-2 or both in a spatial and temporal manner to 

stimulate resident skeletal osteoprogenitors to repair a critical sized defect (Fig 4). The continued 

development of smart designer scaffolds and materials with selection of skeletal stem cell and 

osteoprogenitor populations is needed to develop appropriate microenvironments that may ultimately deliver 

on the promise of skeletal tissue engineering using skeletal stem cell populations.
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5. Summary

This review has centred on the osteogenic, chondrogenic and perivascular niches and the growth factors 

and matrix constituents that modulate and influence skeletal stem cell activity and fate. We have examined 

the derivation of skeletal stem and progenitor populations and examined the key regulatory factors, matrix 

constituents and signal molecules that influence activity, niche identity and function and the complex 

interplay across niches including the haemopoietic environment. Current evidence suggests biomimetic 

strategies that utilise the information from these environments and their control of cell function for osteogenic 

stem cell function will impact significantly on strategies to enhance skeletal tissue repair and offer exciting 

new research directions to harness that knowledge for musculoskeletal regeneration in an ageing population.
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Fig. 1. The differentiation of skeletal stem cells to generate stromal lineages including bone, fat, cartilage, 

connective tissue, muscle as well as nervous tissue and their corresponding regulation by transcription and 

growth factors. The postulated steps are highly schematic and the potential for neuronal tissue remains 

controversial.
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Fig. 2. Representative histograms (from 8 experiments) demonstrating mean % STRO-1+ cells ( SD) in 

BMMNC populations (n = 8), isolated from bone marrow samples of haematologically normal osteoporotic 

and osteoarthritic subjects (panel A). The average proportion of STRO-1+ cells in BMMNC populations was 

determined at 11% ( 3). Day 3 CFU-F of STRO-1+ cells (panels B and C), cultured in basal medium (-

MEM containing 10% FCS) for 9 days, exhibited STRO-1 (-FITC) immunoreactivity (panels D and E). STRO-

1(-FITC) immunoreactivity was maintained in fibroblastic cells of day 6 cultures (panels F and G) and day 9 

cultures (panels H and I). Scale bars = 100m.
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Fig 3. Human bone marrow stromal cells encapsulated within alginate polysaccharide templates with the 

addition of 0.25mg/ml type I collagen (a) and type II collagen (b), demonstrating development of large 

regions of chondrogenic matrix.  Regions of cell-generated extracellular matrix were positive for type I 

collagen (c) and type II collagen (d).
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Fig. 4. Representative CT scans 28 days post scaffold implantation in MF-1 nu/nu mouse femur defect 

model. Control defect without scaffold (panel A), VEGF encapsulated PLA scaffold seeded with HBMSC 

(panel B). Alcian blue/ Sirius red staining of tissue sections through the femur defect implanted with VEGF 

encapsulated PLA scaffold and seeded with HBMSC (panel C and D). Scale bars: 2mm for panel A & B; 

100m for panel C & D.
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Table 1
Cell-surface antigen expression profile of human bone marrow-derived skeletal stem cells

Cell-surface antigen Expressed Not 
expressed

Details

STRO-1 antigen  Cell-surface trypsin-resistant antigen
expressed by CFU-F
Antibody: STRO-1

Tissue non specific 
Alkaline phosphatase 

(TNSALP)

 Cell-surface glycoprotein associated with 
osteoblast lineage cells
Antibody: STRO-3

CD63  Synonyms: Melanoma-associated antigen 
ME491, Tetraspanin 30, Lysosomal-
associated membrane protein 3
Antibody: HOP26

CD105  Synonym: Endoglin/ SH2

CD73  Synonym: SH3/ 4

CD71  Synonym: Transferrin receptor
                 protein 1 (TfR1)

CD90  Synonym: Thymocyte antigen-1 
                 (Thy-1)

CD49a  Synonym: Laminin and collagen 
                 receptor VLA-1

Cell adhesion molecules
CD106  Synonym: Vascular cell- adhesion 

molecule-1 (VCAM-1)

CD166  Synonym: Activated leukocyte cell-
adhesion molecule (ALCAM)
Antibody: SB-10 

ICAM-1  Intercellular cell- adhesion molecule-1

CD29  Synonym: 1 subunit of the integrin 
                 family

CD31  Synonym: Platelet/ endothelial cell-
adhesion molecule-1 (PECAM-1)

CD56  Synonym: Neural cell- adhesion 
                 molecule-1 (NCAM-1)

CD18  Synonyms: Leukocyte cell- adhesion 
molecule, integrin 2 (LCAMB), 
Lymphocyte function associated antigen-1 
(LAD, LFA-1)

Table
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Haematopoietic markers
CD45  Synonym: Leukocyte common antigen

Located on haematopoietic cells except 
erythrocytes and platelets 

CD34  Identified on haematopoietic progenitors 
and endothelial progenitors 

CD14  Preferentially expressed on monocytes/ 
macrophages

CD11   component of various integrins, 
especially those in which the  component 
is CD18

CD44  Expressed by haematopoietic as well as 
bone marrow mesenchymal stem cells

Co-stimulatory 
molecules

CD80  Synonym: B7.1, provides co-stimulatory 
signal necessary for T cell activation and 
survival

CD86  Synonym: B7.2, provides co-stimulatory 
signal necessary for T cell activation and 
survival

CD40  Expressed by all mature B lymphocytes, 
monocytes, dendritic, endothelial and 
epithelial cells
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Table 2
Overview of isolation protocols utilising antibodies recognised by stromal antigens expressed on
human bone marrow mononuclear cells

Reference Cells/ tissue Protocol used % antigen-positive 
cells

Simmons and 
Torok-Storb, 
1991

BMMNC from bone marrow 
aspirates of normal donors

Flow cytometry STRO-1+
(10%)

Joyner et al., 
1997

4% formalin-fixed cultures of 
bone marrow-derived cells 
from trabecular bone 
samples of haematologically 
normal individuals

Immunohistochemistry CD63+ 
Day 1 of culture:  
<10%
Day 3 of culture:
>95%
Day 28 of culture:
<1%

Majumdar et 
al., 2000

BMMNC isolated from 
human bone marrow

Magnetic activated cell 
sorting (MACS)

Flow cytometry

CD105/ Endoglin+
Dual antibody 
procedure: 30.9%
Single antibody 
procedure: 1.80.3%

Over 60% of 
CD105+ cells co-
expressed STRO-1 
antigen

Howard et al., 
2002

BMMNC from bone marrow 
samples of haematologically 
normal individuals

Magnetic activated cell 
sorting (MACS)

STRO-1+
7.123.8%

Stewart et al., 
2003

BMMNC from femoral 
reamings of osteoarthritic 
individuals

Flow cytometry STRO-1+ (27%)
CD63+ (46%)
CD49a+ (5%)
(CD49a+ cells also 
coexpressed STRO-
1 antigen)
CD166+ (19%)

Letchford et 
al., 2006

BMMNC from femoral 
reamings of osteoarthritic 
individuals

Flow cytometry STRO-1+ (159%)
CD49a+ (5.44.5%)
C15+ (4.412.66%)

Table 2
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Figure 1 Lineage

http://ees.elsevier.com/mce/download.aspx?id=18613&guid=602c0116-a736-4bde-b463-fc0c2d151e79&scheme=1
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Figure 2

http://ees.elsevier.com/mce/download.aspx?id=18614&guid=fdd10261-f6f4-4eba-9252-e656b509c388&scheme=1
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Figure 3

http://ees.elsevier.com/mce/download.aspx?id=18615&guid=6ff3e1b6-f5de-4b1a-870f-687e82c16caf&scheme=1
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Figure 4

http://ees.elsevier.com/mce/download.aspx?id=18616&guid=361ec8b4-743f-45b5-974b-3f2ca01db578&scheme=1

