Luteinizing hormone in testicular descent
Jorma Toppari, Marko Kaleva, Helena E. Virtanen, Katharina M. Main, Niels E. Skakkebæk

To cite this version:
Jorma Toppari, Marko Kaleva, Helena E. Virtanen, Katharina M. Main, Niels E. Skakkebæk. Luteinizing hormone in testicular descent. Molecular and Cellular Endocrinology, 2007, 269 (1-2), pp.34. 10.1016/j.mce.2006.10.021. hal-00531902

HAL Id: hal-00531902
https://hal.science/hal-00531902
Submitted on 4 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Luteinizing hormone in testicular descent
Jorma Topparia, Marko Kaleva, Helena E. Virtanen, Katharina M. Main, Niels E. Skakkebæk

aDepartments of Physiology and Paediatrics, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland,
bUniversity Department of Growth and Reproduction, GR 5064, Rigshospitalet, DK-2100 Copenhagen, Denmark

Corresponding author:
Jorma Toppari
University of Turku
Kiinamyllynkatu 10
20520 Turku
Finland
Tel: + 358 2 333 7579
Fax: +358 2 250 2610
E-mail: jorma.toppari@utu.fi
Summary

A proper hypothalamus-pituitary-testis axis with normal androgen synthesis and action is a prerequisite for normal testicular descent. Various defects in this axis may result in cryptorchidism but endocrine abnormalities are rarely detected. Androgens regulate testicular descent but androgen action alone is not sufficient for normal testicular descent. The regulation of androgen production is influenced both by placental human chorionic gonadotropin (hCG) and pituitary luteinizing hormone (LH). There is evidence that the longer pregnancy continues, the more important role pituitary LH may have. INSL3 (insulin-like hormone-3) is suggested to be the main regulator of gubernacular development and therefore an apparent regulator of testicular descent. INSL3 production is also related to LH, and reduced INSL3 action is a possible cause for cryptorchidism. Cryptorchid boys have normal testosterone levels with slightly but significantly elevated LH levels as compared to healthy boys. This high gonadotropin drive may compensate for mild Leydig cell dysfunction in cryptorchidism.

Keywords: Luteinizing hormone; Testosterone; INSL3; Testicular descent; Cryptorchidism
Introduction

Development of normal male genitalia is a complex series of events including a unique process of testicular descent from intra-abdominal location into the bottom of the scrotum. Usually testes reach the scrotum during the last few weeks of pregnancy or soon after birth (Ghirri et al., 2002). However, disorders in this process are common and cryptorchidism (undescended testis) is the most common congenital abnormality of newborn boys affecting 2-9% of boys at birth (Boisen et al., 2004; Toppari and Kaleva, 1999). Seasonal variation and great regional differences in the incidence of cryptorchidism point to environmental effects behind the disorder (Kaleva et al., 2005a; Boisen et al., 2004).

There is evidence that testicular descent occurs in two phases, of which only the latter (inguinoscrotal) phase is androgen dependent (Fig. 1). This is suggested by the observation that hypogonadotropic hypogonadism and androgen insensitivity often result in cryptorchidism but usually only the inguinoscrotal descent has failed to occur and the testes are located in the inguinal region (Boehmer et al., 2001). The critical role of androgens in testicular descent is suggested also by the fact that a high percentage of cryptorchidism resolves spontaneously (Boisen et al., 2004) during the period of high serum gonadotropin and steroid hormone levels at the age of 1 - 3 months (Andersson et al., 1998).
human chorionic gonadotropin and luteinizing hormone

Gonadotropin-releasing hormone (GnRH) regulates the production of pituitary gonadotropins, FSH and LH, which are the main regulators of postnatal testicular action. LH stimulates Leydig cells to produce testosterone, while FSH regulates Sertoli cell function. In rodents, testosterone production starts independently from endogenous circulating gonadotropins and Leydig cells become dependent on gonadotropins shortly after birth (El-Gehani et al., 1998; O’Shaughnessy et al., 1998). Unlike in rodents, human fetal testis binds hCG (human chorionic gonadotropin) and physiologic levels of hCG stimulate testosterone production already at early pregnancy, at least from 14 weeks of gestation (Huhtaniemi et al., 1977). Because hypogonadotropic hypogonadism often results in cryptorchidism regardless of normal placental hCG production, endogenous fetal pituitary LH (luteinizing hormone) seems to be a more important regulator of fetal testosterone synthesis in late pregnancy (Quinton et al., 2001). The fact that hypogonadotropic hypogonadism is one of the reasons for cryptorchidism also contributes to the confusion in studies in which varying results have been reported about the endocrine status of cryptorchid boys, i.e. hypogonadotropic and hypergonadotropic patients have been mixed together. Hypogonadotropic hypogonadism is rare, whereas cryptorchidism is very common, and most cases have slightly elevated gonadotropin levels (Suomi et al., 2006).

Variant-LH (V-LH) is a common genetic variant of LH with two point mutations in its β-subunit gene (Pettersson et al., 1992). V-LH represents a biologically less active form of LH (Lamminen and Huhtaniemi, 2001) and it is associated with slower progression of
puberty in healthy boys (Raivio et al., 1996). Despite reduced biological activity of V-LH, the prevalence of V-LH was not higher among cryptorchid boys (26.9 %) as compared to healthy controls (26.1 %) but the proportion of boys with homozygous V-LH was two times higher in cryptorchid group (6.5 % vs. 2.8 %) (Kaleva et al., 2005b). Differently from the control boys, the prevalence of V-LH among cryptorchid boys increased steadily with gestational age (GA <37 weeks: 6.7 %; GA 37 – 39 weeks: 20.9 %; and GA 40-42 weeks 42.9 %). These results support the theory that the longer pregnancy continues, the more important role LH may have for testicular descent. The weaker V-LH is not as effective as wild type LH to stimulate normal testicular descent in late pregnancy. The increasing relative importance of pituitary LH, in comparison to hCG, is also supported by the finding that testosterone dependent penile growth is not affected in hypothalamic / pituitary dysfunction before the second half of gestation (Feldman and Smith, 1975), leading to micropenis but not hypospadias.

Decreased serum testosterone and LH levels have been reported in some studies on cryptorchidism (Bollerslev et al., 1986; Job et al., 1988) but endocrine abnormalities are not always detected. However, cryptorchidism is not one specific entity, but various forms of cryptorchidism (congenital with/without spontaneous descent, mild vs. severe, acquired cryptorchidism) might show distinct hormonal patterns which differ from each other (Suomi et al., 2006). In our study, a clear pattern of hormonal changes was seen in Finnish cryptorchid boys. Their inhibit B values were significantly lower and FSH values were significantly higher as compared to healthy controls. In addition, the effect of cryptorchidism on FSH and inhibit B levels correlated with the severity of the ailment.
Significantly lower testosterone levels were seen in severely and persistently cryptorchid boys whereas in milder forms of cryptorchidism normal testosterone levels were detected. However, cryptorchid boys had significantly increased LH as compared to controls. This high gonadotropin drive suggests a mild Leydig cell dysfunction in cryptorchidism. Moreover, we found reduced androgen bioactivity at three months of age in severe cryptorchidism (Raivio et al., 2003).

*Insulin-like hormone-3*

It is known, that the androgen receptor is expressed in the male reproductive tract and adequate androgen action is obligatory, but not sufficient alone, for normal testicular descent. High androgen levels in congenital adrenal hyperplasia do not induce ovarian descent. In male rat fetus, androgens cause the regression of the cranial suspensory ligament and regulate the gubernacular outgrowth together with INSL-3 (Emmen et al., 1998; Emmen et al., 2000). INSL-3 (insulin-like hormone-3, also known as relaxin-like factor (RLF)) is an apparent regulator of testicular descent in rodents. Male mice mutant for INSL-3 were cryptorchid (Zimmermann et al., 1999) whereas in female mice the overexpression of INSL-3 caused ovarian descent (Adham et al., 2002). LGR-8 (also known as GREAT) is a receptor for INSL-3 (Kumagai et al., 2002) and in mouse its mutation caused cryptorchidism similar to deletions of the INSL-3 gene (Overbeek et al., 2001). Studies performed in men suggest that INSL3 and its receptor LGR8 are also involved in testicular descent in human embryogenesis (Ferlin et al., 2003; Gorlov et al., 2002; Tomboc et al., 2000). In human, several polymorphisms in INSL-3 / LGR-8 genes
have been identified but deleterious mutations are only occasionally associated with cryptorchidism (Koskimies et al., 2000; Roh et al., 2003; Adham and Agoulnik, 2004).

INSL3 circulates in adult men (Bay et al., 2005; Ferlin and Foresta, 2005) which suggests that INSL3 has endocrine functions also in adulthood. INSL3 is a sensitive marker of Leydig cell function (Foresta et al., 2004) but its production is regulated by LH differently from that of testosterone (Bay et al., 2005). In rodents, INSL3 prevents apoptosis of germ cells during spermatogenesis (Kawamura et al., 2004). In our material cryptorchidism was associated with reduced INSL3 levels at the age of three months (unpublished data). A high gonadotropin drive together with reduced INSL3 levels suggests an impaired Leydig cell function and supports the theory of a mild primary testicular disorder at least in severe cryptorchidism.

Acknowledgements

This work was funded by Turku University Central Hospital, the Academy of Finland, Sigrid Jusélius Foundation, the Nordic Academy for Advanced Study, The Danish Medical Research Council, Svend Andersens Fond, the University of Copenhagen, the Novo Nordisk Foundation and the European Commission (contracts BMH4-CT96-0314, QLK4-CT1999-01422, QLK4-2001-00269, and QLK4-2002-0063).
References


Figure legends

Figure 1. Schematic presentation of testicular descent. The first part is called as transabdominal phase that is regulated by INSL3 through gubernacular development. The second part is inguinoscrotal phase that is mediated by androgens. Cranial mesonephric ligament is also known as cranial suspensory ligament or cranial gonadal ligament.
Fig. 1.

Cranial mesonephric ligament

Epididymis and ductus deferens

Testis

Gubernaculum

Abdominal wall

Testis

Gubernaculum

INSL3-DEPENDENT TRANSABDOMINAL PHASE

ANDROGEN-DEPENDENT INGUINOSCROTAL PHASE

Testis

Gubernaculum

Scrotum