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Abstract:  
In the retina, peptidergic signalling participates in multiple circuits of visual information processing. 

The neuropeptide somatostatin (SRIF) is localised to amacrine cells and, in some instances, in a 

subset of ganglion cells. The variegated expression patterns of SRIF receptors (sst1-sst5) and the 

variety of signalling mechanisms activated by retinal SRIF suggest that this peptide may exert 

multiple actions on retinal neurons and on retinal physiology, although our current understanding 

reflects a rather complicated picture. SRIF, mostly through sst2, may act as a positive factor in the 

retina by regulating retinal homeostasis and protecting neurons against damage. In this respect, 

SRIF analogues seem to constitute a promising therapeutic arsenal to cure different retinal diseases, 

as for instance ischemic and diabetic retinopathies. However, further investigations are needed not 

only to fully understand the functional role of the SRIF system in the retina but also to exploit new 

chemical space for drug-like molecules. 
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1. Retina and neuropeptides 

The defined input of the mammalian retina, its discrete output, accessibility, laminar organisation, 

and small number of principal cell types have promoted an understanding of retinal circuitry and 

structure-functional relationship. Beside its use for investigations on visual information processing, 

the mammalian retina has been extensively used as an experimental model of the central nervous 

system. Indeed, it is part of the central nervous system and it is separated at the same time, allowing 

easy experimental approaches. In addition, the mammalian retina displays the complexity typical of 

the brain while having an ordered, layered structure that is conserved throughout its extension (Fig 

1). The retina is composed of five principal neuronal cell types, including photoreceptors (the light 

sensitive cells in the retina), bipolar, horizontal, amacrine, and ganglion cells. A sixth type is that of 

interplexiform cells, that may be considered an amacrine cell variant. The basic circuitry within the 

retina directs the flow of visual information from photoreceptors, through bipolar cells, to ganglion 

cells, which are the only output neurons and with their axons constitute the retinofugal projections 

to the brain. Two horizontal pathways modulate this flow: one provided by horizontal cells in the 

outer retina, the other formed by amacrine cells in the inner retina. Horizontal cells are strongly 

electrically coupled and integrate light signals over a large retinal area. They feedback onto 

photoreceptors, and contact bipolar cells. Thus, inputs from a large surround region of the retina 

influence photoreceptors and bipolar responses, providing the bipolar cell with a centre-surround 

organisation.  

The most heterogeneous retinal cell type is that of amacrine cells, which can be divided into 

numerous populations on the basis of their neurochemical phenotypes. In this regard, a wide variety 

of neuroactive substances are expressed in the mammalian retina. Over the last three decades, 

several neuropeptides have been investigated and some knowledge is now available of their 

potential physiological relevance (Bagnoli et al., 2003). In particular, neuropeptides are principally 

expressed by populations of sparsely distributed, mostly GABAergic amacrine cells and by some 

ganglion cells. In contrast, neuropeptide receptors are expressed by variegated retinal cell 

populations, suggesting that peptidergic signalling participates in multiple circuits of visual 

information processing. Among neuropeptides, somatostatin, or somatotropin release inhibiting 

factor (SRIF), has been widely investigated in the retina. SRIF is produced from a single gene in 

two bioactive products: SRIF-14 and SRIF-28 (Olias et al., 2004). SRIF produces its effects by 

activating five heptahelical transmembrane G-protein coupled receptors, which have been cloned 

and named sst1 to sst5 in accordance with IUPHAR recommendations (Hoyer et al., 1995). Here, we 

provide a review of the latest advances on the role of SRIF and its receptors in the mammalian 

retina. 
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2. The somatostatinergic system in the retina 

The expression and the localisation of SRIF and of its receptors (both at mRNA and at protein 

level) in mammalian retinas has been reviewed in recent years (Casini et al., 2005; Thermos, 2003). 

There is a general agreement that such a distribution reflects the pleiotropic functions of retinal 

SRIF as a result of the multiple signalling actions of its receptors. 

 

2.1. Expression of somatostatin 

In general, SRIF immunoreactivity is localised to sparsely distributed, wide-field amacrine and/or 

displaced amacrine cells and, in some instances, in a subset of ganglion cells. In particular, in the 

mouse (Cristiani et al., 2002), rat (Larsen et al., 1990; Sagar et al., 1985), guinea pig (Spira et al., 

1984; Tornqvist et al., 1982) and human retina (Tornqvist and Ehinger, 1988), SRIF-containing 

cells are detected in both the inner nuclear layer and the ganglion cell layer. In the mouse retina, the 

population of SRIF-containing amacrine cells is sparsely distributed to all retinal regions, while the 

population of displaced amacrine cells is confined to the ventral retina (Cristiani et al., 2002). In the 

rabbit, cat and primate retina, most SRIF immunoreactive cells are displaced amacrine cells that are 

predominantly distributed to the ventral retina (Engelmann and Peichl, 1996; Rickman et al., 1996; 

White et al., 1990; Marshak, 1989; Mitrofanis et al., 1989; Sagar and Marshall, 1988; Sagar, 1987). 

In spite of the very sparse distribution of SRIF somata, SRIF processes extensively arborise in the 

inner plexiform layer of all retinal regions. A few ganglion cells displaying SRIF immunoreactivity 

have been reported in the retina of the new world monkey Tupaia belangeri (Engelmann and Peichl, 

1996) and of the cat, where these SRIF-immunoreactive ganglion cells have been identified as a 

small subset of OFF-center alpha ganglion cells, mostly localised to the inferior retina (White and 

Chalupa, 1991). Finally, a transient population of SRIF-containing ganglion cells has been 

discovered in the rat retina during postnatal development (Xiang et al., 2001; Fontanesi et al., 

1997). 

 

2.2. Expression of somatostatin receptors 

Immunohistochemical data show that SRIF receptors are expressed by a variety of retinal cell 

populations. In rat, rabbit and mouse retinas, sst1 is predominantly expressed by SRIF-containing 

amacrine cells (Dal Monte et al., 2003b; Cristiani et al., 2000; Helboe and Moller, 1999). In the 

rabbit retina, it is also found on all the dopaminergic amacrine cells (Cristiani et al., 2000). Of the 

two sst2 isoforms, sst2A has been localised in rat, rabbit and mouse retinas, where it displays slightly 

different patterns (Cristiani et al., 2002; Petrucci et al., 2001; Vasilaki et al., 2001; Fontanesi et al., 
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2000; Helboe and Moller, 1999; Johnson et al., 1999; Johnson et al., 1998). In the rat retina, sst2A 

has been localised to amacrine cells, including tyrosine hydroxylase-containing amacrine cells, to 

rod and cone bipolar cells and to horizontal cells (Johnson et al., 1999). In rabbits, these receptors 

are expressed mainly by rod bipolar and by sparsely distributed amacrine cells that have been 

reported to lack (Johnson et al., 1998) or to partially express (Fontanesi et al., 2000) tyrosine 

hydroxylase immunoreactivity. In the mouse retina, sst2A immunoreactivity has been reported in rod 

bipolar cells, horizontal cells, and in amacrine cells (Fig 2), including glycinergic amacrine cells 

and the population of tyrosine hydroxylase-containing, dopaminergic amacrine cells (Cristiani et al., 

2002). The sst2B isoform in the rat retina is predominantly found on the membrane of 

photoreceptors, indicating SRIF actions in the outer retina (Vasilaki et al., 2001). In the human 

retina, both sst1 and sst2A have been immunohistochemically localised throughout all retinal layers 

(Klisovic et al., 2001; van Hagen et al., 2000) and in endothelial cells of retinal blood vessels 

(Klisovic et al., 2001) of the human retina. Regarding sst4, it has been identified with 

immunohistochemistry in sparse ganglion cells of the mouse retina (Cristiani et al., 2002). Finally, 

sst5 has been recently reported in cholinergic, dopaminergic and SRIF-containing amacrine cells 

and in putative ganglion cells of the rat retina (Ke and Zhong, (2007). These data appear to be in 

contrast with a previous work reporting lack of sst5 immnuoreactivity in the rat retina (Vasilaki et 

al., 2002). Data concerning the retinal localization of sst3 are not available, however its mRNA has 

been detected in rat (Mori et al., 1997), mouse (Cristiani et al., 2002), and human (Klisovic et al., 

2001; van Hagen et al., 2000) retinas. 

Profound alterations of the levels of SRIF expression as well as of that of specific ssts have been 

detected in retinas of mice in which sst1 or sst2 genes are genetically deleted (Casini et al., 2004; 

Dal Monte et al., 2003b). In particular, although changes in the expression of SRIF mRNA have not 

been reported in these knock-out (KO) retinas, sst1 deletion causes an increased content of SRIF 

peptide, whereas SRIF content decreases after sst2 loss. In addition, sst1 and sst2 have been found to 

compensate for each other. Indeed, as a consequence of sst1 deletion, sst2 becomes overexpressed, 

whereas in sst2 KO retinas, sst1 expression is drastically increased. The fact that SRIF binding sites 

in sst1 KO retinas have a density similar to that of wild-type (WT) retinas suggests that the relative 

proportion of SRIF receptors does not change as a consequence of sst1 deletion and indicates that 

the loss of sst1 can be totally compensated by an increase in sst2. Compensatory mechanisms at the 

level of SRIF receptor density also occur in the absence of SRIF since an upregulation of SRIF 

binding sites has been recently reported in SRIF KO mouse retinas (Mastrodimou et al., 2006b). In 

addition, in these retinas, all SRIF receptor mRNAs, with the only exception of sst4 mRNA, are 

expressed at significantly higher levels than in WT retinas (Casini et al., 2005). 
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2.3. Signalling mechanisms  

It is generally accepted that the pleiotropic cellular functions of SRIF are a result on the one hand of 

the widespread distribution of the SRIF system, and on the other of the variety of signalling 

mechanisms activated by SRIF receptors (Cervia and Bagnoli, 2007). In particular, as summarised 

in Table 1, SRIF receptor activation leads to the modulation of different signalling elements, 

including adenylyl cyclase, guanylyl cyclase, phospholipase C, phospholipase A2, nitric oxide, K+ 

and Ca2+ channels, Na+/H+ exchanger, phosphatases, mitogen-activated kinases and 

phosphatidylinositol 3 kinases (Cervia and Bagnoli, 2007; Cervia et al., 2005b). These data have 

been collected mainly over the last decade using in vitro systems of recombinant and/or native 

models. In addition, different SRIF analogues may induce distinct conformations of the 

receptor/ligand complex, preferentially coupled to receptor signalling (Tulipano and Schulz, 2007). 

For these reasons, our current understanding of receptor subtype-selective signalling reflects a 

rather complicated picture and parallels between these data and the real in vivo conditions are not so 

obvious.  

 

2.3.1. Signalling mechanisms in the retina 

At present, little is known about SRIF signalling in the mammalian retina. For instance, SRIF 

inhibits adenylyl cyclase activity in the sheep retina (Colas et al., 1992). In contrast, it increases 

adenylyl cyclase activation in amacrine cells of the rat retina (Feigenspan and Bormann, 1994). 

Where the specific receptor subtype involved has been studied, it has been found that sst2 inhibits 

adenylyl cyclase activity in the mouse, probably through Goα-proteins (Pavan et al., 2004). sst2 

coupling to Goα-proteins has been also demonstrated in the rabbit retina (Vasilaki et al., 2003). 

Interestingly, in the mouse retina, sst1 inhibits adenylyl cyclase activity only after elimination of the 

sst2 response, suggesting that there may be interactions between sst1 and sst2 when they signal via 

adenylyl cyclase (Pavan et al., 2004). In addition, although NADPH diaphorase staining does not 

colocalise with sst1, sst2 or sst4 in the mouse retina (Mastrodimou et al., 2006b), the colocalisation 

of sst2 with NADPH diaphorase in rod bipolar cells and photoreceptor cells of both rat and rabbit 

retinas has been reported (Vasilaki et al., 2001), suggesting a role of SRIF in the regulation of nitric 

oxide. Consistently, sst2 activates nitric oxide synthase in human retinal pigment epithelial cells 

(Vasilaki et al., 2004) and in the rat retina (Vasilaki et al., 2002). Once generated, nitric oxide does 

not exert its effect via specific receptors but it diffuses across synaptic membranes to activate 

soluble guanylate cyclase, thus increasing intracellular levels of cGMP. Accordingly, in the rat 
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retina, sst2 has been recently shown to mediate SRIF-induced increase of cGMP levels 

(Mastrodimou et al., 2006a). Regarding the control of K+ and Ca2+ conductances, SRIF, acting at 

sst2, induces a prominent inhibition of large-conductance, Ca2+- and voltage-dependent K+ channels 

as well as an inhibition of K+-induced increase of the intracellular Ca2+ concentration ([Ca2+]i) in 

rod bipolar cells isolated from the rabbit retina (Petrucci et al., 2001). sst2 negative coupling to K+ 

conductances has been also demonstrated also in rod bipolar cells isolated from the mouse retina 

(Bigiani et al., 2004). In the same experimental model, sst2 inhibits the K+-induced increase of 

[Ca2+]i both in the cell body and in the axonal terminals (Casini et al., 2005). Similarly, in the 

axonal terminals of rod bipolar cells isolated from the rat retina, SRIF strongly inhibits a K+-

induced increase of [Ca2+]i via L-type Ca2+ channels (Johnson et al., 2001). This effect of SRIF is 

likely to be mediated by sst2 receptors.  

 

2.4. Functional role  

The first observations of SRIF effects on mammalian retinal physiology reported an influence of the 

peptide on the amplitude of the ERG b-wave in the rabbit retina in vivo (Cunningham and Neal, 

1983), while some years later Zalutsky and Miller (1990), working with rabbit eyecup preparations, 

found that application of low concentrations of SRIF affects the amplitude of the a-, b- and c-waves. 

In their seminal work, Zalutsky and Miller also investigated the effects of SRIF application on the 

activity of different retinal cell types, demonstrating that SRIF actions are characterised by slow 

onset and long latency and providing the first account of the complexity of SRIF functional actions 

in the retina. Briefly, SRIF was observed to directly affect bipolar, amacrine and ganglion cells and 

to influence the horizontal cell network. In particular, all ganglion cell types are excited by SRIF, 

which also affects the centre-surround balance of their receptive fields.  

The localisation of some of the SRIF receptors at locations that are distant from the sites of SRIF 

release in the inner plexiform layer suggests that this peptide may act in a paracrine fashion. In 

particular, SRIF functions are likely to result from the actions exerted by SRIF onto other 

neurotransmitter systems in the retina, including the release of SRIF itself. These effects are 

consistent with the documented SRIF control of K+/Ca2+ conductances as well as the nitric 

oxide/cGMP pathway, which has been recently coupled to neurotransmission in the inner retina 

(Ding and Weinberg, 2007). In addition, at the level of outer retina, SRIF coupling to Ca2+- 

dependent mechanisms provides important regulation of both rod and cone photoreceptor function, 

including transduction and synaptic transfer of light stimuli. In particular, in the outer segment, Ca2+ 

controls photoreceptor light adaptation, while in the inner segment and synaptic terminal, Ca2+ is 
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involved in the regulation of cellular metabolism, glutamate release, cytoskeletal dynamics, gene 

expression and cell death (Krizaj and Copenhagen, 2002).  

 
2.4.1. Somatostatin control of its own release 

SRIF may regulate its own release through sst1 in different systems, including the retina (Thermos 

et al., 2006). In particular, the observation that sst1 is expressed by all SRIF-containing amacrine 

cells strongly suggests that sst1 acts as an autoreceptor to limit SRIF release. Indeed, functional 

studies in rat retinal explants firmly established that sst1 activation decreases SRIF release (Thermos 

et al., 2006; Mastrodimou and Thermos, 2004). Additional, although indirect, evidence of the 

autoreceptor function of sst1 derives from studies in sst1 or sst2 KO mouse retinas. As mentioned 

above, sst1 KO retinas are characterised by increased levels of SRIF peptide, while sst2 KO retinas 

display a significant decrease of retinal SRIF. These observations suggest that the amount of retinal 

SRIF is likely to depend on the expression levels of sst1 (Casini et al., 2004): in the absence of sst1 

(as in sst1 KO retinas) inhibitory mechanisms limiting SRIF levels in the retina would be removed, 

while in the presence of sst1 over-expression (as in sst2 KO retinas) such mechanisms would be 

strengthened. Finally, a recent investigation suggests that sst5 may also act as an autoreceptor on 

amacrine cells of the rat retina (Ke and Zhong, 2007), although this hypothesis still needs functional 

demonstration.  

 

2.4.2. Somatostatin control of dopamine release 

Based on the expression of SRIF receptors by tyrosine hydroxylase-containing, dopaminergic 

amacrine cells, SRIF control of dopamine release has been postulated in mouse, rat and rabbit 

retinas, although there are differences in the individual SRIF receptors that may mediate this 

control. The direct demonstration of an influence of SRIF on retinal dopamine release has been 

recently provided by Thermos and colleagues (Kouvidi et al., 2006), who showed that activation of 

either sst1 or sst2 causes an increase of dopamine release in rat retinal explants, while activation of 

sst3 has no effect. Since retinal levels of dopamine are known to be positively correlated with light 

intensity (Boelen et al., 1998; Djamgoz and Wagner, 1992), this SRIF control of dopamine release 

is likely to have importance for the regulation of light adaptation. 

 

2.4.3. Somatostatin control of glutamate release 

Glutamate is the major excitatory neurotransmitter in the mammalian retina, and it is implicated in 

the neurotransmission along the vertical visual pathway from photoreceptors to bipolar cells to 

ganglion cells. A common trait of the somatostatinergic system among different mammalian retinas 
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is the expression of sst2A in rod bipolar cells, which represent a major source of glutamate in the 

retina. This observation indicates that an important, conserved functional role of SRIF in the retina 

is the regulation of glutamate release through an action at sst2. Consistently, sst2 activation has been 

shown to inhibit K+-induced glutamate release in mouse retinal explants (Dal Monte et al., 2003a). 

In addition, the SRIF-induced inhibition of glutamate release is significantly stronger when sst2 is 

over-expressed, as in sst1 KO retinas (Bigiani et al., 2004). A further indication that SRIF may limit 

glutamate release acting at sst2 comes from recent studies where glutamate release was induced by 

ischemic treatment in a mouse retina preparation in vitro: in these conditions, glutamate release was 

significantly reduced in sst1 KO retinas in comparison to WT retinas (Catalani et al., 2007). 

Together, these data concur to the notion that the SRIF system in the retina is an important regulator 

of the concentration of released glutamate in the extracellular space. This function is likely to 

represent an important contribution to the regulation of the glutamatergic transmission along the 

vertical retinal visual pathway. In addition, by limiting the amount of glutamate available to 

glutamate receptors, SRIF may also exert an important neuroprotective function against glutamate 

neurotoxicity that characterises many retinal diseases (see point 3). 

 

2.4.4. Somatostatin effects on other neurotransmitters 

The localisation of SRIF receptors to different types of amacrine cells in the inner nuclear layer, 

including glycine containing amacrine cells (Cristiani et al., 2002), some cells likely belonging to 

subpopulations of GABAergic amacrine cells (Ke and Zhong, 2007; Cristiani et al., 2002), or to 

horizontal cells, which are considered to be GABAergic (Vardi and Sterling, 1994), suggests that 

SRIF may participate to the regulation of the retinal levels of these important inhibitory 

transmitters. Although functional evidence for a SRIF control of glycine release is lacking, SRIF 

has been suggested to enhance GABAergic transmission through phosphorylation of GABAA 

receptors in amacrine cells of the rat retina (Feigenspan and Bormann, 1994). This possibility is 

intriguing in view of the fine control that GABAergic amacrine cells exert on transmitter release 

from rod bipolar cell terminals through GABAC receptors (Vaquero and de la Villa, 1999). If these 

GABAergic amacrine cells respond to a regulation by SRIF, this peptide would be able to control 

glutamate release by the rod bipolar cells through two distinct mechanisms: a direct action onto the 

sst2A expressing rod bipolar cells, and an indirect action by regulating GABA release from amacrine 

cells. 

The fact that sst5 may be expressed by cholinergic amacrine and displaced amacrine cells (Ke and 

Zhong, 2007), suggests that SRIF may be involved in the control of acetylcholine release. However, 
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earlier investigations showed that SRIF does not change the level of light-evoked release of 

acetylcholine from rabbit retina (Cunningham and Neal, 1983). 

 

3. The somatostatinergic system in retinal diseases 

The wide anatomical distribution and multiple actions of SRIF and its receptors have stimulated 

intense clinical studies, and the SRIF system is currently a therapeutic target for different 

pathological conditions (Cervia and Bagnoli, 2007; Panteris and Karamanolis, 2005; Weckbecker et 

al., 2003). SRIF analogues are either peptidic or non-peptidic compounds that equally bind to the 

majority of SRIF receptors (Armani et al., 2007; Ludvigsen et al., 2007; Nolan et al., 2007; Zatelli 

et al., 2007; Batista et al., 2006; Cervia et al., 2005a; van der Hoek et al., 2005; van der Hoek et al., 

2004; Lewis et al., 2003; Reubi et al., 2002), or are selective for a specific SRIF receptor subtype or 

class (Cervia et al., 2005b; Olias et al., 2004; Weckbecker et al., 2003). In addition, the emergence 

of novel multispecific SRIF analogues (compounds targeting different cellular receptors) and 

conjugates (synthesised by chemically linking SRIF analogues with other agents) with improved 

receptor specificity may produce a new generation of potential drugs (Dasgupta, 2004). On the basis 

of laboratory findings, the possible clinical use of SRIF analogues in ophthalmology has been 

suggested (Casini et al., 2005; Missotten et al., 2005). However, difficulties with the route of 

administration, dosage, and adverse effects may compromise the translation to the clinics. 

 

3.1. Retinal ischemia 

Ischemia deprives a tissue of three requirements: oxygen, metabolic substrates, and removal of 

waste products. The loss of these requirements will initially lower homeostatic responses and with 

time will induce injury to the tissue due to cell loss by apoptosis (Osborne et al., 2004). Ischemia 

can be considered as a sort of final common pathway in retinal diseases. It is a primary cause of 

neuronal death and is a common cause of visual impairment and blindness. To contrast this 

pathological state, specific pharmacological strategies need to be developed aimed at the many 

putative cascades generated during ischemia (Osborne et al., 2004). Among pharmacological 

targets, the SRIF system is a candidate that is being subjected to intensive investigation. Indeed, 

there is evidence that retinal SRIF may act as a neuroprotective agent in ischemic retinas (Casini et 

al., 2005). In particular, in guinea pig retinas, octreotide (a long-lasting sst2 preferred agonist) 

protects against ischemia-reperfusion injury (Celiker and Ilhan, 2002) and sst2 agonists attenuate 

cell death in rat retinal explants subjected to chemical ischemia (Mastrodimou et al., 2005). 

Recently, an altered expression of SRIF receptors has been shown to modulate retinal responses to 

cell damage in an in vitro model of the ischemic mouse retina (Catalani et al., 2007). In particular, 
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sst1 KO retinas, where sst2 are over-expressed and over-functional, display a marked reduction of 

cell death with respect to WT or sst2 KO retinas. In addition, the expression of protease caspase-3 

mRNA, a marker of apoptotic cell death, is also reduced in sst1 KO as compared to WT retinas. 

Taken together, these observations demonstrate that an increased presence/activation of functional 

sst2 protects against retinal ischemia.  

Immunohistochemical analyses have identified some of the retinal cell populations that are 

protected by sst2 activation. In particular, in explants of the rat retina subjected in vitro to chemical 

ischemia, sst2 agonists prevent, at least in part, the loss of several retinal cell populations, including 

choline acetyltransferase-, tyrosine hydroxylase-, nitric oxide synthase-positive amacrine cells as 

well as the rod bipolar cells (Mastrodimou et al., 2005). On the other hand, other studies in a model 

of in vitro ischemia of the mouse retina have recently demonstrated that the extent of sst2-mediated 

protection may vary among different retinal cell populations (Catalani et al., 2007), suggesting a 

high level of complexity within the neuroprotective mechanisms of sst2. For instance, it is 

interesting to note that the population of rod bipolar cells, which express sst2 at high levels, is 

severely affected by ischemia, but it is significantly spared in the presence of sst2 overexpression, as 

in sst1 KO retinas, while it is more heavily damaged in the absence of sst2, as in sst2 KO retinas 

(Fig. 3).  

It is generally accepted that an important component of ischemic retinal injury involves neuronal 

depolarisation and increased glutamatergic stimulation. Other factors may also play a part in 

neuronal susceptibility during ischemia and they include the ability to modulate Ca2+ homeostasis, 

extracellular pH and the cells’ ability to quench free radicals (Osborne et al., 2004). Regarding the 

mechanism of action underlying SRIF neuroprotective effects in mouse ischemic retinas, sst2 may 

act through the involvement of presinaptically sst2-mediated modulation of K+ and Ca2+ 

conductances leading to cell hyperpolarisation, [Ca2+]i decrease and reduction of glutamate release 

(see paragraph 2.4.3.). sst2 may also regulate, postsinaptically, NMDA receptor activation by 

glutamate as well as K+ and Ca2+ voltage-dependent channels. Neuroprotective effects of SRIF on 

NMDA-induced neuronal death have been previously shown in rats (Forloni et al., 1997). In 

addition, in an in vitro model of chemical ischemia of the mouse retina, it has been recently 

demonstrated that not only retinal glutamate release increases under ischemic conditions (consistent 

with a role of glutamate excitotoxicity in ischemia-induced neuronal death), but also that this 

increase is significantly reduced in sst1 KO retinas, indicating that the protection provided by 

increased presence of functional sst2 is likely to be mediated by sst2 modulation of glutamate release 

(Catalani et al., 2007). Other mechanisms may also participate in the protective role of SRIF against 

retinal ischemia, such as an sst2-mediated regulation of nitric oxide, an important mediator in the 
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pathogenesis of retinal ischemic damage (Osborne et al., 2004). However, in guinea pig retinas, 

SRIF analogues do not seem to influence nitric oxide activity, which is decreased as a consequence 

of retinal ischemia-reperfusion (Celiker and Ilhan, 2002). 
 

3.2. Diabetic retinopathy 

The concept that ischemia is the driving force for new vessel formation in the retina can be traced 

back over 50 years (Osborne et al., 2004). Indeed, retinal ischemia is commonly caused by vascular 

closure with liberation of vasoproliferative factors, which in turn produces neovascularisation. 

Ocular neovascularisation and the associated hemorrhages and fibrovascular proliferations are the 

underlying threats to vision in diverse conditions such as diabetic retinopathy, a leading cause of 

visual loss in industrialised countries. Laser photocoagulation remains the only procedure 

recommended for severe nonproliferative or proliferative retinopathy (Porta and Allione, 2004), but 

this is an invasive procedure and provides only temporary protection (Croxen et al., 2004). Less 

destructive approaches are desirable, and the use of SRIF analogues is currently tested in clinical 

trials with some success (Boehm, 2007; Palii et al., 2007; Croxen et al., 2004; Sjolie and Moller, 

2004).  

SRIF levels in the vitreous of patients with diabetic retinopathy are significantly lower than those in 

nondiabetic control subjects (Hernandez et al., 2005; Simo et al., 2002). This observation suggests 

that the intravitreous deficit of SRIF may contribute to the process of retinal neovascularisation 

typical of proliferative retinopathy and supports the concept that adequate levels of SRIF are needed 

for the maintenance of retinal homeostasis. Furthermore, there is a general agreement that SRIF 

may contrast neovascularisation associated with diabetic retinopathy, although the mechanism of 

action remains to be elucidated (Boehm, 2007; Casini et al., 2005). Angiogenesis is a complex 

process, but it may be regarded as the result of changes in the equilibrium between anti- and pro-

angiogenic factors. For instance, the insulin-like growth factor-1 (IGF-1), stimulated by growth 

hormone, increases in the vitreous of diabetic retinopathy patients (Simo et al., 2002), and it is a 

major pro-angiogenic factor (DeBosch et al., 2001). SRIF analogues are powerful inhibitors of 

growth hormone release and, therefore, decrease the blood IGF-1 concentration. Thus, SRIF may 

exert its antiangiogenic effects on the retina through antagonism of the growth hormone axis 

(Boehm, 2007; Wilkinson-Berka et al., 2006; Garcia de la Torre et al., 2002). On the other hand, 

SRIF may inhibit retinal angiogenesis through autocrine and paracrine effects, perhaps directly on 

retinal cells or on retinal blood vessels (Boehm, 2007; Baldysiak-Figiel et al., 2004; Dasgupta, 

2004; Garcia de la Torre et al., 2002; Higgins et al., 2002). These effects are likely to include 

regulation of the levels of angiogenesis-associated factors that are expressed in the retina, such as 
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IGF-1/IGF-1 receptors and vascular endothelial growth factor (VEGF)/VEGF receptors. In 

particular, IGF-1 not only is in the blood depending on the levels of circulating growth hormone 

(see above), but it and its receptors are also expressed throughout the retina in vascular, neuronal 

and glial cells, and they are altered by hyperglycaemia and hypoxia (Wilkinson-Berka et al., 2006). 

For instance, the levels of IGF-1 receptor mRNA are increased in the retinas of mouse models of 

both diabetic retinopathy (Kuang et al., 2003) and hypoxia-induced proliferative retinopathy (Dal 

Monte et al., 2007), although conflicting results have been reported in rat retinas (Leske et al., 2006; 

Leske et al., 2004; Averbukh et al., 1998). Regarding the VEGF system, diabetic retinopathy and 

hypoxia/acidosis-induced proliferative retinopathy have been shown to cause overexpression of 

retinal levels of VEGF and its receptors, thus increasing microvascular permeability and 

angiogenesis (Dal Monte et al., 2007; Leske et al., 2004; Werdich et al., 2004; Witmer et al., 2003; 

McLeod et al., 2002; Witmer et al., 2002; Ellis et al., 2000; Gilbert et al., 1998). In a recent analysis 

of hypoxia-induced neoangiogenic retinas of sst1/sst2 KO mice, we have demonstrated that lack of 

sst2, as in sst2 KO retinas, is associated with significantly higher levels of neovascularisation. 

Moreover, enhanced SRIF function at sst2, as in sst1 KO retinas, limits the hypoxia-induced increase 

of the pro-angiogenic VEGF, whereas sst2 loss upregulates this increase (Fig. 4). 

In addition, the expression of the angiopoietin-1/2 and their receptors, which have 

different roles in the angiogenetic process, is dysregulated in the absence of 
sst2. (Dal Monte et al., 2007). These observations provide evidence 

that sst2 may be  beneficial in limiting hypoxia-induced 

neovascularisation in the retina (Dal Monte et al., 2007; Kociok et 

al., 2006; Takagi et al., 2003). 

Another mechanism which may underlie anti-angiogenic effects of SRIF includes the involvement 

of the protein kinase CK2 (formerly casein kinase 2), an ubiquitous serine/threonine protein kinase 

that is involved in a wide variety of biological processes, including retinal angiogenesis and 

pathogenesis of diabetic and other proliferative retinal microangiopathies (Ljubimov et al., 2004). 

Indeed, a cross-talk between sst2 and the CK2 pathway has been suggested on the basis that 

octreotide, combined with CK2 inhibitors, blocks retinal neovascularisation in a mouse model of 

oxygen-induced retinopathy more efficiently than either compound alone (Kramerov et al., 2006). 

 

4. Conclusion 
Although far from being fully elucidated, SRIF modulation of ionic conductances, intracellular 

effectors and transmitter release in the retina may account for the observed effects of SRIF on 

retinal visual processing. In addition, SRIF may act as a positive factor in the retina by regulating 
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retinal homeostasis and protecting neurons against damage. In this respect, SRIF analogues seem to 

constitute a promising therapeutic arsenal to cure different retinal diseases and their clinical 

applications are the object of numerous studies. However, further investigations are needed not only 

to fully understand the functional role of the SRIF system in the retina but also to exploit new 

chemical space for drug-like molecules. 
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Legends to Figures 
 
Fig. 1. Schematic representation of the mammalian retina. All the principal neuronal types are 

depicted. Retinal layers are named on the right. The incoming light (arrow on the lower left) 

passes through the whole retinal thickness before reaching the photoreceptors (rods and 

cones). The vertical pathway of visual information processing, together with lateral 

influences at the level of horizontal cells are also shown. 

 

Fig. 2. sst2A immunofluorescence in a whole mouse retina showing sst2A expression by amacrine 

cells and their processes. The large, intensely labelled cells are tyrosine hydroxylase-

containing, dopaminergic, wide-field amacrine cells. The dense network of immunolabelled 

processes, localised to the inner plexiform layer, is formed by processes originating from the 

dopaminergic amacrine cells and from other, smaller amacrine cells containing glycine. 

Scale bar, 50 µm. 

 

Fig. 3. Rod bipolar cells immunolabelled with antibodies directed to protein kinase C in control 

retinas and in wild-type (WT), sst1 KO or sst2 KO retinas subjected to ischemic treatment. 

Rod bipolar cells are less affected by ischemia in sst1 KO retinas, while they are more 

severely damaged in sst2 KO retinas. The sections were counterstained with 4’-6-diamidino-

2-phenylindole. Scale bar, 20 µm. 

 

Fig. 4. VEGF immunostaining in control retinas and in wild-type (WT), sst1 KO or sst2 KO retinas 

subjected to hypoxic treatment. VEGF expression significantly increases both in retinal cells 

and in retinal blood vessels of WT retinas treated for hypoxia. This increase is attenuated in 

the presence of sst2 overexpression (as in sst1 KO retinas), while it is enhanced in the 

absence of sst2 expression (as in sst2 KO retinas). Scale bar, 20 µm. 
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Cervia et al., Fig. 1
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Cervia et al., Fig. 2
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Cervia et al., Fig. 3
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Table 1 Signalling of SRIF and distinct SRIF receptors

Signalling elements SRIF* sst1 sst2 sst3 sst4 sst5

adenylyl cyclase      

guanylyl cyclase   

phospholipase C      

phospholipase A2     

nitric oxide  (?) (?)  

K+ channels      

Ca2+ channels      

Na+/H+ exchanger      (?)

phosphatases      

mitogen-activated kinases     (?) 

phosphatidylinositol 3 kinases      (?)(?)

* when the contribution of the distinct SRIF receptor involved is unknown

(?) when the involvement needs further demonstration

(for ref. see Cervia et al., 2007; Cervia et al., 2005b)

Table


