

Prostaglandin E and F activate the FP receptor and up-regulate cyclooxygenase-2 expression via the cyclic AMP response element

Kurt J. Sales, Vivien Grant, Henry N. Jabbour

▶ To cite this version:

Kurt J. Sales, Vivien Grant, Henry N. Jabbour. Prostaglandin E and F activate the FP receptor and up-regulate cyclooxygenase-2 expression via the cyclic AMP response element. Molecular and Cellular Endocrinology, 2008, 285 (1-2), pp.51. 10.1016/j.mce.2008.01.016 . hal-00531987

HAL Id: hal-00531987 https://hal.science/hal-00531987

Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Title: Prostaglandin E_2 and $F_{2\alpha}$ activate the FP receptor and up-regulate cyclooxygenase-2 expression via the cyclic AMP response element

Authors: Kurt J. Sales, Vivien Grant, Henry N. Jabbour

 PII:
 S0303-7207(08)00025-7

 DOI:
 doi:10.1016/j.mce.2008.01.016

 Reference:
 MCE 6803

 To appear in:
 Molecular and Cellular Endocrinology

 Received date:
 2-10-2007

 Revised date:
 2-10-2007

 Revised date:
 14-1-2008

 Accepted date:
 23-1-2008

Please cite this article as: Sales, K.J., Grant, V., Jabbour, H.N., Prostaglandin E_2 and $F_{2\alpha}$ activate the FP receptor and up-regulate cyclooxygenase-2 expression via the cyclic AMP response element, *Molecular and Cellular Endocrinology* (2007), doi:10.1016/j.mce.2008.01.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Prostaglandin E_2 and $F_{2\alpha}$ activate the FP receptor and up-regulate cyclooxygenase-
2	2 expression via the cyclic AMP response element.
3	
4	Kurt J. Sales, Vivien Grant and Henry N. Jabbour
5	
6	MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute,
7	47 Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4TJ, United Kingdom
8	
9	
10	
11	Short title: Prostaglandin receptor integrative signaling
12	
13	
14	
15	Address all correspondence and reprints to: Dr Henry N Jabbour, MRC Human
16	Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France
17	Crescent, Edinburgh, EH16 4TJ, UK. Tel. 44-131-2426220; Fax. 44-131-2426231. E-
18	mail: <u>h.jabbour@hrsu.mrc.ac.uk</u>
19	
20	
21	Key words: Cyclooxygenase, Prostaglandin, Signal transduction, cancer, receptor
22	

1 Abstract

2 In endometrial adenocarcinomas COX-2 and F-series prostanoid (FP) receptor 3 expression and prostanoid biosynthesis (PGE₂ and PGF_{2 α}) are elevated. In the present study we investigated the effect of PGE₂ and PGF_{2 α} on expression of COX-2 via the FP 4 5 receptor in endometrial adenocarcinoma cells stably expressing the FP receptor (FPS 6 cells). Using chemical inhibitors of intracellular signaling pathways, reporter gene 7 assays and quantitative RT-PCR analysis, we show that PGE_2 and $PGF_{2\alpha}$ can mobilize 8 inositol 1,4,5 trisphosphate, induce ERK1/2 phosphorylation via the phospholipase C β -9 protein kinase A-epidermal growth factor receptor pathway and induce cyclooxygenase-2 (COX-2) expression via the FP receptor. In addition we show that the PGE₂ or PGF_{2 α}-10 11 regulation of COX-2 via the FP receptor is mediated via the cAMP response element (CRE) binding site on the COX-2 promoter. These data indicate that PGE_2 and $PGF_{2\alpha}$ 12 13 biosynthesized locally within endometrial adenocarcinomas can regulate tumor cell 14 function in an autocrine/paracrine manner via the FP receptor.

15

16

1 Introduction

Prostaglandin endoperoxide (PGH) synthase or cyclooxygenase (COX) catalyses the committed step in the conversion of arachidonic acid to prostaglandins (PG) (Marnett et al., 1999). Two COX enzymes, COX-1 and COX-2, which are the targets for non-steroidal anti-inflammatory drug treatment have been characterised (Vane and Botting, 1998; Smith et al., 2000). A third COX enzyme (COX-3), a variant of COX-1 formed by retention of intron-1 and which is sensitive to acetaminophen, has been cloned more recently from canine cerebral cortex (Chandrasekharan et al., 2002).

9 COX-1 is constitutively expressed in many cell types and is overexpressed in 10 certain cancers (Hwang et al., 1998; Bauer et al., 2000; Kirschenbaum et al., 2000; Sales 11 et al., 2002). COX-2 is the more inducible form of the enzyme and is commonly 12 associated with pathological conditions including tumorigenesis (DuBois et al., 1996; 13 Vane et al., 1998). The existence of COX-3 protein in humans remains controversial and 14 its role in pathologies undefined.

15 Following biosynthesis, prostaglandins exert their function through G protein receptor (GPCR)-mediated interaction. In the human endometrium, PGE₂ and PGF_{2 α} are 16 17 the most abundantly biosynthesized prostanoids (Lumsden et al., 1983; Hofer et al., 18 1993). PGE₂ exerts its autocrine/paracrine action by binding to either of four main 19 subtypes of GPCR (EP1, EP2, EP3 and EP4) to mobilize intracellular calcium and 20 inositol 1,4,5 trisphosphate (InsP) via $G_{\alpha/11}$ (EP1/EP3) or increase cAMP accumulation via $G_{\alpha s}$ (EP2/EP4) (Sugimoto et al., 1993; Narumiya et al., 1999). Activation of FP 21 22 receptors by PGF_{2 α} results in phospholipase C (PLC) activation, inositol 1,4,5 23 trisphosphate (InsP) hydrolysis and intracellular calcium flux (Watanabe et al., 1994).

Activation of the cAMP/InsP second messenger systems by prostanoid-receptor interaction can in turn regulate target gene transcription via the phosphorylation and dephosphorylation of distal signaling pathways such as the extracellular signal-regulated kinase (ERK1/2) and phosphatidylinositol-3-kinase/protein kinase B pathways via transactivation of the epidermal growth factor receptor (EGFR) (Sheng et al., 2001; Regan, 2003; Jabbour and Sales, 2004; Sales et al., 2004a,b; Jabbour et al., 2005; Smith et al., 2006)

8 We have previously demonstrated elevated expression and signaling of COX-2 9 and FP receptor in human endometrial adenocarcinomas and have ascertained a role for 10 PGF_{2 α}-FP receptor interaction in enhancing the proliferation of endometrial epithelial 11 cells (Jabbour and Sales, 2004; Jabbour et al., 2005; Sales et al., 2004b) and promoting 12 the expression of pro-angiogenic and inflammatory genes in endometrial 13 adenocarcinoma cells and adenocarcinoma biopsy explants via activation of ERK1/2 14 (Jabbour et al., 2005; Sales et al., 2005; Sales et al., 2007).

15 Although PGE_2 and $PGF_{2\alpha}$ are considered to be the endogenous ligands for EP 16 and FP receptors respectively, PGE_2 can bind to the FP receptor with an affinity that is 17 only 10-30 fold less than $PGF_{2\alpha}$ (Abramovitz et al., 2000). The affinity of $PGF_{2\alpha}$ for EP 18 receptors is 100-300 fold less than it is for the FP receptor (Abramovitz et al., 2000).

19 Recently we have shown that COX-2 and PGF_{2 α} biosynthesis can be 20 autoregulated in endometrial adenocarcinoma cells via the FP receptor (Jabbour et al., 21 2005). Given that both PGE₂ and PGF_{2 α} biosynthesis are elevated in endometrial 22 pathologies (Lundstrom and Green, 1978; Lumsden et al., 1983; Sales and Jabbour, 23 2003) and since PGE₂ can act as an agonist of the FP receptor, we investigated the effect

- 1 of PGE_2 and $PGF_{2\alpha}$ on regulation of COX-2 via the FP receptor in Ishikawa endometrial
- 2 epithelial cells stably transfected with the human isoform of the FP receptor.

1 Materials and Methods

2 Reagents

3 Culture medium was purchased from Life Technologies (Paisley, UK). 4 Penicillin-streptomycin and fetal calf serum (FCS) were purchased from PAA 5 Laboratories (Middlesex, UK). Indomethacin, phosphate buffered saline (PBS), bovine serum albumin (BSA), AL8810 (10mM stock in ethanol), PGE₂ and PGF_{2 α} were 6 purchased from Sigma Chemical Company (Dorset, UK). Rabbit anti-Phospho-p42/44 7 and mouse anti-p42/44 monoclonal antibodies were purchased from Cell Signaling 8 9 Technologies (New England Biolabs, Herts, UK). The Alexafluor 680 secondary antibody was purchased from Molecular Probes Inc. (Eugene, OR, USA). The IRDyeTM 10 11 800 secondary antibody was purchased from Rockland Immunochemicals (Gilbertsville, 12 PA, USA). AH6809 (10mM Stock in dimethylsulfoxide, DMSO), U73122 (10mM Stock 13 in DMSO), PD98059 (18.7mM Stock in DMSO), 4C3MQ (4-cyano-3-14 methylisoquinoline; 10mM stock in DMSO), GF109203x (10mM stock in DMSO) and 15 AG1478 (10mM stock in DMSO) were purchased from Calbiochem (Nottingham, UK). 16 EP4 antagonist (ONOAE2227, 10mM stock in ethanol, used at a final concentration of 17 1µM) was chemically synthesised by Charnwood Molecular Ltd. (Leics, UK). 18 Doses of chemical inhibitors described in table 1 and antibodies were determined

19

empirically by titration using the manufacturer's guidelines.

20

1 Cell Culture

Ishikawa endometrial adenocarcinoma cells were obtained from the European Collection of Cell Culture (Wiltshire, UK). Stable FP transfectant cells were constructed, characterised and maintained as described (Sales et al., 2005), with the addition of a maintenance dose of 200µg/ml G418.

6 Total Inositol Phosphate (IP) Assays

Total inositol phosphate (InsP) production was measured in Ishikawa WT and FPS cells and assayed as described previously (Berg et al., 1994; Sales et al., 2005). Cells were treated either with vehicle, PGE_2 or $PGF_{2\alpha}$ in the absence or presence of receptor antagonist or chemical inhibitor as shown in the figure legends. Data are presented as mean ± SEM from at least 3 independent experiments.

12

13 *cAMP assay*

14 cAMP accumulation was determined in response to administration of vehicle, 15 PGE_2 or $PGF_{2\alpha}$ in the absence or presence of receptor antagonist or chemical inhibitor as shown in the figure legend and was performed as described previously (Sales et al., 16 2002). Briefly, cells (2×10^5) were seeded and allowed to attach overnight. The 17 18 following day, the cells were serum starved by incubating with fresh serum free medium 19 containing 8.4 µM indomethacin for at least 16 hours. Thereafter the culture medium 20 was removed and replaced with serum-free medium containing 3-isobutyl-1-methyl 21 xanthine (IBMX; Sigma) to a final concentration of 1mM and receptor 22 antagonist/chemical inhibitor for 30 minutes at 37°C. Cells were then stimulated with 23 ligand for the time indicated in the figure legend. Following stimulation, cells were

7

lysed in 0.1M HCl. cAMP concentration was quantified by ELISA using a cAMP kit
(Biomol, Affiniti, Exeter, UK) according to the manufacturer's protocol and normalised
to protein concentration of the lysate. Protein concentrations were determined using
protein assay kits (Bio-Rad Laboratories, Hemel Hamstead, UK). Data are presented as
mean ± SEM from at least 4 independent experiments.

6

7 In Cell Western Detection

8 Cell signaling to ERK1/2 was investigated using an In-Cell Western Assay. 9 Approximately 20000 cells were seeded per well in a 96 well microtitre plate and 10 allowed to adhere overnight at 37°C. The following day cells were starved by serum 11 withdrawal in serum free culture medium containing 8.4 µM indomethacin for at least 12 16 hours at 37°C. Cells were incubated for 30 minutes with vehicle, receptor antagonist 13 or chemical inhibitor as described in the figure legend. Thereafter cells were stimulated with either vehicle PGE_2 or $PGF_{2\alpha}$ in the absence or presence of receptor antagonist or 14 15 chemical inhibitor for the time indicated in the figure legend. Following stimulation, cells were washed with ice-cold PBS, fixed in 3.7% (v/v) Formaldehyde for 20 minutes 16 17 at room temperature, and permeabilised with 0.1% Triton X-100 in PBS. Cells were then blocked for 45 minutes at room temperature with Odyssey Blocking bufferTM (LI-18 19 COR Biosciences, Cambridge, UK) before overnight incubation with primary rabbit 20 phospho-p42/44 and goat p42/44 antibodies (diluted 1:100 in Odyssey blocking buffer) 21 at 4°C. The following day, cells were washed and incubated with the goat anti-rabbit Alexafluor 680 (1:200) and goat anti-mouse IRDyeTM 800 (1:800) for 60 minutes at 22 23 room temperature.

Immunoreactive proteins were detected and quantified using the Odyssey infrared imaging system (LI-COR Biosciences). ERK1/2 phosphorylation was calculated by dividing the value obtained from the phosphorylated ERK1/2 channel (700nm) by the value obtained from total ERK1/2 channel (800nm) and expressed as fold above vehicle controls. Results are expressed as mean ± SEM from at least 3 independent experiments performed in triplicate.

- 7
- 8 Taqman quantitative RT-PCR

9 COX-2 mRNA expression in FPS cells was measured by quantitative RT-PCR 10 analysis. FPS cells were starved by serum withdrawal for at least 12 hours in serum-free 11 medium containing 8.4 µM indomethacin. Thereafter medium was removed and 12 replaced with fresh medium containing indomethacin with either vehicle, PGE₂ or $PGF_{2\alpha}$ in the absence or presence of receptor antagonist or chemical inhibitor as 13 14 described in the figure legend. RNA was extracted using Tri-reagent (Sigma) following 15 the manufacturers guidelines. Once extracted and quantified, RNA samples were reverse 16 transcribed and subjected to RT-PCR analysis using an ABI Prism 7900 (Jabbour et al., 17 2005). COX-2 primers and probe for quantitative PCR were designed using the 18 PRIMER express program (PE Applied Biosystems, Warrington, UK) as described 19 previously (Jabbour et al., 2005). Data were analysed and processed using Sequence 20 Detector v1.6.3 (PE Applied Biosystems). Expression of COX-2 was normalised to 21 RNA loading for each sample using the 18S ribosomal RNA as an internal standard. 22 Results are expressed as fold increase above vehicle treated from at least 4 independent 23 experiments and represented as mean \pm SEM.

1 Transfection of CRE and COX-2 Promoter with Deletions and Mutations

2 Ishikawa FPS cells were transiently transfected for 6 hours using a liposomal 3 transfection system (Superfect, Qiagen, Crawley, UK). Transfections were performed 4 with CRE-Luciferase a specific cis-acting DNA binding sequence of the cAMP response 5 element ligated with a Luciferase reporter plasmid (Clontech Laboratories, BD 6 Bioscience, Cowley, UK) or the COX-2 promoter - performed using C2.1 (-917 to +49) 7 966 base pair (bp) fragment of the COX-2 promoter and C2.1 with a series of deletions 8 or site specific mutations ligated with a Luciferase reporter plasmid pGL3 basic 9 (Promega, Southampton, UK) as described in Bradbury et al. (Bradbury et al., 2003); 10 kindly supplied by Dr Robert Newton, BioMedical Research Institute, Department of Biological Sciences, The University of Warwick, UK). Deletions consisted of Dra (-11 12 625/+49) 674bp, Sty (-358/+49) 407bp, Alu (190/+49) 239bp and RSA (-86/+49) 135bp fragments. The description of each clone is based on the restriction site used to generate 13 14 the construct (Dra, Alu, Sty, RSA, HIN). Mutations consisted of CRE (-59/-53), a 15 mutation in the cAMP response element. The HIN (-79/+53) 200bp and HIN CRE-16 mutation (HINcrem; -79/+53, 200bp) fragments were generated by polymerase chain 17 reaction (PCR) using the Sty and Stycrem cDNA (Bradbury et al., 2003) as a template.

18 Amplification of HIN and HINcrem was carried out using standard PCR mix 19 containing forward 5'-AAGGCGGAAAGAAACAGTCA-3' and reverse 5'-20 AACAGTACCGGAATGCC-AAG-3' primers containing the HindIII restriction site at 21 the start for ease of cloning. To amplify by PCR, sample mix was denatured at 94°C for 22 5 minutes and subjected to 40 cycles of 94°C for 1 minute, 58°C for 1 minute and 68°C 23 for 1 minute, with a final extension step of 68°C for 7 minutes. After amplification,

samples were cooled to 4°C and visualised on 1% agarose gels. The PCR product was ligated into the pCR®II-TOPO vector (Invitrogen, De Schelp, Netherlands) followed by sequencing in both directions using a PE Applied Biosystems 373A automated sequencer. The HIN and HINcrem cDNA was ligated into the pGL3 basic (Promega) expression vector followed by sequencing.

6

7 Luciferase Reporter Assays

8 CRE or COX-2 promoter firefly Luciferase reporter vectors were co-transfected 9 into Ishikawa FPS cells in triplicate with an internal control pRL-TK (containing the 10 renilla Luciferase coding sequence; Promega) as described (Jabbour et al., 2005). The 11 following day the cells were serum-starved for at leased 16 hours 37°C with 8.4 µM 12 indomethacin prior to stimulation for 4 hours with vehicle, PGE₂ or PGF_{2 α} in the 13 absence or presence of receptor antagonist or chemical inhibitor as described in the 14 figure legend. The activity of both firefly and renilla Luciferase was determined using 15 the dual Luciferase assay kit (Promega) and total Luciferase activity was determined by 16 dividing the relative light units generated by the firefly Luciferase by the relative light 17 units generated by the renilla Luciferase in the same reaction. Fold increase in 18 Luciferase activity was calculated by dividing the total Luciferase activity in cells 19 treated with PGE₂ or PGF_{2 α} in the absence or presence of receptor antagonist or 20 chemical inhibitor by the total Luciferase activity in cells treated with vehicle. Data are 21 presented as mean \pm SEM from at least 4 independent experiments.

22

1 Statistics

- 2 Data were subjected to statistical analysis with ANOVA and Fishers protected
- 3 least significant difference tests (Statview 5.0; Abacus Concepts Inc., USA).

A certe Manus

1 Results

2 PGE_2 and $PGF_{2\alpha}$ mobilize inositol 1,4,5, trisphosphate in FPS cells

We have previously reported elevated FP receptor expression in endometrial adenocarcinomas (Sales et al., 2004b) and constructed and characterized an endometrial adenocarcinoma (Ishikawa) cell line expressing FP receptor (FPS cells) to the levels observed in endometrial adenocarcinomas (Sales et al., 2005). In this latter study we showed that $PGF_{2\alpha}$ -FP receptor interaction in FPS cells increases the hydrolysis of InsP in FPS cells via $G_{q/11}$ to a greater extent than in wild-type (WT) Ishikawa cells (Sales et al., 2005).

In the present study we found that PGE_2 could also dose-dependently mobilize InsP in FPS cells (Fig. 1A; P<0.05). No such increase in InsP production was observed in WT cells in response to PGE_2 , but a modest increase was observed in response to $PGF_{2\alpha}$ (Fig. 1A). Co-incubation of FPS cells with the specific FP receptor antagonist AL8810 abolished the PGE_2 or $PGF_{2\alpha}$ -mediated increase in InsP production at all concentrations of ligand administered (Fig.1B, P<0.05). These results suggest that the PGE_2 -mediated InsP hydrolysis in FPS cells was via the FP receptor.

We further confirmed that the InsP hydrolysis in response to 100nM PGE₂ or 100nM PGF_{2 α} was not mediated via activation of either of the endogenous EP2 or EP4 receptors or intracellular signaling cascades downstream of phospholipase C β (PLC) as neither the specific EP2 receptor antagonist (AH6809), the EP4 receptor antagonist (ONOAE2227; Fig.1C, P<0.05) nor the chemical inhibitors of the protein kinase A (PKA; 4-cyano-3-methylisoquinoline; 4C3MQ), protein kinase C (PKC;GF109203x) and ERK1/2 (PD98059) signaling pathways (Fig.1C, P<0.05, P<0.05) inhibited the

1 PGE₂ or PGF_{2 α}-mediated InsP production. As shown for the specific FP receptor 2 antagonist (AL8810), the PLC inhibitor (U73122) also abolished the InsP produced in 3 response to treatment of FPS cells with 100nM PGE₂ or 100nM PGF_{2 α} (Fig.1C, P<0.05) 4 further demonstrating the InsP production in response to ligand activation was mediated 5 via the FP receptor-PLC pathway.

6

7 PGE_2 and $PGF_{2\alpha}$ promote cyclic adenosine 3, 5 monophosphate (cAMP) in FPS cells

8 In addition to elevated FP receptor, Ishikawa FPS cells also express basal levels 9 of EP2 and EP4 receptor, but not detectable EP1 receptor (data not shown), which 10 couple to G_s and mobilize intracellular cAMP. We investigated cAMP accumulation in FPS cells in response to treatment with 100nM PGE2 or 100nM PGF2 $_{\alpha}$ for 0, 5 or 10 11 12 minutes (Fig. 2A). We found that 100nM PGE₂ rapidly mobilized intracellular cAMP at 13 5 and 10 minutes (Fig. 2A; P<0.05). By contrast 100nM PGF_{2 α} modestly increased cAMP following 10 minutes of treatment only (Fig. 2A; P<0.05). We confirmed that the 14 cAMP produced in response to 100nM PGE₂ or 100nM PGF_{2 α} was not mediated by an 15 16 intracellular mechanism via activation of the FP receptor or PLC, PKA, PKC or ERK1/2 17 signaling cascades as neither the specific FP receptor antagonist (AL8810; Fig. 2B; 18 P < 0.05) nor the chemical inhibitors of the PKA (4C3MQ), PKC (GF109203x) or 19 ERK1/2 (PD98059) signaling pathways (Fig. 2B; P<0.05) inhibited the PGE₂ or PGF_{2 α}-20 mediated cAMP production following ligand stimulation for 10 minutes. However co-21 treatment of FPS cells with the EP2 receptor antagonist (AH6809) or EP4 receptor antagonist (ONOAE2227) significantly reduced the PGE₂- or PGF_{2 α}-mediated cAMP 22 response. Moreover, the EP2 (AH6809) and EP4 (ONOAE2227) receptor antagonist in 23

1	combination totally abolished the PGE2, or PGF2 α -mediated cAMP response following
2	10 minutes of ligand stimulation (Fig. 2B; P<0.05).

3

4 PGE_2 and $PGF_{2\alpha}$ signaling cascades converge on ERK1/2

5 The effect of PGE₂ or PGF_{2 α} on the activation of the downstream extracellular 6 signal regulated kinase (ERK1/2) signaling pathway was determined after treatment of 7 FPS cells with vehicle, 100nM PGE₂ or 100nM PGF_{2 α} for 0, 5, 10 and 20 minutes (Fig. 8 3A; P<0.05). Stimulation of FPS cells with PGE₂ or PGF_{2 α} caused a rapid time-9 dependent activation of ERK1/2 (Fig. 3A; P<0.05). The peak of ERK1/2 activation was 10 observed after 5 minutes in FPS cells treated with 100nM PGE₂ and 10 minutes in cells 11 treated with 100nM PGF_{2 α} (Fig. 3A, P<0.05).

We next evaluated the effect of the FP receptor antagonist (AL8810), EP2 12 13 receptor antagonist (AH6809), EP4 receptor antagonist (ONOAE2227) and chemical 14 inhibitors of PLC (U73122), PKC (GF109203x), PKA (4C3MQ), EGFR (AG1478) and 15 ERK1/2 kinase (MEK; PD98059) on the PGE₂ or PGF_{2 α}-induced activation of ERK1/2 signaling. As observed in Figure 3A, ERK1/2 phosphorylation was significantly 16 17 elevated in FPS cells treated for 10 minutes with PGE₂ (Fig. 3B, P<0.05). The PGE₂-18 induced elevation in ERK1/2 activation was significantly inhibited by co-treatment of 19 FPS cells with FP receptor antagonist (AL8810), EP2 receptor antagonist (AH6809), 20 EP4 receptor antagonist (ONOAE2227) and PLC inhibitor (U73122) and abolished by 21 treatment of cells with the PKA (4C3MQ), EGFR kinase (AG1478) and ERK1/2 kinase 22 (PD98059) inhibitors, but not the PKC inhibitor (GF109203x; Fig. 3B, P<0.05). The $PGF_{2\alpha}$ -induced elevation in ERK1/2 activation was significantly inhibited by co-23

treatment of cells with the EP2 antagonist (AH6809), but not the EP4 receptor
antagonist (ONOAE2227) or PKC inhibitor (GF109203x), and was abolished by
treatment with the FP receptor antagonist (AL8810), and inhibitors of PLC (U73122),
PKA (4C3MQ), EGFR kinase (AG1478) and ERK1/2 kinase (PD98059; Fig. 3B,
P<0.05).

- 6

7 Activation of COX-2 Luciferase reporter and mRNA by PGE_2 and $PGF_{2\alpha}$

8 The role of PGE_2 or $PGF_{2\alpha}$ on the activation of COX-2 in FPS cells was 9 investigated by Luciferase reporter gene assay (Fig. 4A) and quantitative RT-PCR 10 analysis (Fig. 4B). Treatment of FPS cells with PGE_2 or $PGF_{2\alpha}$ caused a significant 11 time-dependent increase in COX-2 Luciferase reporter activity (Fig, 4A; P<0.05) and 12 mRNA expression (Fig. 4B; P<0.05) which peaked at 4-6 hours. The $PGF_{2\alpha}$ -induced 13 increase in COX-2 reporter gene activation (Fig. 4A) and mRNA expression (Fig. 4B) 14 was greater than that induced by PGE_2 (P<0.05).

15

16 COX-2 expression is mediated via activation of the ERK pathway

We set out to determine the signaling pathways mediating COX-2 expression in FPS cells. Cells were treated with vehicle, 100nM PGE₂ or 100nM PGF_{2 α} in the presence/absence of the FP receptor antagonist (AL8810), EP2 receptor antagonist (AH6809), EP4 receptor antagonist (ONOAE2227), or chemical inhibitors of PLC (U73122), PKA (4C3MQ), PKC (GF109203x), EGFR kinase (AG1478) or ERK1/2 kinase (PD98059). COX-2 promoter activation and mRNA expression was determined using a reporter cDNA construct containing the full length COX-2 promoter cDNA

CCEPTED MANUSCR

1 fused upstream of the firefly Luciferase reporter (C2.1; Fig. 5A and 5C) and real-time 2 quantitative RT-PCR analysis (Fig. 5B and 5D) respectively. The PGE₂-induced 3 elevation in COX-2 Luciferase (Fig. 5A) and mRNA expression (Fig. 5B) was 4 significantly reduced by treatment of FPS cells with the FP receptor antagonist 5 (AL8810), EP2 receptor antagonist (AH6809), EP4 receptor antagonist (ONOAE2227), 6 and chemical inhibitors of PLC (U73122), PKA (4C3MQ), EGFR kinase (AG1478) and 7 ERK1/2 kinase (PD98059), but not the PKC inhibitor (GF109203x; P<0.05). The 8 $PGF_{2\alpha}$ -induced elevation in COX-2 Luciferase (Fig. 5C) and mRNA expression (Fig. 9 5D) was significantly inhibited by co-treatment of cells with the FP receptor antagonist (AL8810), and chemical inhibitors of PLC (U73122), PKA (4C3MQ), EGFR kinase 10 11 (AG1478) and ERK1/2 kinase (PD98059), but not the EP2 receptor antagonist 12 (AH6809), EP4 receptor antagonist (ONOAE2227) or PKC inhibitor (GF109203x; Fig. 13 5C and 5D, P<0.05). 0

14

Mutation of the CRE-binding site in the COX-2 promoter inhibits PGE_2 and $PGF_{2\alpha}$ -15 16 mediated Luciferase activity.

17 To determine which transcription factors were involved in mediating COX-2 18 expression in response to PGE_2 or $PGF_{2\alpha}$, FPS cells were transiently transfected with the 19 966bp full length COX-2 promoter (C2.1) or COX-2 promoter containing a series of deletions as described in Bradbury et al (Bradbury et al., 2003). PGE₂ or PGF_{2 α} 20 increased COX-2 Luciferase activity by 2.2 ± 0.1 and 2.6 ± 0.1 fold respectively (Fig. 21 22 6A; P<0.05). There was no significant reduction in Luciferase activity with any of the 23 sequential 5' deletions compared with the C2.1, suggesting that even the smallest HIN

fragment of the COX-2 promoter, which contains only the CRE, was able to induce COX-2 Luciferase activity (Fig. 6A). Transfection of FPS cells with the HIN COX-2 promoter fragment with a mutated CRE (HINcrem; -59/-53) abolished the COX-2 activity induced by PGE_2 or $PGF_{2\alpha}$ (Fig. 6A; P<0.05), suggesting that this factor is necessary for COX-2 induction by prostanoids.

6

7 *CRE is activated by* PGE_2 *and* $PGF_{2\alpha}$ *signaling to ERK*

8 We further confirmed the signaling pathways activating the CRE in FPS cells 9 transfected with cDNA construct containing a specific cis-acting DNA binding sequence 10 of the cAMP response element ligated with a Luciferase reporter plasmid. Cells were treated with vehicle, 100nM PGE₂ or 100nM PGF_{2 α} in the presence/absence of the FP 11 12 receptor antagonist (AL8810), EP2 receptor antagonist (AH6809), EP4 receptor antagonist (ONOAE2227), PLC inhibitor (U73122), PKA inhibitor (4C3MQ), PKC 13 14 inhibitor (GF109203x), EGFR kinase inhibitor (AG1478) or ERK1/2 inhibitor 15 (PD98059) for 4 hours. CRE Luciferase activity in FPS cells was significantly elevated 16 in response to PGE₂ (Fig. 6B) or PGF_{2 α} (Fig. 6C) treatment for 4 hours (P<0.05).

17 The PGE₂ (Fig. 6B) induced activation of CRE Luciferase was significantly 18 reduced by treatment of FPS cells with the FP receptor (AL8810), EP2 receptor 19 (AH6809), or EP4 receptor (ONOAE2227) antagonists or chemical inhibitors of PLC 20 (U73122), PKA (4C3MQ), EGFR kinase (AG1478) or ERK1/2 kinase (PD98059), but 21 not the PKC inhibitor (GF109203x; Fig. 6B P<0.05). The PGF_{2α} (Fig. 6C) induced 22 activation of CRE Luciferase was significantly inhibited by co-treatment of cells with 23 the FP receptor antagonist (AL8810) or chemical inhibitors of PLC (U73122), PKA

- 1 (4C3MQ), EGFR kinase (AG1478) and ERK1/2 kinase (PD98059), but not the EP2
- 2 receptor antagonist (AH6809), EP4 receptor antagonist (ONOAE2227) or PKC inhibitor
- 3 (GF109203x; Fig. 6C; P<0.05).
- 4

1 Discussion

2 COX-2 expression is up-regulated in numerous pathologies including those of 3 the reproductive tract such as ovarian carcinoma, cervical carcinoma and endometrial 4 adenocarcinoma (Dore et al., 1998; Tong et al., 2000; Jabbour et al., 2001; Sales et al., 5 2001; Sales et al., 2002). The augmented biosynthesis of prostaglandins produced as a 6 consequence of elevated COX-2 expression has been shown to promote tumorigenesis 7 (Watanabe et al., 2000; Sonoshita et al., 2001; Seno et al., 2002) by interacting with 8 specific prostaglandin receptors, which are also overexpressed in the same tumours.

9 We and others' have shown that PGE₂-EP receptor interaction can down regulate 10 the expression of tumour suppressor genes (Sales et al., 2004c), increase cellular growth, 11 migration and invasiveness (Sheng et al., 2001) and promote angiogenesis in in vitro 12 and in vivo model systems (Watanabe et al., 2000; Sonoshita et al., 2001; Seno et al., 2002; Buchanan et al., 2003; Fujino et al., 2003; Sales et al., 2004a). Similarly $PGF_{2\alpha}$ 13 14 can also enhance cell growth rate and induce the expression of inflammatory and 15 angiogenic genes, in Ishikawa cells stably expressing the FP receptor and endometrial 16 adenocarcinoma explants, via the FP receptor (Sales et al., 2004b; Jabbour et al., 2005; 17 Sales et al., 2005).

We have recently reported elevated expression of FP receptor in endometrial adenocarcinomas (Sales et al., 2004b; Sales et al., 2005). Since endometrial pathologies biosynthesize PGE₂ and PGF_{2 α} in the micromolar range (Lundstrom and Green, 1978; Smith et al., 1981; Rees et al., 1984; Adelantado et al., 1988) which can act locally at the site of production on prostaglandin receptors and since PGE₂ can bind to the FP receptor with an affinity that is only 10-30 fold less than PGF_{2 α} (Abramovitz et al.,

1 2000), we investigated the effect of PGE_2 and $PGF_{2\alpha}$ on regulation of COX-2 via the FP 2 receptor.

3 Using endometrial adenocarcinoma cells (Ishikawa cells) stably expressing the 4 FP receptor to the levels observed in endometrial adenocarcinomas (FPS cells), we 5 found that PGE₂ dose-dependently mobilized InsP hydrolysis in FPS cells in a similar manner to that observed for $PGF_{2\alpha}$ via the FP receptor, since the specific FP receptor 6 7 antagonist AL8810 abolished the PGE₂ and PGF_{2 α}-mediated increase in InsP 8 production. Although the PGE₂-induced mobilization of InsP via the FP receptor was 9 less than that observed for $PGF_{2\alpha}$, which we postulated was due to the reduced affinity of PGE2 for the FP receptor compared with the native ligand PGF2 α , these data 10 nevertheless demonstrate that elevated levels of $PGF_{2\alpha}$ as well PGE_2 as can activate FP 11 12 receptor signaling in tumors expressing elevated levels of FP receptor.

13 As FPS cells also express basal levels of EP2 and EP4 receptor (but not 14 detectable EP1 or EP3 receptor), we found that PGE_2 and to a much lesser extent $PGF_{2\alpha}$ 15 could also mobilize intracellular cAMP. This effect of PGE₂ on intracellular cAMP 16 accumulation could be inhibited with the selective EP2 or EP4 receptor antagonists 17 AH6809 and ONOAE2227 and abolished with the combination of EP2 and EP4 receptor 18 antagonists. Interestingly only the EP2 receptor antagonist, but not the EP4 receptor antagonist abolished the $PGF_{2\alpha}$ - mediated increase in cAMP. We found that neither the 19 PGE_2 nor $PGF_{2\alpha}$ effects on inositol phosphate hydrolysis and intracellular cAMP release 20 21 was mediated by an intracellular mechanism involving activation of the downstream

1 PKA, PKC or ERK1/2 pathways, as the chemical inhibitors of PKA, PKC and ERK1/2

2 failed to reduced the prostanoid mediated effects on InsP and cAMP accumulation.

3 The integrated response to GPCR coupling and second messenger activation 4 results in phosphorylation of numerous effector signaling pathways, including the 5 MAPK pathway (Naor et al., 2000), to regulate gene transcription. The MAPK pathway 6 is a key signaling mechanism that regulates many cellular functions such as growth, 7 differentiation and transformation (Lewis et al., 1998; Naor et al., 2000). We investigated the signaling pathways mediating the effect of PGE₂ or PGF_{2 α} on ERK1/2 8 in FPS cells. We found that PGE_2 and $PGF_{2\alpha}$ stimulation of FPS cells induces ERK1/29 10 phosphorylation via identical intracellular signaling pathways via the PLC-PKA-11 mediated activation of the EGFR since co-treatment of cells with the PLC, PKA or EGFR kinase inhibitors significantly inhibited the PGE₂ or PGF_{2 α} induced ERK1/2 12 13 phosphorylation. We previously reported that $PGF_{2\alpha}$ signaling to ERK1/2 in FPS cells is 14 mediated via the PKA and not PKC pathway (Sales et al., 2005). In the present study we 15 demonstrate that the PGE₂-mediated signaling to ERK1/2 in FPS cells is also PKA 16 dependent and PKC-independent, since the PKC inhibitor GF109203x failed to inhibit 17 either the PGE₂ or PGF_{2 α}-mediated signaling to ERK1/2. Moreover, we found that the 18 PGE₂-mediated effects on ERK1/2 are mediated largely in FPS cells via the FP receptor 19 as the FP receptor antagonist inhibited the PGE_2 -mediated ERK1/2 phosphorylation to a 20 greater extent than the EP2 or EP4 receptor antagonists. These data suggest that the 21 cAMP pathway activated by the endogenous EP2/EP4 receptors acts synergistically with 22 the InsP pathway to augment the signaling of PGE₂ to ERK1/2 via the PKA-EGFR 23 pathway.

1	We previously reported that $PGF_{2\alpha}$ could regulate COX-2 expression in an
2	autocrine/paracrine manner to establish a positive feedback system for regulating
3	endometrial tumorigenesis (Jabbour et al., 2005). In the present study we have shown
4	that PGE ₂ can regulate COX-2 promoter activity and mRNA expression in a similar
5	manner via the FP receptor as observed for $PGF_{2\alpha}$ via the PLC-PKA-EGFR-ERK1/2
6	signaling cascade. However as observed for the PGE2-mediated effects on second
7	messenger production and intracellular signaling reported herein, the PGE2-mediated
8	increase in COX-2 expression via the FP receptor is also less than that produced by the
9	native ligand $PGF_{2\alpha}$. We believe this difference is due to the lower binding affinity of
10	PGE_2 for the FP receptor compared with $PGF_{2\alpha}$ (Abramovitz et al., 2000). In addition,
11	we found that the PGE_2 activation of COX-2 promoter and mRNA expression was
12	significantly reduced by the EP2 and EP4 receptor antagonists. This effect was not
13	observed for $PGF_{2\alpha}$. Thus it would appear that unlike the $PGF_{2\alpha}$ -mediated activation of
14	COX-2 that occurs solely via the Gq activation of InsP, the PGE ₂ regulation of COX-2
15	in FPS cells is mediated by the synergistic effects of the cAMP and InsP second
16	messenger systems via the PKA-EGFR-ERK1/2 pathway.

17 We next investigated the transcription regulatory regions within the COX-2 18 promoter activated by PGE_2 and $PGF_{2\alpha}$ in FPS cells. The COX-2 promoter has binding 19 sites for a number of transcription factors including nuclear factor (NF)- $\kappa\beta$, 20 CCAAT/enhancer binding protein (C/EBP), AP-2 and cAMP response element (CRE) 21 (Lukiw et al., 1998). Transfection studies with the cis-acting DNA binding sequence of 22 the CRE or the full length C2.1 COX-2 promoter and a series of deletions containing 23 key transcription factor-binding sites showed that promoter activity was maintained with

1 a construct that had a CRE region only (RSA/HIN). Mutation of the CRE region of this 2 construct resulted in complete loss of COX-2 promoter activity in response to 3 administration of either PGE₂ or PGF_{2 α} indicating that the CRE is essential for 4 transcriptional activation of the COX-2 gene by prostaglandins. The regulation of the CRE by PGE₂ and PGF_{2 α} was further investigated by transient transfection studies using 5 6 a cDNA construct containing the cis-acting DNA binding sequence of the CRE fused to 7 a luciferase reporter system. These studies showed that CRE activation in FPS cells is mediated by PGE₂ and PGF_{2 α} via the same mechanisms regulating COX-2, namely by 8 9 activation of the PKA-EGFR-ERK1/2 pathways further confirming the importance of 10 the CRE in the regulation of COX-2 activity in FPS cells.

11 Because PGE₂ and PGF_{2 α} mobilize intracellular cAMP and can activate protein kinase A (PKA) and since the PKA inhibitor 4C3MQ inhibited both the PGE₂ and 12 $PGF_{2\alpha}$ -mediated signaling to ERK1/2 and COX-2 it is plausible that the mode of action 13 14 of prostanoid signaling on activation of the CRE was by phosphorylation of CRE 15 binding protein (CREB) at SER133, which can in turn bind the CRE and activate gene 16 transcription. In the present study, we did not observe any significant phosphorylation of CREB at SER133 in response to agonist treatment by either PGE₂ or PGF_{2 α} by Western 17 18 blot analysis (data not shown). Although activation of COX-2 by CREB binding to the 19 CRE has been shown by Bradbury et al (Bradbury et al., 2003), Subbaramaiah et al 20 (Subbaramaiah et al., 2002a; Subbaramaiah et al., 2002b) have shown that COX-2 21 transcriptional activation via the CRE binding site can be mediated by activator protein 22 (AP)-1. It is feasible that COX-2 transcriptional activation via the CRE in our study may

be regulated via the binding of an alternative transcription factor or transcription factor
 complex to CREB, such as AP1.

3 In conclusion, our data provide strong evidence that the elevated biosynthesis of PGE_2 and $PGF_{2\alpha}$ produced locally within endometrial adenocarcinomas can act in an 4 5 autocrine/paracrine manner to enhance the expression of COX-2 via the CRE by means 6 of their integrative actions on intracellular signaling pathways such as the ERK1/2 7 pathway. Moreover we believe that these data have implications for the use of prostaglandin synthase inhibitors targeted against PGF synthase as therapeutic 8 9 intervention strategies as suggested for PGE synthase (Murakami and Kudo, 2006; 10 Jachak 2007; Wang et al., 2006; Cheng et al., 2006). Our data highlight that in tumours expressing elevated levels of FP receptor, elevated biosynthesis of other prostanoids 11 such as PGE₂ can in the absence of the native ligand PGF_{2 α} activate tumorigenic genes 12 13 via the FP receptor. It is thus feasible that signaling pathways such as the EGFR or ERK 14 pathways, which integrate the signaling from second messenger systems to target genes, may offer a better therapeutic target to reverse the adverse effects of prostanoid 15 16 signaling, or indeed signaling in response to multiple prostanoids, in cancer.

17

18

1 Acknowledgements

- 2 The authors would like to thank Sheila Wright for technical assistance with the cloning
- 3 of the HIN and HINcrem constructs.
- 4

1 Figure Legends

2

3 Fig 1. (A) Total inositol phosphate (InsP) production was assessed in Ishikawa WT or FPS cells treated with increasing doses of PGE₂ or PGF_{2 α} for 1 hour at 37°C. (B) Total 4 5 InsP production in FPS cells treated with increasing doses of PGE_2 or $PGF_{2\alpha}$ in the 6 absence or presence of 50µM of the specific FP receptor antagonist AL8810 for 1 hour 7 at 37°C. (C) Total InsP production in FPS cells treated with 100nM PGE₂ or 100nM 8 $PGF_{2\alpha}$ in the absence/presence of the FP receptor antagonist AL8810 (50µM), EP2 9 receptor antagonist (AH6809; 10µM), EP4 receptor antagonist (ONOAE2227; 1µM) or 10 chemical inhibitors of phospholipase CB (U73122, 10µM), protein kinase A (4C3MQ, 11 1µM), protein kinase C (GF109203x, 10µM) or ERK1/2 kinase (PD98059, 50µM) for 1 12 hour at 37°C. Data are presented as mean \pm SEM. b is significantly different from a, c is 13 significantly different from a and b; P<0.05.

14

Fig. 2. (A) cAMP accumulation in FPS cells in response to treatment with 100nM PGE₂ or 100nM PGF_{2 α} for 0, 5 and 10 minutes. (B) cAMP accumulation in FPS cells in response to treatment with 100nM PGE₂ or 100nM PGF_{2 α} for 10 minutes in the presence/absence of the FP receptor antagonist AL8810 (50µM), EP2 receptor antagonist (AH6809; 10µM), EP4 receptor antagonist (ONOAE2227; 1µM) or chemical inhibitors of phospholipase Cß (U73122, 10µM), protein kinase A (4C3MQ, 1µM), protein kinase C (GF109203x, 10µM) or ERK1/2 kinase (PD98059, 50µM). Data are

1	presented as mean \pm SEM. b is significantly different from a and c is significantly
2	different from a and b; P<0.05.
3	
4	Fig 3. (A) ERK1/2 phosphorylation in FPS cells in response to treatment with 100nM
5	$PGE_2 \text{ or } 100nM \ PGF_{2\alpha} $ for 0, 2, 5, 10 and 20 minutes. ERK1/2 phosphorylation in FPS
6	cells in response to treatment with 100nM PGE ₂ (B) or 100nM PGF _{2α} (C) for 10
7	minutes in the presence/absence of the FP receptor antagonist AL8810 (50 μ M), EP2
8	receptor antagonist (AH6809; 10 μ M), EP4 receptor antagonist (ONOAE2227; 1 μ M) or
9	chemical inhibitors of phospholipase Cß (U73122, 10 μ M), protein kinase A (4C3MQ,
10	1µM), protein kinase C (GF109203x, 10µM), EGFR kinase (AG1478, 200nM) or
11	ERK1/2 kinase (PD98059, 50 μ M). Data are presented as mean ± SEM. b is significantly
12	different from a and c is significantly different from a and b; P<0.05.
13	
14	Fig 4. COX-2 luciferase activity (A) and mRNA expression (B) in FPS cells in response
15	to treatment with 100nM PGE2 or 100nM PGF2 α for 0, 2, 4, 6, 8 and 24 hours. Data are
16	presented as mean \pm SEM. b is significantly different from a, c is significantly different
17	from a and b; P<0.05.
18	
19	Fig 5. COX-2 luciferase activity (A, C) and mRNA expression (B, D) in FPS cells in
20	response to treatment with 100nM PGE ₂ (A and B) or 100nM PGF _{2α} (C and D) for 4
21	hours in the presence/absence of the FP receptor antagonist AL8810 (50 μ M), EP2

- 22 receptor antagonist (AH6809; 10 μ M), EP4 receptor antagonist (ONOAE2227; 1 μ M) or
- 23 chemical inhibitors of phospholipase Cß (U73122, 10µM), protein kinase A (4C3MQ,

1	1µM), protein kinase C (GF109203x, 10µM), EGFR kinase (AG1478, 200nM) or
2	ERK1/2 kinase (PD98059, 50 μ M). Data are presented as mean ± SEM. b is significantly
3	different from a and c is significantly different from a and b, d is significantly different
4	from a, b and c; P<0.05.
5	
6	Fig. 6. (A) COX-2 luciferase activity in FPS cells transiently transfected with the full
7	length COX-2 promoter C2.1 or series of 5'deletions (DRA, STY, ALU, RSA, HIN)
8	and HIN with a mutation in the cAMP response element (HINcrem; -59/-53). FPS cells
9	were treated with vehicle, 100nM PGE ₂ or 100nM PGF _{2α} for 4 hours. CRE Luciferase
10	activity in FPS cells transiently transfected with the cis-acting DNA binding sequence of
11	the cAMP response element (CRE). FPS cells were treated with 100nM PGE ₂ (B) or
12	100nM PGF _{2α} (C) for 4 hours in the presence/absence of the FP receptor antagonist
13	AL8810 (50µM), EP2 receptor antagonist (AH6809; 10µM), EP4 receptor antagonist
14	(ONOAE2227; 1µM) or chemical inhibitors of phospholipase Cß (U73122, 10µM),
15	protein kinase A (4C3MQ, 1µM), protein kinase C (GF109203x, 10µM), EGFR kinase
16	(AG1478, 200nM) or ERK1/2 kinase (PD98059, 50 μ M). Data are presented as mean \pm
17	SEM. b is significantly different from a and c is significantly different from a and b;
18	P<0.05.
19	

10

1 References

2	
3	Abramovitz, M., Adam, M., Boie, Y., Carriere, M., Denis, D., et al., 2000. The utilization
4	of recombinant prostanoid receptors to determine the affinities and selectivities of
5	prostaglandins and related analogs. Biochim Biophys Acta. 1483, 285-293.
6	Adelantado, J.M., Rees, M.C., Lopez Bernal, A. and Turnbull, A.C., 1988. Increased
7	uterine prostaglandin E receptors in menorrhagic women. Br J Obstet Gynaecol.
8	95, 162-165.
9	Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T., Saltiel, A.R., 1995. PD 098059 is a
10	specific inhibitor of the activation of mitogen-activated protein kinase kinase in
11	vitro and in vivo. J Biol Chem. 270, 27489-27494.
12	Bauer, A.K., Dwyer-Nield, L.D. and Malkinson, A.M., 2000. High cyclooxygenase 1
13	(COX-1) and cyclooxygenase 2 (COX-2) contents in mouse lung tumors.
14	Carcinogenesis. 21, 543-550.
15	Berg, K.A., Clarke, W.P., Sailstad, C., Saltzman, A. and Maayani, S., 1994. Signal
16	transduction differences between 5-hydroxytryptamine type 2A and type 2C
17	receptor systems. Mol Pharmacol. 46, 477-484.
18	Bleasdale, J.E., Thakur, N.R., Gremban, R.S., 1990, Selective inhibition of receptor-

- tion of receptorcoupled phospholipase C-dependent processes in human platelets and 19 polymorphonuclear neutrophils. J Pharmacol Exp Ther. 255, 756-768. 20
- Bradbury, D.A., Newton, R., Zhu, Y.M., El-Haroun, H., Corbett, L., et al., 2003. 21 Cyclooxygenase-2 induction by bradykinin in human pulmonary artery smooth 22 muscle cells is mediated by the cyclic AMP response element through a novel 23

1	autocrine loop involving endogenous prostaglandin E2, E-prostanoid 2 (EP2), and
2	EP4 receptors. J Biol Chem. 278, 49954-49964.
3	Buchanan, F.G., Wang, D., Bargiacchi, F. and DuBois, R.N., 2003. Prostaglandin E2
4	regulates cell migration via the intracellular activation of the epidermal growth
5	factor receptor. J Biol Chem. 278, 35451-35457.
6	Chandrasekharan, N.V., Dai, H., Roos, K.L., Evanson, N.K., Tomsik, J., et al., 2002.
7	COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other
8	analgesic/antipyretic drugs: Cloning, structure, and expression. Proc Natl Acad
9	Sci U S A. 99, 13926-13931.
10	Cheng, Y., Wang, M., Yu, Y., Lawson, J., Funk, C.D., et al., 2006. Cyclooxygenases,
11	microsomal prostaglandin E synthase-1, and cardiovascular function. J. Clin
12	Invest. 116, 1391-1399.
13	Dore, M., Cote, L.C., Mitchell, A. and Sirois, J., 1998. Expression of Prostaglandin G/H
14	Synthase Type 1, but not Type 2, in Human Ovarian Adenocarcinomas. J
15	Histochem Cytochem. 46, 77-84.
16	DuBois, R.N., Giardiello, F.M. and Smalley, W.E., 1996. Nonsteroidal anti-inflammatory
17	drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North
18	Am. 25, 773-791.
19	Eguchi, S., Numaguchi ,K., Iwasaki, H., Matsumoto T., et al., 1998. Calcium-dependent
20	epidermal growth factor receptor transactivation mediates the angiotensin II-
21	induced mitogen-activated protein kinase activation in vascular smooth muscle
22	cells. J Biol Chem 273, 8890-8896

1	Griffin, B.W., Klimko, P., Crider, J.Y., Sharif, N.A., 1999. AL-8810: a novel
2	prostaglandin F2 alpha analog with selective antagonist effects at the
3	prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther. 290, 1278-1284.
4	Fujino, H., Xu, W. and Regan, J.W., 2003. Prostaglandin E2 induced functional
5	expression of early growth response factor-1 by EP4, but not EP2, prostanoid
6	receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated
7	kinases. J Biol Chem. 278, 12151-12156.
8	Hofer, G., Bieglmayer, C., Kopp, B. and Janisch, H., 1993. Measurement of eicosanoids
9	in menstrual fluid by the combined use of high pressure chromatography and
10	radioimmunoassay. Prostaglandins. 45, 413-426.
11	Hwang, D., Scollard, D., Byrne, J. and Levine, E., 1998. Expression of cyclooxygenase-1
12	and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst. 90, 455-460.
13	Jabbour, H.N., Milne, S.A., Williams, A.R.W., Anderson, R.A. and Boddy, S.C., 2001.
14	Expression of COX-2 and PGE synthase and synthesis of PGE2 in endometrial
15	adenocarcinoma: a possible autocrine/paracrine regulation of neoplastic cell
16	function via EP2/EP4 receptors. Br J Cancer. 85, 1023-1031.
17	Jabbour, H.N. and Sales, K.J., 2004. Prostaglandin receptor signaling and function in
18	human endometrial pathology. Trends Endocrinol Metab. 15, 398-404.
19	Jabbour, H.N., Sales, K.J., Boddy, S.C., Anderson, R.A. and Williams, A.R., 2005. A
20	positive feedback loop that regulates cyclooxygenase-2 expression and
21	prostaglandin F2alpha synthesis via the F-series-prostanoid receptor and
22	extracellular signal-regulated kinase 1/2 signaling pathway. Endocrinology. 146,
23	4657-4664.

1	Jachak, S.M., 2007. PGE synthase inhibitors as an alternative to COX-2 inhibitors. Curr
2	Opin Investig Drugs. 8, 411-415.
3	Kirschenbaum, A., Klausner, A.P., Lee, R., Unger, P., Yao, S., et al., 2000. Expression of
4	cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology. 56, 671-
5	676.
6	Lewis, T.S., Shapiro, P.S. and Ahn, N.G., 1998. Signal transduction through MAP kinase
7	cascades. Adv Cancer Res. 74, 49-139.
8	Lu, Z.X., Quasi, N.H., Deady, L.W., Polya, G.M., 1996. Selective inhibition of cyclic
9	AMP-dependent protein kinase by isoquinoline derivatives. Biol Chem Hoppe
10	Seyler. 377, 373-84.
11	Lukiw, W.J., Pelaez, R.P., Martinez, J. and Bazan, N.G., 1998. Budesonide epimer R or
12	dexamethasone selectively inhibit platelet-activating factor-induced or interleukin
13	1beta-induced DNA binding activity of cis-acting transcription factors and
14	cyclooxygenase-2 gene expression in human epidermal keratinocytes. Proc Natl
15	Acad Sci U S A. 95, 3914-3999.
16	Lumsden, M.A., Kelly, R.W. and Baird, D.T., 1983. Primary dysmenorrhoea: the
17	importance of both prostaglandins E2 and F2 alpha. Br J Obstet Gynaecol. 90,
18	1135-1140.
19	Lundstrom, V. and Green, K., 1978. Endogenous levels of prostaglandin F2alpha and its
20	main metabolites in plasma and endometrium of normal and dysmenorrheic
21	women. Am J Obstet Gynecol. 130, 640-646.

1	Marnett, L.J., Rowlinson, S.W., Goodwin, D.C., Kalgutkar, A.S. and Lanzo, C.A., 1999.
2	Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis
3	and inhibition. J Biol Chem. 274, 22903-22906.
4	Murakami, M. and Kudo, I., 2006. Prostaglandin E synthase: a novel drug target for
5	inflammation and cancer. Curr Pharm Des. 12, 943-954.
6	Mutoh, M., Watanabe, K, Kitamura, T., Shoji, Y., Takahasi., M., et al., 2002.
7	Involvement of prostaglandin E receptor subtype EP4 in colon carcinogenesis.
8	Cancer Res. 62, 28-32.
9	Naor, Z., Benard, O. and Seger, R., 2000. Activation of MAPK cascades by G-protein-
10	coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends
11	Endocrinol Metab. 11, 91-99.
12	Narumiya, S., Sugimoto, Y. and Ushikubi, F., 1999. Prostanoid receptors: structures,
13	properties, and functions. Physiol Rev. 79, 1193-1226.
14	Rees, M.C., Anderson, A.B., Demers, L.M. and Turnbull, A.C., 1984. Prostaglandins in
15	menstrual fluid in menorrhagia and dysmenorrhoea. Br J Obstet Gynaecol. 91,
16	673-680.
17	Regan, J.W., 2003. EP2 and EP4 prostanoid receptor signaling. Life Sci. 74, 143-153.
18	Sales, K.J., Katz, A.A., Davis, M., Hinz, S., Soeters, R.P., et al., 2001. Cyclooxygenase-2
19	expression and prostaglandin E2 synthesis are up- regulated in carcinomas of the
20	cervix: a possible autocrine/paracrine regulation of neoplastic cell function via
21	EP2/EP4 receptors. J Clin Endocrinol Metab. 86, 2243-2249.
22	Sales, K.J., Katz, A.A., Howard, B., Soeters, R.P., Millar, R.P., et al., 2002.
23	Cyclooxygenase-1 is up-regulated in cervical carcinomas: autocrine/paracrine

1	regulation of cyclooxygenase-2, prostaglandin e receptors, and angiogenic factors
2	by cyclooxygenase-1. Cancer Res. 62, 424-432.
3	Sales, K.J. and Jabbour, H.N., 2003. Cyclooxygenase enzymes and prostaglandins in
4	pathology of the endometrium. Reproduction. 126, 559-567.
5	Sales, K.J., Maudsley, S. and Jabbour, H.N., 2004a. Elevated prostaglandin EP2 receptor
6	in endometrial adenocarcinoma cells promotes vascular endothelial growth factor
7	expression via cyclic 3',5'-adenosine monophosphate-mediated transactivation of
8	the epidermal growth factor receptor and extracellular signal-regulated kinase $1/2$
9	signaling pathways. Mol Endocrinol. 18, 1533-1545.
10	Sales, K.J., Milne, S.A., Williams, A.R., Anderson, R.A. and Jabbour, H.N., 2004b.
11	Expression, localization, and signaling of prostaglandin F2 alpha receptor in
12	human endometrial adenocarcinoma: regulation of proliferation by activation of
13	the epidermal growth factor receptor and mitogen-activated protein kinase
14	signaling pathways. J Clin Endocrinol Metab. 89, 986-993.
15	Sales, K.J., Battersby, S., Williams, A.R., Anderson, R.A. and Jabbour, H.N., 2004c.
16	Prostaglandin E2 mediates phosphorylation and down-regulation of the tuberous
17	sclerosis-2 tumor suppressor (tuberin) in human endometrial adenocarcinoma
18	cells via the Akt signaling pathway. J Clin Endocrinol Metab. 89, 6112-6118.
19	Sales, K.J., List, T., Boddy, S.C., Williams, A.R., Anderson, R.A., et al., 2005. A novel
20	angiogenic role for prostaglandin F2alpha-FP receptor interaction in human
21	endometrial adenocarcinomas. Cancer Res. 65, 7707-7716.

1	Sales, K.J., Boddy, S.C., Williams, A.R., Anderson, R.A. and Jabbour, H.N., 2007. F-
2	Prostanoid receptor regulation of Fibroblast Growth Factor 2 signaling in
3	endometrial adenocarcinoma cells. Endocrinology.148, 3635-3644
4	Seno, H., Oshima, M., Ishikawa, T., Oshima, H., Takaku, K., et al., 2002.
5	Cyclooxygenase-2 and Prostaglandin E2 receptor EP2-dependent Angiogenesis in
6	APC delta 716 Mouse intestinal polyps. Cancer Res. 62, 506-511.
7	Sheng, H., Shao, J., Washington, M.K. and DuBois, R.N., 2001. Prostaglandin E2
8	increases growth and motility of colorectal carcinoma cells. J Biol Chem. 276,
9	18075-18081.
10	Smith, S.K., Abel, M.H., Kelly, R.W. and Baird, D.T., 1981. Prostaglandin synthesis in
11	the endometrium of women with ovular dysfunctional uterine bleeding. Br J
12	Obstet Gynaecol. 88, 434-442.
13	Smith, W.L., DeWitt, D.L. and Garavito, R.M., 2000. CYCLOOXYGENASES:
14	structural, cellular, and molecular biology. Annu Rev Biochem. 69, 145-182.
15	Smith, O.P., Battersby, S., Sales, K.J., Critchley, H.O. and Jabbour, H.N., 2006.
16	Prostacyclin receptor up-regulates the expression of angiogenic genes in human
17	endometrium via cross talk with epidermal growth factor Receptor and the
18	extracellular signaling receptor kinase 1/2 pathway. Endocrinology. 147, 1697-
19	1705.
20	Sonoshita, M., Takaku, K., Sasaki, N., Sugimoto, Y., Ushikubi, F., et al., 2001.
21	Acceleration of intestinal polyposis through prostaglandin receptor EP2 in
 22	Apc(Delta 716) knockout mice Nat Med 7 1048-1051

1	Subbaramaiah, K., Cole, P.A. and Dannenberg, A.J., 2002a. Retinoids and carnosol		
2	suppress cyclooxygenase-2 transcription by CREB-binding protein/p300-		
3	dependent and -independent mechanisms. Cancer Res. 62, 2522-2530.		
4	Subbaramaiah, K., Norton, L., Gerald, W. and Dannenberg, A.J., 2002b.		
5	Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer:		
6	evidence for involvement of AP-1 and PEA3. J Biol Chem. 277, 18649-18657.		
7	Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., et al., 1993. Two		
8	isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical		
9	ligand binding properties and different coupling properties with Gi proteins. J		
10	Biol Chem. 268, 2712-2718.		
11	Tong, B.J., Tan, J., Tajeda, L., Das, S.K., Chapman, J.A., et al., 2000. Heightened		
12	expression of Cyclooxygenase-2 and Peroxisome Proliferator-Activated Receptor-		
13	{delta} in Human Endometrial Adenocarcinoma. Neoplasia. 2, 483-490.		
14	Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand-Perret, T. 1991. The		
15	bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein		
16	kinase C. J.Biol.Chem. 266, 15771-15781.		
17	Vane, J.R., Bakhle, Y.S. and Botting, R.M., 1998. Cyclooxygenases 1 and 2. Annu Rev		
18	Pharmacol Toxicol. 38, 97-120.		
19	Vane, J.R. and Botting, R.M., 1998. Mechanism of action of antiinflammatory drugs. In		
20	J Tissue React. 20, 3-15.		
21	Wang, M., Zujas, A.M., Hui, Y., Ricciotti, E., Pure, E., et al., 2006. Deletion of		
22	microsomal prostaglandin E synthase-1 augments prostacyclin and retards		
23	atherogenesis. Proc Natl Acad Sci U S A. 103, 14507-14512.		

1	Watanabe, T., Nakao, A., Emerling, D., Hashimoto, Y., Tsukamoto, K., et al., 1994.		
2	Prostaglandin F2 alpha enhances tyrosine phosphorylation and DNA synthesis		
3	through phospholipase C-coupled receptor via Ca(2+)-dependent intracellular		
4	pathway in NIH-3T3 cells. J Biol Chem. 269, 17619-17625.		
5	Watanabe, K., Kawamori, T., Nakatsugi, S., Ohta, T., Ohuchida, S., et al., 2000		
6	Inhibitory effect of a prostaglandin E receptor subtype EP1 selective antagonist,		
7	ONO-8713, on development of azoxymethane-induced aberrant crypt foci ir		
8	mice. Cancer Lett. 156, 57-61.		
9	Woodward, D.F., Pepper, D.J., Burkey, T.H., Regan, J.W., 1995. 6-isopropoxy-9-		
10	oxoxanthene-2-carboxylic acid (AH 6809), a human EP2 receptor antagonist		
11	Biochem Pharmacol. 50, 1731-1733.		
12			
13			
14			
15			
16			
17			
18			
19			
20			

Compound	Target	Reference
AL8810	FP receptor antagonist	Griffen et al., 1999
AH6809	EP2 receptor antagonist	Woodward et al., 1995
ONOAE2227	EP4 receptor antagonist	Mutoh et al., 2002
U73122	PLC beta inhibitor	Bleasdale et al., 1990
4C3MQ	Protein kinase A inhibitor	Lu et al., 1996
GF109203X	Protein kinase C inhibitor	Toullec et al., 1991
AG1478	Epidermal growth factor receptor tyrosine kinase inhibitor	Eguchi et al., 1998
PD98059	Extracellular signal- regulated kinase kinase (MEK) inhibitor	Alessi et al., 1995

Table 1: List of reagents summarising the targets of each compound.

Figure1

A CC R D

0 hours

2 hours

4 hours

6 hours

8 hours

24 hours

Figure4

Figure5

ACCEPTED MANUSCRIPT

Ń

Figure6

