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Abstract 

 

Proliferation of breast cancer cells is mediated by estrogen receptors (ER) - ERα and ERβ. At present, 

contradictory observations complicate the understanding of involvement of ERβ in breast cancer and 

functional definition of ERβ as a prognostic marker.  

A stable expression of full length ERβ was established in the ERα-positive MCF-7 breast carcinoma 

cell line to evaluate the role for ERβ in maintenance of cell viability and estrogenic response, as well 

as proliferation, morphology and cell cycle progression. In order to verify in vivo tumourigenicity of ERβ 

transfectants were transplanted into nude mice. 

Transfection of ERβ in MCF-7 resulted in a marginal increase of gelsolin protein expression. 

Constitutive expression of ERβ resulted in a significant 30% inhibition of cellular growth compared with 

transfection of the mock vector alone (p=0.043). This reduction in growth was associated a retardation 

of transition into S-phase of the cell cycle. The in vitro response to 17β-estradiol was reversed in cells 

over-expressing ERβ (p=0.016). However, no difference in response to the antiestrogens tamoxifen 

and ICI 182,780 were observed in the presence of ERβ. Importantly, over-expression of ERβ 

prevented establishment and growth of tumours as subcutaneous xenografts in immunodeficient mice 

in vivo. 

These observations support the notion that ERβ is a tumour suppressor and be exploitable in terms of 

cancer prevention, improving therapeutic response or predicting disease progression. 
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Introduction 

Estrogens are potent mitogens and are essential for normal development of the mammary gland. As a 

consequence of their mitogenic activity estrogens are also involved in tumourigenesis of the breast. 

Estrogenic response is mediated via binding and activation of the estrogen receptor, a ligand-inducible 

transcription factor belonging to the steroid hormone receptor superfamily (Diel et al., 2002). Two 

forms of estrogen receptor (ER) have been identified, ERα in 1986 and ERβ in 1996 (Green et al., 

1986; Kuiper et al., 1996). These ERs are encoded on different chromosomes (Saunders et al., 2002) 

but share a high degree of primary structure similarity. The main structural differences between ERα 

and ERβ are found in the N-terminal domain and ligand-binding domain, suggesting binding to similar 

estrogen response elements but different ligand preferences (Kuiper et al., 1996). These differences 

suggest that the two receptors could serve distinct actions. 

 ERα and ERβ can form biologically functional heterodimers in tissues in which they are co-

expressed (Jarvinen et al., 2000). However, both receptors are distinct in cellular distribution, regulate 

different sets of genes and can act in opposition to regulate activity of several target genes (Palmieri et 

al., 2002). In addition, ERβ lacks activation function-1 (AF-1) which in ERα is responsible for permitting 

ERα ligand-independent activity and eliciting the agonistic activity of tamoxifen (Watanabe et al., 

1997). Unlike ERα expression, which is an efficient indicator of responsiveness to hormonal therapy in 

clinical breast cancer, the role or significance of ERβ in breast cancer still remains unclear 

(Gustafsson, 2000). 

Since its identification, ERβ has been reported to co-express with ERα, to be both a positive 

and negative prognostic marker and both repress and induce malignant transformation in the breast 

(Speirs et al., 2004). The observed down-regulation of ERβ during carcinogenesis and progression 

(Roger et al., 2001) and response of ERβ-positive breast cancers to antihormonal therapy (Mann et 

al., 2001) would indicate that ERβ acts as a tumour suppressor and is a marker for a good prognosis 

(Jarvinen et al., 2000). In support of this hypothesis, ERβ expression in patient tumour samples is 

associated with negative axillary node status, low-grade tumours, reduced DNA synthesis and a 

greater disease-free survival (Jarvinen et al., 2000; Omoto et al., 2001). Similarly, 

immunohistochemical localisation of ERβ has been shown to correlate to both progesterone receptor 

levels and increased cellular differentiation in breast cancer, strongly supporting ERβ as a valuable 

independent indicator of favourable prognosis (Skliris et al., 2001; Nakopoulou et al., 2004).  
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Conversely, ERβ-positive tumours have been demonstrated to exhibit increased expression of 

cyclin A and the Ki-67 proliferation-related marker, be recurrently negative for progesterone receptor 

and associate with a poorer prognosis compared to tumours expressing ERα alone (Dotzlaw et al., 

1999; Jensen et al., 2001; Speirs et al., 1999). In addition, the observation that ERβ mRNA levels 

were significantly elevated in tamoxifen-resistant tumour samples questioned the suggestion that ERβ 

could be used as a marker for endocrine therapy, although this was only based on a small study of 17 

patients (Speirs et al., 1999). One explanation for the discrepancy in use of ERβ as a reliable 

prognostic marker was given by Gustafsson and Warner (2000) who suggested that prognosis may 

rely on expression and levels of ERβ variants. This is supported by the identification of several distinct 

ERβ variants and the observation that one such variant, the C-terminal truncated form ERβcx can act 

as a dominant negative regulator of ERα function (Ogawa et al., 1998). 

 In order to identify functional and mechanistic action of ERβ in proliferation and 

tumourigenesis we created ERβ-over-expressing MCF-7 breast carcinoma cells and assessed in vitro 

growth characteristics, response to (anti)estrogens and expression of cell cycle proteins. Further on, 

we investigated the effect of ERβ upon in vivo tumour establishment and growth. In contrast to other 

reports, we used a GFP-encoding expression vector, lipofection and antibiotic selection for 

establishment of stably transfected MCF-7 cells. Several studies used different cloning vectors and 

cells lines, including mammary, ovarian and prostate cell lines, as well as variant transfection methods 

to manipulate ERβ levels in cells in vitro (Bardin et al., 2004; Cheng et al., 2004; Lazennec et al., 

2001; Paruthiyil et al., 2004; Ström et al., 2004; Tonetti et al., 2003). Only one study reported the 

engraftment of ERβ-transfected cells in vivo (Paruthiyil et al., 2004).  As shown in the present report 

and in the majority of published studies, ERβ was associated with reduced cell growth, reduced 

invasiveness and motility or induction of apoptosis. 
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Material and methods 

 

Cell culture and chemicals 

The human breast carcinoma cell line MCF-7 was obtained from the tumour bank of the NCI 

(Bethesda, MD) and cultivated in RMPI 1640 media with 10 % foetal bovine serum (FBS). 7 days prior 

to experiments cells were maintained in phenol-red free RPMI containing 10 % dextran-coated 

charcoal (DCC)-stripped FBS and 2 mM glutamine (Life Technologies, Karlsruhe, Germany). 17β-

estradiol (E2) and tamoxifen (tam) were purchased from Sigma (Deisenhofen, Germany) and the 

antiestrogen ICI 182,780 from Tocris (Bristol, UK). 

 

Stable Transfection 

For stable transfection of ERβ, full-length cDNA of the human ERβ gene (a gift of Organon, Oss, 

Netherlands) was cloned into pEGFP-N1 (Clontech, Heidelberg, Germany) to create pEGFP-ERβ. 

Lipid mediated transfection of pEGFP-ERβ into MCF-7 cells was performed using FuGene 6 (Roche, 

Mannheim, Germany) following the supplier’s protocol. Cells were seeded into 6-well plates with 104 

per well. A control cell line was established by transfecting an empty expression plasmid (MCF-

7/GFP). The selection of positive clones was carried out with 800 µg/ml Geneticin (Life Technologies). 

After 3 weeks several clones of MCF-7 cells expressing stably ERβ were maintained. All these clones 

differed from wild-type cells regarding their growth rate and response to E2, but this study focussed on 

only one clone. Expression of both ERα and ERβ in transfected and control cell lines was monitored 

by RT-PCR and Western Blot. To monitor cell size and growth as well as the translocation of the ERβ-

GFP-fusion protein an inverted contrasting microscope (DM IL, Leica, Wetzlar, Germany) equipped 

with a digital camera (DFC320, Leica) and fluorescence device was used. 

 

MTT assay 

Cell survival was determined by MTT assay. MCF-7, MCF-7/GFP and MCF-7/ERβ were treated with 

the indicated concentrations of either 17β-estradiol, tamoxifen or ICI-182,780 for 96 hours. Cells were 

seeded and assessed by standard MTT methods (Tantivejkul et al., 2003). Concentrations of drugs 

inhibiting cell growth by 50 % (IC50) were calculated. 
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RT-PCR  

The total mRNA of 106 cells or 30 mg tumour-tissue was isolated using a RNA isolation Kit-System 

(Qiagen, Hilden, Germany). The RT-PCR was carried out using the one step EZrTth-system and 

related reagents from Applied Biosystems (Foster City, USA). Primers used to amplify ERα were 5‘-

TGGAGTCTGGTCCTGTGAGGG-CTG-3‘ (pos. 951-974) and 5‘-

GAAGAGGGTGCCAGGCTTTGTGGA-3‘ (pos. 1443-1496, EMBL Acc.-No. X03635), giving an 

amplified product of 545 bp. For ERβ primer sequences were 5‘-AGTGCCGCTCTTGGAGAGCTG-3‘ 

(pos. 840-860) and 5‘-CCTGGGTCGCTG-TGACCAGA-3‘ (pos. 1095-1114, EMBL Acc.-No. X99101), 

giving a PCR product of 274 bp. For detection of gelsolin RNA (NM_000177) the following primers 

were used: 5’-GTGAGACCCCACTGTTCAAGCA-3’ (forward, pos. 1198 - 1219) and 5’-CTGTC 

GCCTCCATAGA ACTGTC-3’ (reverse, pos. 1444 - 1465), giving a fragment size of 268 bp. Finally, 

the reference gene hydroxymethylbilane synthase (HMBS, NM_000190) was monitored using the 

following primer pairs: 5’-GGCTGCAACGGCGGAA-3’ (forward, pos. 178 – 193) and 5’-

CCTGTGGTGGACATAGCAATGATT-3’ (reverse, pos. 313 – 336) giving a PCR product of 159 bp.  

The final reaction volume of 50 µl contained 1x EZ-buffer, 300 µM dNTPs, 5 units rTth, 2.5 mM 

MN(OAc)2, 250 ng RNA and 0.25 µM primer. The reverse transcription reaction was performed at 

62°C for 30 min subsequently followed by PCR-amplification involving a denaturation step at 94°C for 

2:00 min. The remaining PCR was carried out as following: 94°C for 1 min, 60°C for 0:30 min and 

annealing at 72°C for 0:30 min (10 cycles). Then  92°C for 1 min, 60°C for 0:30 min and 72°C for 0:30 

min (25 cycles) and a final elongation at 72°C for 10 min. PCR products were analysed by 

electrophoresis through a 2 % agarose gel and visualised by ethidium bromide staining under UV 

illumination. 

 

Quantitative real-time PCR (TaqMan) 

 Relative RNA quantification was performed by using standard protocols and pre-mixed PCR  reagents 

(TaqMan; Applied Biosystems, Weiterstadt, Germany). Total RNA was extracted from approximately 

106 cells following suppliers protocol (RNeasy; QIAGEN, Hilden, Germany) and transcribed into cDNA 

using TaqMan Reverse Transcription reagents. The cDNA was used for the fluorescent quantitative 

PCR assay and pre-developed probe/primer mixes were designed by the Assay-on-Demand service at 

Applied Biosystems (Table 1). Hydroxymethylbilane synthase (HMBS) was used as housekeeping 

gene. RT and PCR reactions were carried out as described before (Becker et al., 2005). 
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Gene expression was calculated using the comparative delta-delta-Ct method (Livka et al., 2001). 

Briefly, each sample was assayed for the number of PCR cycles required to cross the threshold of the 

linear range of the reaction (Ct). The amplification efficiency of target gene and reference gene were 

approximately equal. The three Ct values for each sample were averaged, whereas the difference 

between Ct values was below 1. Samples were normalized for the total template amount by 

subtracting the average HMBS Ct from the average ERα/ERβ/Gelsolin Ct (∆Ct). The normalized gene 

expression (∆Ct) of the control (MCF-7/wt) was then subtracted from the normalized expression of 

ERβ- and GFP-transfected cells (∆∆Ct). The relative gene expression of ERα/ERβ/gelsolin of 

transfectants in relation to control cells was calculated: 2-(∆∆Ct).  

Western Blot and Antibodies 

Cells were harvested from sub-confluent flasks using RIPA buffer (containing 1 mM dithiothreitol, 1 

mM sodium fluoride and a protease inhibitor cocktail (Sigma)) as previously described (Jensen et al., 

2003). Snap frozen tissue pieces of approximately 30 mg were lysed in the same buffer using an Ultra-

Turrax dispersing tool. In brief, after centrifugation at 13,000 x g for 10 min at 4°C and collection of the 

supernatant, aliquots of 25 µg of total protein were separated through 10 % SDS-PAGE gels and 

transferred to nitrocellulose membrane. Blots were probed with following anti-human antibodies: ERα 

and cathepsin D (Santa Cruz Biotechnology, Santa Cruz, CA); Erb-B2 (DPC Biermann, Bad Nauheim, 

Germany); ERβ (gift from Akzo Nobel, Oss, The Netherlands); gelsolin (BD Biosciences, Heidelberg, 

Germany); p21Waf1/Cip1, p27Kip1, cyclin D1, GFP (Cell Signaling, Beverly, MA); cyclin A, β-Actin (Sigma); 

Ki-67 (Dako, Glostrup, Denmark) and Cdk2 (Dianova, Hamburg, Germany).  

FACS 

For flow cytometric analysis, MCF-7 cells were harvested by trypsinisation from sub-confluent culture 

flasks into cold PBS, fixed in ice cold 70 % ethanol and stored at – 20°C. Cells were washed, treated 

with 100 µg/ml RNAse A and stained with 50 µg/ml Propidium iodide for 30 min at 37°C. Analysis of 

DNA content was performed using a Becton Dickinson FACScan (BD, Heidelberg, Germany) with a 

minimum of 10,000 events collected for analysis with BD Cellquest Software. 

Immunofluorescence 

Cells were grown for 48 hours in chambered coverslides (Nunc, Wiesbaden, Germany), fixed with 4 % 

paraformaldehyde in PBS and blocked with normal rabbit or goat serum. Incubation with the primary 
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antibodies G-/F-actin, α-tubulin (Acris, Hiddenhausen, Germany) and vimentin (Abcam, Cambridge, 

UK) was carried out for one hour at ambient temperature. Primary antibody binding was detected 

using an anti-rabbit-Cy3 antibody (Abcam) and anti-goat labelled Texas-Red antibody (Vector 

Laboratories, UK). Nucleus staining was performed using Hoechst-33258 (Sigma). Coverglasses were 

mounted in Vectorshield (Vector Laboratories, UK) and analysed by confocal laser scanning 

microscopy (Zeiss, Jena, Germany).  

Animal experiments 

Wild-type, ERβ- or GFP-transfected MCF-7 cells (107 cells/mouse) were transplanted subcutaneously 

into the flank of female NCR:nu/nu mice (Charles River Laboratories, Frederick, USA) without 

Matrigel. Mice were held in laminar flow shelves in germ-poor conditions at 22°C, 50 – 60 % relative 

humidity and a 12 hrs light-dark rhythm. They received autoclaved food and bedding (Sniff, Soest, 

Germany) and acidified drinking water ad libitum.  

Animals were treated with 0.5 mg/kg estradiol (i.m.) immediately after transplantation once a week 

during the experiment to stimulate the growth of MCF-7 tumours and experiment was performed twice. 

Within a third animal experiment the 3 cell lines were transplanted as described, but E2 

supplementation was omitted. Body weight and tumour diameters were measured twice weekly. 

Tumour volumes were calculated according to equation (width2 length)/2. All animal experiments were 

performed with permission of the responsible local authorities (G 0221/03).  

Densitometric and statistical analysis 

Intensity of mRNA and protein bands of RT-PCR and Western blot assays was determined using the 

Histogram tool of Adobe Photoshop (Adobe Systems, San Jose, CA). The mRNA and protein 

expression of the molecule of interest was calculated in relation to β-Actin mRNA and protein levels. 

Statistical differences (p<0.05) were calculated using the Mann-Whitney/U-Test within the software 

STATISTICA (Statsoft, Hamburg, Germany). 
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Results 

 

Stable expression of ERβ in MCF-7 cells 

Since the majority of clinical breast tumours are positive for both ERα and ERβ (Watanabe et al., 

1997) we chose to use MCF-7 for our investigations, in order to mimic the clinical scenario. MCF-7 

cells used in these experiments are ERα-positive and ERβ-negative. Cells were stably transfected 

with human ERβ which was N-terminally tagged with green fluorescent protein (GFP). Following 

antibiotic selection, positive cells could be identified by the presence of green fluorescence localised 

predominantly in the cytoplasm of these cells (Fig. 1a). In order to confirm the functionality of the ERβ-

GFP protein 10-9 M E2 was added to MCF-7/ERβ cells maintained in a chamber slide. 3 hours after E2 

treatment a translocation of the GFP signal into the nucleus was observed (Fig. 1c). In Fig. 1b and 1d 

the corresponding light microscopic photographs are shown. In mock-transfected MCF-7 cells GFP 

expression was spread throughout the whole cell and treatment with E2 did not induce a translocation 

of the GFP protein (data not shown). Several clones were identified and tested for ERβ expression 

and functionality to exclude effects caused by clonal selection or transfection procedure (data not 

shown). A clone expressing high levels of transfected ERβ was chosen for further studies, termed 

MCF-7/ERβ. As a control, MCF-7 was transfected with the “empty” expression vector and termed 

MCF-7/GFP. 

 

Relative expression of ERα and ERβ protein and mRNA 

The expression of both ERα and ERβ mRNA was monitored by conventional endpoint RT-PCR (35 

cycles) and real-time-PCR. Visualisation of RT-PCR products by ethidium bromide staining was 

performed to demonstrate the presence and absence of ERα and ERβ mRNA: While ERα mRNA was 

found in wild type and transfected cells, ERβ mRNA was only detected in ERβ-transfected MCF-7 cells 

(Fig. 2). Using real-time PCR and ∆∆CT calculation the change in copy number of both ERs 

normalised to an internal reference (HMBS) and related to non-transfected MCF-7 cells was 

determined. Table 2 summarises the results of real-time-PCR. Three independent PCR runs showed 

that the relative gene expression of ERβ is about 282- and 442-fold higher in transfected cells 

compared to non-transfected MCF-7/wt cells. The amount of ERα mRNA marginally varies between 

transfected and wild type cells (Tab. 2). 
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ERα and ERβ proteins were detected by Western Blot and semi-quantified in relation to β-Actin levels 

(Fig. 2). Wild-type (non-transfected) and MCF-7/GFP were solely positive for ERα, the relative protein 

expression (RPE) was 0.43 and 0.32, respectively. Transfection of ERβ cDNA did not affect protein 

level of ERα in these cells (MCF-7/ERβ: RPEERα = 0.37). MCF-7/ERβ expressed both receptor 

proteins (Fig. 2c and 2d, Lane 4), while control cells were ERβ-negative. Due to distinct properties of 

the antibodies used for ERα and ERβ detection a direct comparison of RPE is not appropriate. The 

expression of GFP protein was found to be equal in ERβ- and empty-vector-transfected cells (Fig. 2e). 

Continued expression of ERα and ERβ was routinely verified throughout the complete study. 

 

ERβ is transcriptionally active in MCF-7/ERβ cells 

In order to confirm the functionality of ERβ expressed in MCF-7/ERβ cells we assessed their ability to 

modulate protein expression of the well known estrogen-related gene cathepsin D. MCF-7/wt and 

MCF-7/GFP cells showed an obvious cathepsin D level increased by treatment with 10-9 M 17β-

estradiol for 6 hours (Fig. 3a). Cathepsin D protein was significantly induced in response to ERβ 

transfection (Fig. 3a), in a similar manner to the ERα dependency previously reported (Xing et al., 

1998). The relative cathepsin D protein expression normalised to β-Actin was calculated out of 3 

repeat experiments and a RPE value of 0.97 was detected in MCF-7/ERβ, while wild-type cells and 

GFP transfectants showed a RPE of 0.45 and 0.39, respectively (Fig. 3b). However, cathepsin D level 

in ERβ-transfectants was not additionally elevated  after treatment with E2 (Fig. 3a and Fig. 3b).  

 

Alteration in the gelsolin protein level of MCF-7 by ERβ expression  

During daily maintenance of the cells a marginal change of cellular appearance of ERβ-transfected 

MCF-7 cells was observed. But neither FACS-based analysis of cell size nor immunohistological 

investigation of the cytoskeleton (G/F-actin, α-tubulin and vimentin) evidenced significant differences 

between transfectants and control cells (data not shown). 

Gelsolin is known to be an actin-binding protein with dysregulated expression in several 

human tumour types (Kothakota et al., 1997). Analysis of protein (Fig. 4a) and mRNA (Table 3) 

expression of gelsolin in the cells demonstrated an ERβ-associated increase in protein but not mRNA 

levels. Calculation of relative protein (Fig. 4b) imply normalisation of sample band intensity to β-Actin. 

We found an observable increase of gelsolin protein in MCF-7/ERβ cells, that was not significant (p = 
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0.078). The relative gelsolin gene expression of ERβ- and mock-transfected cells was not modified in 

relation to wild-type MCF-7 (Table 3). 

 

Inhibition of MCF-7 growth and modulation of cell cycle progression by ERβ expression 

To investigate whether expression of ERβ influenced the growth rate and survival of MCF-7 cells, we 

assessed the growth rate of MCF-7, MCF-7/GFP and MCF-7/ERβ by MTT assay. As shown in Fig. 5, 

ERβ-expressing cells demonstrated a reduced growth rate compared to ERβ-negative cells. After 96 

hrs, MCF-7 and MCF-7/GFP showed a 2.7- and 2.6-fold increase in cell number post seeding, 

respectively. In contrast, MCF-7/ERβ demonstrated only a 1.9-fold increase in cell number, 

representing a growth retardation of 30 % compared to MCF-7 and MCF-7/GFP (p=0.043). 

 By flow cytometric analyses, ERβ-expressing MCF-7 demonstrated no cell cycle phase arrest 

or increased level of cell death to account for the retardation of cellular growth compared to MCF-

7/GFP. But entry of MCF-7/ERβ cells into S-phase of the cell cycle following serum-withdrawal 

mediated cell synchronisation was retarded compared to MCF-7 and MCF-7/GFP (Table 4). Both wild-

type and MCF-7/GFP demonstrated maximum numbers of cells in S-phase at 18 hrs, compared to 24 

hrs in MCF-7/ERβ (Table 4). 

 In order to explain the retarded growth and retarded S-phase entry of MCF-7/ERβ cells we 

analysed cell cycle proteins associated with proliferative status and S-phase progression by Western 

blot analyses, specifically cyclins A and D1, Cdk2, p21Waf1, p27Kip1 and Ki-67. Expression of ERβ 

resulted in an apparent but not significant decrease in expression of both cyclin A and Cdk2, both 

factors associated with S-phase entry and progression. This observation is consistent with the flow 

cytometric analyses and probably accounts for the observed retardation of S-phase transition (Fig. 

6a). No change of either cyclin D1, p21Waf1, p27Kip1 or Ki-67 were observed in consequence to ERβ 

expression (Fig. 6a). We semi-quantified the intensity of Western Blot band by using the histogram 

tool of Adobe Photoshop and calculated a relative protein expression in relation to β-Actin expression 

(Fig. 6b). These calculations approved findings concluded from Western blot bands (Fig. 6a): cyclin A 

and Cdk-2 protein expression was slightly decreased in ERβ-transfected MCF-7 cells (not significant, 

p = 0.094), while levels of the other assayed cell cycle modulators were nearly unmodified. 
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Response to 17β-estradiol and the antiestrogens tamoxifen and ICI 182,780 

Sensitivity of wild-type, GFP- and ERβ-transfected MCF-7 cells in vitro to 17β-estradiol, tamoxifen and 

ICI 182,780 was measured by MTT assay. For these experiments cells were maintained in steroid-

depleted medium containing charcoal-stripped FBS. Antiestrogens tamoxifen and ICI 182,780 

(Fulvestrant) were chosen because of their different mechanism of action, tamoxifen being an ER-

modulator and ICI 182,780 an inhibitor of ER-protein (Piccart et al., 2003). Initially, experiments started 

with a multi-dose-response analysis (range of concentration: 10-4 to 10-11 M) (data not shown), than 

analysis focused on one concentration per compound. As expected, treatment of MCF-7 and MCF-

7/GFP with 17β-estradiol for 96 hrs stimulated cellular proliferation resulting in a 1.53-fold and 1.42-

fold increase in cell number compared to untreated cells, respectively (Table 5). In MCF-7/ERβ, 

treatment with 10-9 M 17β-estradiol did not raise proliferation rate, but cells were slightly growth 

inhibited in relation to untreated control. Moreover, comparison of increase in cell number of E2-

treated ERβ-transfectants and E2-treated mock-transfectants giving a significant difference of cell 

survival of 35 % (p=0.016). However, no differential response to the antiestrogens tamoxifen or ICI 

182,780 was observed between MCF-7/wt, MCF-7/GFP and MCF-7/ERβ (Table 5). 

 

Expression of ERβ prevents establishment and growth of MCF-7 as xenografts in 

immunocompromised mice 

In response to the obvious differences in growth of wild-type and ERβ-expressing MCF-7 in vitro, it 

was essential to examine the tumourigenicity and engraftment of these tumour cells in vivo in order to 

reflect in vitro findings. MCF-7, MCF-7/GFP and MCF-7/ERβ cells were transplanted into the flank of 

immunodeficient NCR:nu/nu mice. In three independent experiments, MCF-7 and MCF-7/GFP 

inoculation resulted in 29/30 and 30/30 tumours developing, respectively (Fig. 7). In contrast, only 1/36 

tumours arose from inoculation with MCF-7/ERβ cells (Fig. 7). According to the E2-mediated growth 

inhibiting effect on MCF-7/ERβ observed in in vitro experiments, one of three transplantation 

experiments was performed without E2-supplementation (data not shown). However, deficiency of E2 

had no influence on engraftment and tumour formation of MCF-7/ERβ cells. Wild-type and GFP 

transfectants engrafted without E2 stimulation, but tumour growth was delayed (data not shown). As a 

consequence of the loss of tumourigenicity resulting from ERβ expression, no studies could be 

undertaken to assess the response of these cells to estrogens or antiestrogens in vivo. 
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Discussion  

 

Clinically, the presence of ERα is used as a diagnostic and prognostic marker in breast cancer 

(Speirs, 2002). In contrast, no such association has yet been proved for ERβ in breast cancer, mainly 

due to the large variation in reported levels of ERβ-positive tumours, ranging from 26 % to 92 % 

(Speirs et al., 2004). This broad range in values has been at least partially attributed to the different 

determination methods, expression threshold value and relatively small sample sizes. In clinical 

specimens of breast cancer ERβ has been shown to mostly co-express with ERα. It showed an 

inverse correlation to progesterone receptor expression, was associated with increased disease-free 

survival and low-grade well-differentiated tumours (Cullen et al., 2001; Dotzlaw et al., 1999; Knowlden 

et al., 2000; Omoto et al., 2001; Shaw et al., 2002; Skliris et al., 2001). Furthermore, malignant breast 

tumours have been shown to either lose ERβ expression or exhibit significantly lower protein 

expression levels compared to ERα (Roger et al., 2001; Saunders et al., 2002), implying ERβ as a 

tumour suppressor (Saji et al., 2005). Data of retrospective studies of ERβ protein expression in 

clinical samples, summarised by Murphy and Watson (2006), demonstrating its potential role as 

predictor of treatment response when co-expressed with ERα.  

 The breast carcinoma cell line MCF-7 used in this study expresses ERα but is devoid of ERβ 

protein expression. We have stably expressed ERβ in this cell line to further characterise the 

functional significance and role of ERβ in human breast cancer. The functionality of transfected ERβ 

was demonstrated by ERβ protein translocation from cytoplasm into nucleus and cathepsin D gene 

regulation. Over-expression of ERβ in MCF-7 cells was shown to alter cellular morphology, estrogenic 

response and cell cycle progression, specifically S-phase entry and transit in vitro. Importantly in terms 

of the clinical situation, we have shown that expression of ERβ prevented tumour establishment in 

vivo. 

Expression of the actin-binding protein and cell motility factor gelsolin is decreased in several 

human neoplastic lesions, including breast, and associates with increased cellular motility and 

invasion (Afify et al., 1998; Asch et al., 1999; De Corte et al., 2002; Lee et al., 1999; Shieh et al., 

1999). SiRNA mediated knockdown of gelsolin expression in the MCF-10A breast tumour cell lines 

was shown to induce an epithelial-mesenchymal transition (EMT), a process associated with 
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tumourigenesis (Tanaka et al., 2006). EMT is characterised by change of epithelial cells to a 

fibroblastic cell morphology, loss of contact inhibition, increase in actin filaments and enhanced motility 

and invasion in vitro (Tanaka et al., 2006). A slight morphological modification was also observed in 

our ERβ-transfectants. Because of its relevance for cellular architecture and tumor biology, we 

determined gelsolin expression in control and ERβ-transfected cells. Although gelsolin mRNA levels 

did not appear to differ, higher protein levels of gelsolin were observed in our ERβ-transfected MCF-7 

cells compared to control. The discrepancy between mRNA and protein levels of gelsolin although 

unexpected had previously been reported in several other studies (Audic et al., 2004). The higher 

gelsolin protein levels in ERβ-transfected MCF-7 suggest an ERβ-associated induction of gelsolin. In a 

study utilising the MDA-MB-231 breast cell line, ERβ over-expression also was associated with a 

change in cellular morphology (Lazennec et al., 2001). The authors concluded that ERβ was inducing 

a differentiation-like process in MDA-MB-231, but did not looked at gelsolin expression in their cells. 

Possibly, our observations and the published hypotheses (Lazennec et al., 2001; Tanaka et al., 2006) 

support a link between gelsolin and ERβ expression. 

 In our study, ERβ was able to induce protein expression of the known estrogen-regulated 

gene cathepsin D in a ligand-independent manner indicating functional transcription machinery. 

Association of cathepsin D protein levels with hormone-dependent breast cancer and estrogen 

receptor expression has been described previously (Rochefort et al., 2000. The promoter of cathepsin 

D contains an estrogen response element (ERE) for transcriptional activation through an ERα-

transcription-complex (Xing et al., 1998). Our results support the idea that cathepsin D is a shared 

genetic target between ERα and ERβ (Hyder et al., 1999). 

 The ERβ-mediated inhibition of in vitro and in vivo cell growth supports both the tumour 

suppressor function of ERβ and the use of ERβ expression as a good prognostic marker in human 

breast cancer (Balfe et al., 2004). Analyses of the cell cycle in MCF-7 ERβ-transfected cells identified 

that ERβ expression resulted in an increase in the time required for cells (synchronised at G0/G1 of the 

cell cycle) to transit into and enter S-phase. This delayed transit into S-phase was not due to either 

arrest at the G1/S checkpoint or significant increase in cell death. A similar study by Paruthiyil et al. 

(2004) suggested that ERβ inhibited growth of estradiol treated MCF-7 via induction of a G2 cell cycle 

arrest, an observation not noticed in our study. Although explanations for this discrepancy maybe the 

use of estradiol induced growth stimulation or the different ERβ expression levels, another feasible 

possibility is the presence or absence of cell cycle synchronisation prior to analysis. Our study utilised 
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cells synchronised at the same stage of the cell cycle prior to determination of cell cycle profiles. In 

contrast, it is not unreasonable to suggest that a G2 arrest could be connected with an accumulation of 

cells in S-phase. Further studies are required to address the question of an ERβ induced G2/M arrest 

rather than just a slow S-phase transit. In relation to cell cycle proteins, Paruthiyil et al. (2004) 

demonstrated repression of cyclin A and cyclin D1 and increase in p21Waf1/Cip1 and p27Kip1 expression 

in ERβ-positive MCF-7 cells. In our study we observed decrease in expression of cyclin A and Cdk2 

protein but no significant change in expression of p27Kip1, p21Waf1/Cip1 or cyclin D1 protein in ERβ-

expressing MCF-7. The discrepancies in observations in MCF-7 maybe due to  the difference in 

transfection methods (viral versus non-viral). Furthermore, variances of MCF-7 populations and 

experimental conditions between our and published studies account probably for the effect, that in our 

MCF-7/wt cells cyclin D1 level is not increased within 6 hours after E2 treatment. Expression of ERβ in 

the ERα-positive T47D breast tumour cell line resulted in up-regulation of p27Kip1 and down-regulation 

of cyclin E (Ström et al., 2004). In the ER-negative MDA-MB-231 breast cell line, ERα and ERβ 

expression induced TGFα and p21Waf1 expression (Lazennec et al., 22001). ERβ expression in MDA-

MB-231 decreased proliferation, cell invasion and motility in a ligand dependent manner. Unlike ERα, 

expression of ERβ did not regulate c-myc proto-oncogene expression in MDA-MB-231 cells (Lazennec 

et al., 2001). Taken together the observations in breast cancer cell lines of repressed expression of 

protein complexes involved in cell cycle (Yam et al., 2002) further support the tumour suppressor 

nature of ERβ and suggest functionality of ERβ involved with DNA replication rather than mitosis or 

cell division.  

Exposure of MCF-7 cells to the estrogen 17β-estradiol has been shown to induce proliferation 

(Simard et al., 1997). Expression of ERβ in MCF-7 reversed in our studies this proliferative response 

resulting in a retardation of cell growth of about 40 % compared to wild-type and MCF-7/GFP cells. 

Although ERα and ERβ have been shown to form heterodimers when co-expressed in cells in vitro 

differences in their transcriptional functionality have been reported (Cowley et al., 1997): 17β-estradiol 

activated ERα binding to activation site-1 (AP-1) operates as a transcriptional activator whereas 17β-

estradiol activated ERβ binding to AP-1 suppresses transactivation of target genes (Webb et al., 

1995). An ERβ-triggered inhibition of ERα in the presence of 17β-estradiol has also been previously 

reported (Paech et al., 1997). Therefore, it is apparently the balance in levels between ERα and ERβ 

which dictates the overall outcome of 17β-estradiol treatment. As a consequence when ERβ levels 

exceed ERα levels the resulting outcome could be suppression of ER-mediated gene transcription and 
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subsequently growth inhibition. In contrast to E2, expression of ERβ did not influence response of 

MCF-7 to the antiestrogens tamoxifen or ICI 182,780. Unlike ERα, ERβ lacks a functional AF-1 

domain which is required for estrogen-ligand independent activity and the agonistic effect of tamoxifen 

(Delaunay et al., 2000; Watanabe et al., 1997). Consequently, ERβ expression did not induce loss of 

sensitivity to tamoxifen. It remains to be seen whether expression of ERβ at higher levels may alter 

response to ERα-antiestrogen complexes via competition at the AP-1 binding site or sequestration of 

ERα. 

 In agreement with its proposed role as a tumour suppressor, ERβ expression inhibited 

establishment and growth of MCF-7 cells as tumour xenografts in immunodeficient mice in three 

independent experiments. A previous study which involved viral infection of ERβ into MCF-7 

supported this finding, with a positive relationship between the virus-mediated multiplicity of infection 

of ERβ and loss of tumour formation capacity being noted (Paruthiyil et al., 2004). Although an 

explanation for this significant finding can only be hypothesised, reasons may include the effect of ERβ 

on cell cycle associated genes like p21Waf1, p27Kip1 and cyclin D1. In vitro, we could show an estradiol-

mediated decrease in proliferation of ERβ-over-expressing MCF-7 cells, so that is supposable, that 

MCF-7/ERβ cells transplanted into nude mice, are growth inhibited due to the estrogenic 

microenvironment of the mouse. A recent study of Hartmann et al. (2006) showed anti-angiogenetic 

effects of ERβ during tumor engraftment of breast cancer cells. T47D cells transfected with ERβ and 

transplanted into mice exhibited a lowered intratumoral blood vessel number as wells as reduced 

VEGF expression (Hartmann et al., 2006). These results can also serve as reason for the ERβ-

associated loss of tumorigenicity found in our study. But due to unavailable tumor material it is 

presently unfeasible to reproduce this finding.  

In summary, our data provide strong evidence to support ERβ as a tumour suppressor in 

breast cancer via its growth inhibitory functions, induction of morphological change and ability to 

prevent in vivo tumour growth. Taken together in combination with the clinical situation demonstrating 

lower ERβ expression in advanced and aggressive breast tumours our results strongly suggest re-

expression of ERβ as a potential therapeutic direction. 

Expression of ERβ in breast tumours is known to be epigenetically silenced by both 

deacetylation of histone tails and gene methylation (Duong et al., 2005; Sasaki et al., 2002; Zhao et 

al., 2003). Recently, the use of histone deacetylase (HDAC) inhibitors has been suggested as one 

such approach to re-induce ERβ expression (Duong et al., 2005). Treatment of breast tumour cells in 
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vitro with HDAC inhibitors has been shown to both decrease expression of ERα and induce 

expression of ERβ in breast tumour cell lines 15 and sensitised them to the antiestrogen tamoxifen 

(Jang et al., 2004). Moreover, the ERβ gene promoter is methylated in approximately 80% of cancers 

but not normal breast tissue (Sasaki et al., 2002; Zhao et al., 2003) confirming ERβ gene silencing and 

reduced transcriptional control of ERβ. Similarly to the HDACs, hypermethylation of ERβ and its 

associated lack of transcriptional activity could be revoked by use of DNA methyltransferase inhibitors 

such as 5-aza-2-deoxycytidine (Yang et al., 2001). 
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Legends to figures 

 

Figure 1 Expression of ERβ-GFP fusion protein in MCF-7 cells in vitro shown by fluorescence 

microscopy. Stable ERβ-transfected MCF-7 cells express an ERβ protein that is N-terminally flagged 

with GFP and localised in the cytoplasm of the cells when cultivated in steroid-depleted media (a). 6 

hours after addition of 17β-estradiol GFP signal translocates into the nucleus (c). 

Pictures were taken at day 33 after transfection using an inverted microscope from Leica (DM IL). (b) 

and (d) corresponding light micrographs. Magnification 200 x. 

 

Figure 2 Expression of ERα and ERβ mRNA and protein. Both receptors were analysed in MCF-7/wt, 

MCF-7/GFP and MCF-7/ERβ cells by RT-PCR (a and b) and Western Blot (c and d), respectively. 

Detection of β-Actin was used as loading control in both assays. RT-PCR for detection of ERα (a) and 

ERβ (b) mRNA: Lane 1, Molecular weight marker, Lane 2, Negative control (H2O); Lane 3, Positive 

control (ERα/ERβ-cDNA); Lane 4, MCF-7 wild-type; Lane 5, MCF-7/ERβ; Lane 6, MCF-7/GFP. 

Expression of ERα (c) ERβ (d) and GFP (e) determined by Western blotting. Lane 1, recombinant ERα 

or ERβ protein (Panvera, MD); Lane 2, negative control (RIPA buffer); Lane 3, MCF-7 wild-type; Lane 

4, MCF-7/ERβ; Lane 5, MCF-7/GFP. 

 

Figure 3 Expression of cathepsin D protein in wild-type (wt), control (GFP) and ERβ-transfected MCF-

7 cells. (a) Illustration of Western blot bands of mature cathepsin D and β-Actin. Total protein lysates 

were separated by SDS/Page and transferred onto nitrocellulose membranes. Incubation with specific 

antibodies against human cathepsin D was performed over night at 4°C. (b) Semi-quantitative 

calculation of relative protein expression (RPE) of cathepsin D normalised to β-Actin levels using the 

histogram tool of Adobe Photoshop. Cells were treated for 6 hours. Each experiment was performed 

3-times independently. 

* significant to corresponding MCF-7/wt 

 

Figure 4 Expression of gelsolin protein in wild-type, ERβ- and GFP-transfected MCF-7 cells. (a) 

Protein expression was monitored by Western blotting using an anti-human gelsolin antibody. (b) Band 

intensity was measured using histogram tool of Adobe Photoshop. Each signal was standardised to β-
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Actin. Mean values of relative protein or gene expression (RPE) was calculated out of 3 experiments. 

Cells were treated with 17β-estradiol for 6 hours. ERb – MCF-7ERβ-transfectants, GFP – MCF-7/GFP-

transfectants. 

 

Figure 5 Effect of ERβ-transfection on in vitro-proliferation of MCF-7 cells. Increase of cell numbers 

was determined by MTT assay 1, 2, 3 and 4 days after seeding into a 96-well plate (5 x 103 cells/ 

well). ERβ-transfected cells showed a significantly slower rise in cell viability at day 4 than wild-type or 

GFP-transfected MCF-7 cells. Experiments were performed triply. 

 

Figure 5 Western Blot analysis of cell cycle associated proteins. (a) Cyclins A and D1, Cdk2, 

p21Waf1/Cip1, p27Kip1 as well as Ki-67 and β-Actin were detected in wild-type, GFP- and ERβ-transfected 

MCF-7 cells. 25 µg total protein of untreated or 10-9 M 17β-estradiol treated (6 hours) cells were used 

for these investigations. (b) Quantification of band intensity was carried out using Adobe Photoshop 

(Histogram tool). Each signal was normalised to β-Actin expression and calculated out of 2 

independent experiments.  

 

Figure 7 Effect of ERβ-transfection on tumourigenicity of wild-type, ERβ- and GFP-transfected MCF-7 

cells. 107 cells of each MCF-7 line were transplanted s.c. into the flank of immunodeficient nude mice 

and engraftment of cells was either supplemented twice a week with 0.5 mg/kg/d 17β-estradiol (i.m.) 

beginning one day after inoculation or not stimulated with E2. The tumour volume was measured with 

a calliper-like instrument and calculated according to equation (width2 length)/2. 8 animals were 

transplanted per cell line; experiments were repeated three times. 
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Table 1  TaqMan assays 

 
Gene name Gene symbol Accession ID Assay-on-Demand ID 
    
Estrogen receptor α ESR1 NM_000125 Hs00174860_m1 
Estrogen receptor β ESR2 NM_001437 Hs00230957_m1 
Gelsolin GSN NM_198252 Hs00609276_m1 
Hydroxymethylbilane 
synthase 

HMBS NM_000190 Hs00609297_m1 
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Table 2 Relative gene expression of ERα and ERβ (Quantitative real time PCR) 
 
 ERα ERβ 

 
MCF-7/ERβ 

  

PCR 1 1.58 ± 0.92 303.37* ± 1.00 
PCR 2 1.59 ± 0.57 442.63* ± 1.07 
PCR 3 0.80 ± 2.12 282.01* ± 1.00 
   

MCF-7/GFP   
PCR 1 0.82 ± 1.10 1.28 ± 0.78 
PCR 2 1.09 ± 1.05 1.56 ± 0.94 
PCR 3 0.70 ± 0.97 1.40 ± 0.92 
   
The numbers represent the x-fold change in relative gene expression of ERβ- or GFP-transfected cells 
in relation to gene expression of MCF-7/wt. For the calculation the ∆∆Ct method was used; each PCR 
was carried out in triplicate to receive 3 Ct values per sample. 
* p < 0,05 
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Table 3 Relative gene expression of gelsolin (Quantitative real time PCR) 
 
Treatment Cell line Fold change 

   
- MCF-7/ERβ 0.95 ± 1.22 
- MCF-7/GFP 0.80 ± 1.07 
   
E2 MCF-7/ERβ 1.00 ± 1.73 
E2 MCF-7/GFP 0.48 ± 1.18 
   
  

MCF-7(-) vs MCF-7(E2) 
 

0.36 ± 0.56 
 ERβ(-) vs ERβ (E2) 0.36 ± 0,77 
 GFP(-) vs GFP (E2) 0.12 ± 0.6 
   
The fold change of relative gene expression is related to MCF-7/wt without or with E2 treatment (6 
hours), respectively. In the lower part of the table results of comparison of E2-treated versus non-
treated cells are shown. The ∆∆Ct method was used to quantify the difference in gene copy number. 
- untreated, E2 17β-estradiol 
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Table 4 Ratio of wild-type, ERβ- and GFP-transfected MCF-7 cells (%) in S-phase at  
different time points.  
 
  

MCF-7/wt 
 

MCF-7/GFP 
 

MCF-7/ERβ 

 

0h 

 

4.25 ± 0.70 

 

6.19 ± 1.30 

 

8.20 ± 2.96 

6 h 5.08 ± 0.96 6.35 ± 2.76 5.84 ± 1.47 

18 h 20.54 ± 1.09 21.04 ± 2.93 8.32 ± 1.20 

24 h 12.45 ± 3.87 15.48 ± 3.38 22.88 ± 3.37 
30 h 11.90 ± 0.79 10.09 ± 0.85 10.22 ± 0.54 

48 h 7.68 ± 0.63 10.07 ± 1.98 8.18 ± 1.16 

Values were calculated from three independent FACS experiments. Cells were grown in T25 flasks 
maintained in serum-depleted and phenolred-free RPMI media for 24 hours, followed by subsequent 
addition of 10% dextran-charcoal-treated FBS. Cells were harvested at assigned time and prepared 
for FACS analysis. Figures in bold denote maximum cell number in S-phase. 
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Table 5 Change of cell number (x-fold) of wild-type, GFP- and ERβ-transfected MCF-7 cells 
after treatment with (anti)estrogens for 4 days.  
 

 
 

MCF-7/wt 
 

MCF-7/GFP 

 

MCF-7/ERβ 

 
P value 

 

10-9 M 17β-estradiol 

 

1.53 ± 0.57 

 

1.42 ± 0.34 

 

0.92 ± 0.26  

 

0.016 

10-7 M tamoxifen 0.99 ± 0.17 1.0 ± 0.14 0.85 ± 0.14  0.1 (ns) 

10-7 M ICI 182,780 0.6 ± 0.22 0.55 ± 0.16 0.67 ± 0.22  0.3 (ns) 

Increase is related to the cell number of untreated cells (set to 1) at day 4 of the treatment. Mean 
values from 6 experiments ± standard deviations are shown. P-value denotes the significance of the 
difference between wt/GFP transfectants and ERβ-transfected MCF-7. ns= not significant. 
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        Figure 2 
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Figure 6
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