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Gravity and magnetic data inversion for 3D

topography of the Moho discontinuity in the

northern Red Sea area, Egypt

Ilya Prutkin a,∗, Ahmed Saleh b

aDelft University of Technology, Netherlands

bNational Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt

Abstract

The main goal of our study is to investigate 3D topography of the Moho bound-
ary for the area of the northern Red Sea including Gulf of Suez and Gulf of Aqaba.
For potential field data inversion we apply a new method of local corrections. The
method is efficient and does not require trial-and-error forward modeling. To sepa-
rate sources of gravity and magnetic field in depth, a method is suggested, based on
upward and downward continuation. Both new methods are applied to isolate the
contribution of the Moho interface to the total field and to find its 3D topography.
At the first stage, we separate near–surface and deeper sources. According to the
obtained field of shallow sources a model of the horizontal layer above the depth of
7 km is suggested, which includes a density interface between light sediments and
crystalline basement. Its depressions and uplifts correspond to known geological
structures. At the next stage, we isolate the effect of very deep sources (below 100
km) and sources outside the area of investigation. After subtracting this field from
the total effect of deeper sources, we obtain the contribution of the Moho interface.
We make inversion separately for the area of rifts (Red Sea, Gulf of Suez and Gulf of
Aqaba) and for the rest of the area. In the rift area we look for the upper boundary
of low–density, heated anomalous upper mantle. In the rest of the area the field is
satisfied by means of topography for the interface between lower crust and normal
upper mantle. Both algorithms are applied also to the magnetic field. The magnetic
model of the Moho boundary is in agreement with the gravitational one.
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Computational methods: potential fields, Contact surface topography, Northern
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1 Introduction

The Red Sea is considered to be a typical example of a newly formed ocean.
Therefore, since the discovery of plate tectonics, a great number of studies
discussed its evolution as a key to the understanding of continental rifting
and the initiation of sea floor spreading (Drake and Girdler, 1964; Tramontini
and Davies, 1969; Makris et al., 1983; Gaulier et al., 1988; Meshref, 1990).
The northern part of the Red Sea appears to be characterized by oceanic type
crust, lying at a mean depth of 7 to 8 km, whereas the Moho is at a mean
depth of 10 to 13 km, and at 32 km closest to the coastline (Gaulier et al.,
1988; Makris et al., 1991; Rihm et al., 1991). In the Gulf of Suez, the top of the
crust is at a depth of 5 km. The Moho is found at a relatively shallow depth of
18 to 20 km and at a mean depth of 30 to 35 km both under southern Sinai and
Eastern Desert plateaus (Gaulier et al., 1988; Saleh et al., 2006). Refraction
data indicate the Moho depth of 35 to 40 km in the areas not affected by
the rifting event (Ginzburg et al., 1981; Makris et al., 1983; Gettings et al.,
1986; El-Isa et al., 1987). The anomalous nature of the upper mantle (8.0
km/s) and the thinning of the crust beneath the northern Red Sea rift are
well known from the results of seismic and gravity studies. The density values
of the different geological sedimentary units and the megastructures (the crust
and the upper mantle) of the present study are based on the P-wave velocity
distribution in the northern Red Sea and the Gulf of Suez (Gaulier et al.,
1988).

Our goal is to retrieve the 3D geometry of the Moho interface for the northern
Red Sea area by means of two new algorithms for gravity and magnetic data in-
version and for separating sources in depth. Till now the usual approach to find
3D topography of a contact surface is forward gravity modeling. One changes
an initial model in interactive way to diminish gravity residuals. Recently this
approach has been applied, for instance, to study a geological structure of the
northern Red Sea area in Saleh et al. (2006) using the package IGMAS (Götze
and Lahmeyer, 1988) for interactive gravity modeling. The disadvantages of
the forward modeling approach are following. One changes the model of the
geological section from one profile to another, but changes in one vertical sec-
tion influence the gravity field along other profiles. Each section takes into
account a lot of geological and seismic a priori information, but the number
of parameters, per section, is much larger, than the number of profile obser-
vations, it is not reasonable from the viewpoint of stability. The problems of
non-uniqueness and instability of gravity data inversion are not likely to be
solved by a forward modeling approach.

A different approach is applied by Tirel et al. (2004) to obtain the Moho to-
pography to the north of Crete, the linearized inverse problem is solved by
means of the Fourier Transform (Parker, 1972; Oldenburg, 1974). In our inves-
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tigation we use quite a different procedure. We solve an integral equation for a
function determining geometry of an unknown contact surface. The kernel of
this equation, evaluating the gravitational effect of a contact surface, depends
in a nonlinear way on the sought function. The 3D inverse problem is solved
in a full (nonlinear) statement by means of the method of local corrections
(Prutkin, 1983, 1986) without any linearization. This method does not make
use of nonlinear minimization, which reduces the computer calculation time by
an order of magnitude. The local corrections method takes the non-uniqueness
and instability of the inverse problem into account.

Our method of inversion is of the same type, as the method of Cordell and
Henderson (1968). A solution is calculated from gravity data automatically by
successive approximations, without a time-consuming trial-and-error process.
Like in the algorithm of Cordell and Henderson (1968), density contrast and
the position of a horizontal reference plane should be specified to obtain a
unique solution. We apply a different approach to form a successive approx-
imation. Moreover, we take into account instability of the inverse problem
by means of a sort of regularization. We have mentioned only a few different
approaches for gravity data inversion. A detailed overview of the literature
on the potential field inverse problem can be found in Blakely (1995). In the
algorithm of Cordell and Henderson (1968) density contrast is assumed to be
uniform. In our approach it can be different in every point; an elementary
column is not homogeneous in the vertical direction above and below the un-
known contact surface; moreover, we apply the method of local corrections
both for gravity and magnetic data inversion.

The paper is organized as follows: we present new mathematical algorithms
for isolating sources in depth and for 3D gravity and magnetic data inversion,
and then both algorithms are applied to the northern Red Sea area to extract
the effect of the Moho interface and to find its 3D topography. We start with
our mathematical theory; it is presented in the first section. As a preliminary
pre–processing of gravity and magnetic observations, the new algorithm is sug-
gested to extract the effect of the contact surface sought. The main idea of the
algorithm is to eliminate sources from the Earth’s surface up to a prescribed
depth by means of upward and downward continuation. In the same section
2, the method of local corrections applied to a 3D contact surface topography
recovery is described. Next, we start with application of our algorithms for the
northern Red Sea area. In section 3 we separate sources of the gravitational
field into shallow and deeper ones and construct a model of the near–surface
layer. Then we isolate the gravitational effect of the Moho interface and find
its 3D topography. In section 4 we make the same based on magnetic data.
Section 5 contains the main conclusions of our study.
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2 Mathematical theory

The main purpose of the algorithm to separate sources in depth is to find
the part of the observed field, which is harmonic above a given depth h. We
can treat this function as an effect of the half–space below the depth h. To
find such a function means to eliminate all sources located in the horizontal
layer from the Earth surface up to a prescribed depth. The algorithm allows
to separate the effects of shallow and deeper objects and to extract the gravity
signal of sources located in horizontal layer between given depths h1 and h2.

The algorithm is based on upward and downward continuation (Vasin, Prutkin
and Timerkhanova, 1996; Martyshko and Prutkin, 2003). There are two prob-
lems to be solved. Firstly, we continue the data upward to the height h to
diminish the influence of the sources in the near–surface layer. This operation
causes the main errors in the vicinity of the boundary of the area. To reduce
them we need some model of the regional field to subtract it from the observed
field prior to upward continuation. Secondly, we continue the obtained func-
tion downward to the depth h, i.e. to the distance 2h in downward direction.
The problem of downward continuation is a linear ill–posed inverse problem,
therefore we must use some regularization.

The function, which we treat as a regional field, is assumed to be harmonic
in the area (in two–dimensional sense) and to have the same values at the
boundary of the area, as the observed field:







∆2f = ∂2f
∂x2 + ∂2f

∂y2 = 0 within area S

f = ∆g on its boundary ∂S
(1)

If we subtract the values of this function, the residual field will be equal to
zero at the boundary of the area, therefore no errors are introduced, when
we integrate the residual field while upward continuation along the restricted
area. According to the properties of harmonic functions, this function has no
extremum within the area, so we create no false anomalies. Besides, as it is
known from calculus of variations (Gelfand and Fomin, 2000), a solution of
the problem (1) provides a minimum of the following functional:

J(f) =
∫∫

S











∂f

∂x





2

+





∂f

∂y





2




 dx dy −→ min, (2)

therefore, we obtain the smoothest possible function with given values on the
boundary. All these properties allow us to regard this function as a model of
the regional field.
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After subtracting the suggested model of the regional field we make upward
continuation of the residual field by means of the following formula:

1

2π

∫∫

h

((x − x′)2 + (y − y′)2 + h2)3/2
U(x, y, 0) dxdy = U(x′, y′, h) (3)

The formula (3) gives a solution of the Dirichlet problem: to find a harmonic
function in the upper half–space with given values on the boundary (on the
plane z = 0).

At the second step we continue the obtained function downward to the depth
h, i.e. to the distance 2h in downward direction. To do this, we apply a formula
similar to (3):

1

2π

∫∫

h1

((x − x′)2 + (y − y′)2 + h2
1)

3/2
U(x, y,−h) dxdy = U(x′, y′, h) , (4)

where h1 = 2h. Formula (4) provides a function, which is harmonic in a half–
space above the plane z = −h. But this time we treat the formula as an
integral equation: the right hand is given, and we have to find the unknown
function U(x, y,−h).

Although the influence of shallow sources is diminished after upward contin-
uation, the rest of them is still presented in the field, so we make downward
continuation through the sources. It should be emphasized, that the problem
of downward continuation is a linear ill–posed inverse problem, therefore we
must use some regularization. Since the integral operator A in (4) is self–
adjoint and positive, we apply the Lavrent’ev’s approach (Lavrent’ev et al.,
1986). If we write (4) in the following form: Au = uh, u is an unknown field on
the level z = −h, uh is the obtained field on the height h, then the Lavrent’ev’s
regularization gives: (A + αI)u = uh , where I is identity operator, α – a reg-
ularizing parameter. Therefore, after discretization no matrix multiplication
is required.

At last we calculate the field on the Earth’s surface z = 0 using a formula,
similar to (3). We obtain a part of the field, which is harmonic up to the depth
h, so we could treat it as an effect from the deeper sources.

To evaluate the gravitational effect of a contact surface, we consider a following
model of a two–layer gravitational medium in 3D space. The model consists
of two layers of a constant density σ1 and σ2, separated by the surface S.
Suppose that, in the Cartesian coordinate system, the plane xOy coincides
with the Earth surface, and the axis z is directed downward. The upper layer
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is bounded above by the horizontal plane z = h−, h− > 0, and below by the
surface S; the lower layer is bounded above by the surface S and below by the
plane z = h+; at z < h− and z > h+ masses are absent. The unknown contact
surface is determined by the equation z = z(x, y). It is assumed that z(x, y)
is a single–valued limited function, and that for a certain H

lim
|x|→∞
|y|→∞

|z(x, y) − H| = 0, (5)

i.e., the surface S has a horizontal asymptotic plane z = H . If we subtract
the effects of two Bouguer plates, we find, that the field of our two–layer
model accurate to a constant term is the field of masses contained between
the surface S and the plane z = H , with a density ±∆σ, where ∆σ = σ2 − σ1

is the density contrast at the contact surface. The field of such an object is
evaluated by the formula

∆g(x′, y′, 0) = G ∆σ

∞
∫

−∞

∞
∫

−∞





1
√

(x − x′)2 + (y − y′)2 + z2(x, y)

−
1

√

(x − x′)2 + (y − y′)2 + H2



 dx dy, (6)

where G is the gravitational constant. We can regard formula (6) as a nonlinear
integral equation of the 1st kind with respect to the unknown function z(x, y).
Suppose that the field at the Earth surface is given on a rectangular grid
{xi, yj}. We divide a volume between the surface S and the plane z = H into a
number of elementary prisms, for each prism the projection of its center onto
the plane xOy coincides with some observation point. The mean heights of
the prisms are taken as unknown parameters. Their number equals exactly to
the number of observations N . Denote by K(x′, y′, x, y, z(x, y)) the integrand
in (6). This expression was refered in (Snopek and Casten, 2006) as the gravity
attraction of a linear, vertical mass. It has been suggested there to apply it
as an approximation of the exact fomula for the prism gravity. It means, that
while discretizing (6) by numerical integration we use one–point cubature
formula for each elementary prism, which gives

c G ∆σ
∑

i

∑

j

Ki0j0(zij) = Ui0j0 , (7)

where c is the weight of the cubature formula, zij = z(xi, yj), and

6



Page 7 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

Ui0j0 = ∆g(xi0, yj0, 0) , Ki0j0(zij) = K(xi0 , yj0, xi, yj, zij).

To increase the accuracy one could apply for discretisation (6) Gauss cuba-
ture, in this case each term in (7) will be substituted by several similar ones,
corresponding to the same zij .

Our goal is to develope an iterative procedure for solving the system of non-
linear equations (7). Suppose that zn

ij are the values of the unknown function
obtained at the n-th step. For the corresponding solution of the direct problem
we introduce the notation

Un
i0j0 = c G ∆σ

∑

i

∑

j

Ki0j0(z
n
ij). (8)

The method of local corrections is based on the fact that the variation of
the field at a certain point is affected mostly by the variation of the part of
the object boundary closest to this point. At each step we try to reduce the
difference between the given and the approximate values of the field at a given
node solely by modifying the value of the unknown function at that node. If
the value of the unknown function in one point only has been changed, then
the sum in (8) for the next iteration differs only in one term. Assuming that
in the chosen node Un+1

ij = Uij and subtracting (8) from the similar equality
corresponding to the (n + 1)-th step, we obtain the fundamental equation to
find the next approximation (Prutkin, 1986):

G ∆σ
(

Kij(z
n+1

ij ) − Kij(z
n
ij)

)

= α
(

Uij − Un
ij

)

. (9)

The coefficient α in the right hand of (9) is introduced to slow down the change
of the model.

It turns out that, in the case of a contact surface, Eq. (9) can be converted to
a very simple form. Indeed, considering Eq. (6), we have

Kij(z
n
ij) = 1/zn

ij − 1/H (10)

Using (10), we rewrite Eq. (9) as

G ∆σ
(

1/zn+1
ij − 1/zn

ij)
)

= α
(

Uij − Un
ij

)

and finally
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zn+1

ij =
zn

ij

1 + αszn
ij

(

Uij − Un
ij

) , (11)

where s = (G∆σ)−1. According to (11), several arithmetic operations are
sufficient to obtain the next successive approximation at each point of the
grid. We have to store only the vector of unknowns of the same length N as
the length of the observations vector. The full (nonlinear) inverse problem is
solved without any linearization, and we don’t need to store some matrix of
the size N × N .

It is known, that for the fixed values of the density contrast ∆σ and the
depth to the asymptotic plane H , a solution of the inverse problem for a
contact surface is unique. In the same time, taking different values of these
parameters, one could obtain different solutions causing the same gravity field.
In (Prutkin, 1986), a family of contact surfaces is presented, which generate
with different values of ∆σ and H the same field, as a point source.

Eq. (6) is an integral equation of the 1st kind, this problem is ill–posed and
requires regularization. Diminishing the coefficient α in (11), we can prevent
highly oscillating solutions, therefore, this factor is really similar to a regu-
larization parameter. The choice of the regularization parameter decides how
well the solution fits the data. To find a suitable regularization parameter, we
use the method of residuals (Lavrent’ev et al., 1986), which exploits informa-
tion about data noise: we look for the smoothest possible solution, which field
approximates the given data with the same accuracy as the data noise level.

Due to the fact that our approach to inversion is local, we could take a different
value of the density contrast at each grid point. One should include a function
of two variables ∆σ(x, y) into the integrand of Eq. (6), then use factors ∆σij =
∆σ(xi, yj) in the left hand of (7) and substitute the coefficient s in (11) by
sij = (G∆σij)

−1. The same is valid for the depth to the asymptotic plane
H . Sometimes it is reasonable, to divide the whole area into subareas and to
use different values of H and ∆σ for each one. Within the method of local
corrections it is also possible, which is demonstrated in the next section.

3 Gravity data inversion

A considerable amount of gravity data is now available to unravel the gross
crustal structure of the Red Sea region. In order to investigate the structure
of the northern Red Sea rift and Gulf of Suez, a new Bouguer gravity anomaly
map has been prepared. It utilizes all available gravity data: Bouguer grav-
ity data of the Egyptian General Petroleum Company published as a set of
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Bouguer maps of Egypt at 1:500,000 scale in 1980; gravity surveys of the Gulf
of Suez, Sinai and the Eastern Desert conducted by the Sahara Petroleum
Company (SAPETCO) and PHILIPS Company between 1954 and 1958; ma-
rine gravity data in the northern Red Sea measured by the research vessel
”Robert D. Conrad” to the north of 26◦ N in 1984. All the data of these sur-
veys were compiled, classified and ranked according to instrument sensitivity
and measurement density. More details on how the Bouguer map was compiled
can be found in (Saleh et al., 2006). The resulting Bouguer map is shown in
Fig. 1.

Fig. 1.

The calculated Bouguer gravity anomaly is reduced to sea level and corrected
for mass effects of topography with the standard density of reduction 2670
kg/m3. The general trend of the Bouguer gravity anomalies is northwest–
southeast. The anomaly increases in magnitude with a decrease in the relief
of the topography and attains its maximum of +95 mGal along the axis of
the Red Sea rift floor.

The main goal of our investigation is to extract the gravity signal from the
Moho boundary and to find its 3D topography. At the first stage, we separate
near–surface and deeper sources by means of the algorithm of upward and
downward continuation described in section 2. Gravitational effects of shallow
and deeper sources are shown in Fig. 2.

Fig. 2.

According to the obtained field of shallow sources a model of the horizontal
layer above the depth of 7 km is found using the method of local corrections
from section 2, which includes a generalized density interface between light
sediments with a mean density value of 2300 kg/m3 and crystalline basement
with density of 2750 kg/m3. Its depressions and uplifts correspond to known
geological structures. We present in Fig. 3 a position of the obtained contact
surface along a profile 28◦ of northern latitude. Presented is a depression of the
light material, then an uplift of dense rocks near Gebel El Zeit, a depression
of the light (sedimentary) material below the Gulf of Suez, an uplift of dense
material below Sinai Peninsula, a depression below the Gulf of Aqaba, then
an uplift of dense rocks near the coast of Saudi Arabia.

Fig. 3.

At the next stage, we isolate the effect of very deep sources (below 100 km)
and sources outside the area of investigation. We apply again the algorithm
described in section 2. This time the part of the residual field has been found,
which is harmonic above the depth of 100 km. A possible source of the positive
anomaly could be an uplift of astenosphere. After subtracting this field from

9
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the total effect of deeper sources shown in Fig. 2, we obtain the contribution
of the Moho interface. The gravitational signal from the half–space below 100
km and the effect of the Moho boundary are presented in Fig. 4.

Fig. 4.

Using the obtained residual field as a given data, we solve the inverse problem
for a 3D topography of the Moho boundary. The method of local corrections
is applied, which is described in section 2.

We make inversion separately for the area of rifts (Red Sea, Gulf of Suez
and Gulf of Aqaba) and for the rest of the area. In the rift area we look for
the upper boundary of the low–density, heated anomalous upper mantle with
density of 3100 kg/m3. We assume that the ambient medium has a horizontally
layered structure, it consists of the layer with density 2750 kg/m3 above the
depth of 20 km, the layer with density 2900 kg/m3 between 20 and 30 km
and the layer with density 3250 kg/m3 below 30 km. If the upper boundary
of the anomalous mantle intersects both mentioned layers, it has a density
contrast with the ambient medium of 350 kg/m3 above the depth of 20 km,
200 kg/m3 between 20 and 30 km and -150 kg/m3 below 30 km. The depth to
the asymptotic plane H (see section 2) equals to 50 km. The found topography
is shown in Fig. 5, the altitude above the depth of 30 km is presented, +17
km means the depth to the density interface of 30 - 17 = 13 km, +2 km - the
depth of 30 - 2 = 28 km.

In the rest of the area the field is satisfied by means of a topography for
the interface between material with density 2900 kg/m3 (lower crust) and
3250 kg/m3 (normal upper mantle). Density contrast amounts 350 kg/m3, the
depth to the asymptotic plane is equal to 30 km. The obtained 3D topography
is also presented in Fig. 5, again variations relative the depth of 30 km are
shown.

Fig. 5.

We note that the density contrast ∆σ and the depth to the asymptotic plane H
are different in different subareas and the ambient medium is not homogeneous
in the vertical direction above and below the unknown contact surface, which
is possible within the method of local corrections.

The amplitude of the residual field is less than 2 mGal. The main features of
the obtained topography are quite in agreement with seismic information and
results of previous gravity modeling (Saleh et al., 2006).

10
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4 Magnetic data inversion

A new aeromagnetic map was compiled for both the Gulf of Suez and the
northern Red Sea based on Cochran et al. (1986); Meshref (1990). The total
magnetic intensity data resulting from different aeromagnetic surveys have
been compiled and reduced to one set of data. The field has been reduced to
the pole (Baranov, 1957), a regional magnetic effect has been subtracted (see
Saleh et al. (2006)). Magnetic data is available for a smaller area, than in the
gravitational case. The resulting total magnetic intensity data reduced to the
pole is shown in Fig. 6.

Fig. 6.

We apply the algorithm of upward and downward continuation from section
2 to separate the effects of shallow and deeper sources. The Curie isotherms
in the area are located above the depth of 15 km (Morgan et al., 1985), so we
don’t need to isolate the effect of very deep sources like in the gravitational
case. The effect of deeper sources is attributed to variations of the Moho
boundary topography. This effect, which we regard as a contribution of the
Moho interface to the total field, is also presented in Fig. 6.

The model of the section is assumed, which consists of two layers: the up-
per one is magnetic and homogeneous (crust), the lower one is non–magnetic
(heated anomalous upper mantle). An uplift of the non–magnetic mantle leads
to magnetic crust thinning, which results in negative values of magnetic field.

If we put in Eq. (6) magnetization instead of density and apply the Poisson’s
relation (Blakely, 1995), we obtain an integral formula, which evaluates the
magnetic field of the homogeneously magnetized layer contained between the
surface with equation z = z(x, y) and the plane z = H . This formula together
with the fundamental equation to find the next approximation (9) provides
the method of local corrections formula for the magnetic case analogous to
(11).

Using the field of deeper sources shown in Fig. 6 as a given data, we solve
the magnetic inverse problem for a 3D topography of the Moho boundary
by means of the method of local corrections. The obtained topography is
presented in Fig. 7. To make the magnetic model of the Moho topography
comparable with the gravitational one, again the altitude above the depth of
30 km is presented; +17 km means the depth to the interface of 30 - 17 = 13
km.

Fig. 7.

From our viewpoint, there are similarities between our gravitational and mag-
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netic models of the Moho interface.

Both models agree well with the P-wave velocity distribution in the northern
Red Sea and the Gulf of Suez (Gaulier et al., 1988). The gravitational model
is also supported by refraction data in the areas not affected by the rifting
event (Makris et al., 1983; El-Isa et al., 1987). The Moho topography magnetic
model shows a poor flattening especially in the eastern region (e.g., Gaulier
et al. (1988); Saleh et al. (2006)). The present results are in good agreement
with the geothermal gradient values in the Red Sea (Cochran et al., 1986). The
relatively low density of the anomalous upper mantle (3100 kg/m3) of the Red
Sea rift, as deduced from the gravity modeling, indicates the possible presence
of partial melting in the upper mantle. The size of the area of anomalous
upper mantle suggests that a large scale asthenospheric upwelling might be
responsible for the subsequent rifting of the Red Sea. As a possible result
of pressure release and convection heat, indicating a more advanced stage of
rifting taking place in the northern part of Red Sea rift (which is interpreted as
evidence for updoming due to the sea floor spreading in the central Red Sea),
the crust becomes more oceanic in its nature. These results, which have been
constrained by seismic measurements and confirmed by gravity and magnetic
modeling, are in agreement with Cochrans concept of the northern part of the
Red Sea (Cochran and Martinez, 1988; Saleh et al., 2006).

5 Summary and conclusions

Two new algorithms have been suggested to extract the signal from a contact
surface and to find its 3D geometry. Both algorithms are applied to gravity
and magnetic data for the area of the northern Red Sea including Gulf of Suez
and Gulf of Aqaba to recover the Moho boundary topography. The following
conclusions are drawn:

(1) A new algorithm has been suggested to eliminate potential field sources
from the Earth’s surface to a prescribed depth h, based on upward and
downward continuation. The solution of the 2D Dirichlet problem can
be used as a model of the regional field. Subtracting the regional field
from the observations prior to upward continuation allows integration
of gravity data in the restricted area, while ignoring any information
beyond the area of investigation. Downward continuation provides the
part of the field, which is harmonic above the depth h. The properties
of the integral operator give an opportunity to implement Lavrent’ev’s
regularization and to get rid of matrix multiplication. The algorithm has
been successfully applied to separate the effects of shallow and deeper
sources of gravity and magnetic field for the northern Red Sea area.

(2) The method of local corrections is developed to recover 3D topography
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of a contact surface. The method offers a simple and effective procedure
for solving the nonlinear inverse problem without any linearization. This
method does not make use of nonlinear minimization, which reduces the
computer calculation time by an order of magnitude. We solve an integral
equation for the function determining topography. We take into account
instability of the inverse problem by means of a sort of regularization.
The method of local corrections is applied for both gravity and magnetic
data inversion to retrieve the 3D topography of the upper boundary of
the heated anomalous mantle for the Red Sea rift area.

(3) The gravitational and magnetic models of the Moho interface are obtained
automatically without interactive forward modeling which dramatically
diminishes the time expenditure. Both models are in agreement with
seismic information and results of previous gravity modeling. There are
similarities between the obtained gravitational and magnetic models of
the Moho boundary. The uplift of the dense mantle and the thinning of
the magnetic crust can explain low–frequency part of both gravity and
magnetic field attributed to the Moho interface.
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Fig. 1. Bouguer gravity anomaly for Red Sea and surrounding region. Contour in-
terval is 10 mGal. Data are corrected for mass effects of topography using reduction
density of 2670 kg/m3.
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Fig. 2. Gravitational effects of shallow (left) and deeper (right) sources separated
by means of algorithm of upward and downward continuation from section 2.
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Fig. 4. Gravitational effects of very deep sources (below 100 km) and sources outside
area of investigation (left) and contribution of Moho interface (right).
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of region (right). It represents upper boundary of heated anomalous mantle with
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kg/m3) and normal upper mantle (density 3250 kg/m3) for rest of region.

18



Page 19 of 19

Acc
ep

te
d 

M
an

us
cr

ip
t

26

27

28

29

30

La
tit

ud
e

32 33 34 35 36

Longitude

-100 0 100 200 300 400 500 600 700 800 900 1000

nT

26

27

28

29

30

La
tit

ud
e

32 33 34 35 36

Longitude

250

250

300

350

350

400

400

400

450

450

450

500

500

500

550

55
0

550

550

100 150 200 250 300 350 400 450 500 550 600

nT

Fig. 6. Total magnetic intensity data reduced to pole (left) and magnetic field of
deeper sources (right) obtained using algorithm of upward and downward continu-
ation.
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Fig. 7. Magnetic model of the Moho topography. It is obtained using method of
local corrections from section 2 and represents interface between magnetic crust
and non–magnetic anomalous upper mantle.
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