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Abstract:

The Ronda Depression constitutes a Neogene intramontane basin located in the
External Zones of the Western Betic Cordillera. Major deformation structures affect
only the southwestern part of its sedimentary infill and consist of NNE-SSW and
WNW-ESE box folds that developed simultaneously. New gravity data reveal two
negative NNE-SSW elongated Bouguer anomalies, unrelated to basin depocenters, but
corresponding to the accumulation of low-density ductile Triassic basement rocks in the
core of antiforms or directly under the northwestern undeformed sedimentary infill. The
Subbetic basement is also deformed by Early Burdigalian to Serravallian NNE-SSW
folds and thrusts, although there is no clear continuity with those affecting the Late
Miocene sedimentary infill. The aim of this contribution is to describe in detail the Late
Miocene folds that deform the Ronda Depression, as well as to discuss the role of the
basement nature on their reactivation. The reactivation of the pre-Tortonian folds, due to

the heterogeneous distribution of evaporitic Triassic rocks in the basement as well as the
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presence of rigid limestones on the southwestern basin boundary, determined the

simultaneous orthogonal fold development that only evidence local deformation.

Key words: Neogene basin, gravity models, low density basement, fold reactivation.

INTRODUCTION

The behaviour of ductile rocks facilitates the presence of detachment levels
determining the style of deformation. Analogue modelling studies have focused on the
effects of different rheological rock properties in detachment features (Nilforoushan and
Koyi, 2007). Anomalous evaporitic rock accumulations located in these detachments
greatly condition antiform nucleation (Bonini et al., 2003; Marques, 2006) and may
favour the simultaneous development of oblique compressive structures, sometimes
even orthogonal to the main structural trend (Callot et al., 2007; Crespo-Blanc, 2008).
Such oblique folds and thrusts have usually been interpreted as a consequence of
overprinted deformation stages (Caritg et al., 2003; Mon et al., 2005). Moreover, the
accumulation of low-density evaporitic rocks at depth determines the development of
vertical movements related to salt tectonics producing diapiric structures. These may be
1sometric or elongated, depending on the origin, evolution and initial distribution of low
density rocks. Establishing the position of these low density evaporitic rock
accumulations is essential for understanding the superficial folded structures. Gravity is
a key for elucidating the position and geometry of such structures because they
commonly give rise to a negative Bouguer gravity anomaly (Jallouli et al., 2005; Pinto
et al., 2005).

Gravity studies in sedimentary basins also allow determining the thickness of the
sedimentary infill, related to irregularities of the basal unconformity and the presence of

recent deformation structures. In sedimentary basins, Bouguer anomaly minima are
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generally interpreted as depocenters, considering that basement rocks are denser than
the sedimentary infill. However, in basins with heterogeneous basements, the
superposed effect of basement and infill rocks may give rise to a complex Bouguer
anomaly pattern that needs to be more fully analysed in order to isolate each
contribution.

The External Zones of the Betic Cordillera (Fig. 1) are composed of Mesozoic
sediments with Triassic evaporitic rocks in the lower part of the sequence. In the
westernmost sectors, these Mesozoic rocks are deformed mainly by NE-SW to NNE-
SSW folds and thrusts rooted in the evaporitic rocks. However, fold and thrust trends
change frequently along the Cordillera; and interference structures have been
recognized, as in the eastern Betics (Sanz de Galdeano et al., 2006; Garcia-Tortosa et
al., 2007) and the central Betics (Crespo-Blanc, 2008). In any case, their simultaneous
development is still under debate because in areas like the External Zones of the Central
Betics, paleomagnetic studies (Platzman, 1992; Platt et al., 1995) have demonstrated a
late rotation, suggesting a constant initial fold orientation. In many cases, establishing
the age of deformation is complicated by the absence of a young sedimentary cover that
could be used as a marker.

The study of folds in Neogene-Quaternary basins allows us to characterize the
recent tectonic evolution simultaneous to relief uplift. Therefore, many research efforts
have been undertaken in the eastern (Groupe de Recherche Neotectonique de I’Arc de
Gibraltar, 1977; Marin-Lechado et al., 2007; Pedrera et al., 2007) and central (Ruano et
al. 2004) part of the Cordillera. In addition, gravimetry has been widely used in the
Eastern Betic Cordillera (Granada Depression, Morales et al., 1990; Campo de Dalias,
Marin-Lechado et al., 2007) and in the Guadix-Baza Depression (Sanz de Galdeano et

al., 2007) in order to determine sediment thickness distribution in Neogene-Quaternary
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basins. However, no detailed tectonic or gravimetric research has been reported to date
on the intramontane sedimentary basins of Western Betics.

The Tortonian—Messinian Ronda Depression, located in the External Zone of the
Betic Cordillera, constitutes a good example of an intramontane depression that can
provide new insights into the development of recent deformation consisting mainly of
medium to large scale folds, and very scarce meso and microfaults. The aim of this
contribution is to describe in detail the Late Miocene folds that deform its sedimentary
infill, as well as their relationship with the heterogeneous pre-Miocene basement
structure. New gravity data acquired for this study determine the distribution of
evaporitic rocks below the sedimentary infill, and allow us to discuss the role of their

distribution on the reactivation of basement antiforms that affect the Neogene infill.

GEOLOGICAL SETTING

The Betic-Rif Cordillera (Fig. 1) is an arc-shaped orogen that constitutes the
western end of the Mediterranean Alpine chain. The outer arc of this orogen consists of
a fold-and-thrust belt (External Zones), while the inner arc is composed of an
allochthonous pile of tectonic complexes including metamorphic rocks (Internal Zones).
The External Zones comprise the Subbetic and Prebetic zones, the latter outcropping
only in the eastern Betic Cordillera. The Internal Zones are formed by three main
complexes that are, from bottom to top: the Nevado-Filabride (outcropping only in the
Eastern and Central Betics), the Alpujarride and the Malaguide complexes. In addition,
the Dorsal and Predorsal complexes may be located in an intermediate position, in-
between the Flysch Units and other units of the Internal Zones.

The Betic-Rif arc geometry developed during the latest Oligocene and Early to

Middle Miocene as a result of the Eurasian-African plate convergence and the westward
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drift of the Internal Zones. In the Western Betic Cordillera, this setting caused the
northwestward thrusting and folding of the Mesozoic—Cenozoic rocks of the Subbetic
Units in front of the migrating Internal Zones.

Since the Miocene, sedimentary basins were individualised and record the
transition from marine to continental sedimentation as a consequence of relief uplift.
Deposition in the External Zones mainly took place in the Guadalquivir foreland basin
(Sanz de Galdeano and Vera, 1992; Viseras et al., 2004), and was conditioned by huge
olistostromic masses from the frontal part of the External Zones. At the beginning of the
Late Miocene, several piggy-back basins were individualized from the Guadalquivir
foreland basin (Sanz de Galdeano and Vera, 1992), during the development of the
Subbetic fold and thrust belt (Roldan-Garcia, 1995; Ruano et al., 2004; Crespo-Blanc,
2007), with different sedimentary and tectonic signatures, due to the northwestward
progression of their mobile basement.

The Ronda Depression (Fig. 1) constitutes one of the largest piggy-back basins
in the Western Betics. It is located over the northwesternmost Subbetic Units with
continuous structure, the Subbetic Chaotic Complexes and the Flysch Units. Subbetic
Units are formed by Triassic to Middle Miocene sedimentary rocks with local
intercalations of igneous rocks. The Subbetic structure in this region is described by
Crespo-Blanc and Campos (2001) as a NW-vergent fold-and-thrust belt, post-Early
Burdigalian in age. Within the Betic External Zones, Keuper Triassic levels have been
traditionally considered as detachment levels where the main thrust structures are
generally rooted.

Towards the northwestern mountain front of the cordillera, Subbetic Units are
widely deformed and show a chaotic structure (Pérez-Lopez and Sanz de Galdeano,

1994). These Subbetic Chaotic Complexes are mainly composed of a Keuper Triassic
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matrix including post-Triassic blocks, some of them of Middle Miocene age, deformed
by the combined development of thrusts, slides, transcurrent faults and diapirism
(Lopez-Garrido and Vera, 1974; Calaforra and Pulido-Bosch, 1999; Pérez-Lopez and
Pérez-Valera, 2003).

Flysch Units crop out in the Betic Cordillera lengthwise along the contact
between the Internal and External Zones, mainly in the broad area of the Campo de
Gibraltar, and between the different Subbetic Units. The Mesozoic and Cenozoic
sediments that constitute these units are turbiditic clays and marls.

The sedimentary infill of the Ronda Depression (Fig.2), Late Miocene in age, is
divided into four formations (Serrano, 1979; Rodriguez-Fernandez, 1982). From bottom
to top these are: I) Gastor Formation, made up of sands, silts and heterogeneous
conglomerates of Tortonian age that lie unconformably over the Triassic basement
rocks in the northwestern border of the depression. II) Tajo Formation, formed by
heterogeneous conglomerates of pre-Late Tortonian age with clasts sourced from the
Subbetic and Flysch southern units. This formation lies unconformably over the Flysch
Units. III) Mina Formation, located conformably over the Gastor Formation and
composed of marls and sandy silts of Early Tortonian-Late Messinian age. It crops out
in the western half of the depression. IV) Setenil Formation, Late Tortonian-Late
Messinian in age, cropping out throughout the depression, except in the northwestern
part. It lies over basement rocks or Mina Formation sediments, although it could also be
in facies transition with this formation. Rodriguez-Fernandez (1982) differentiated two
members in this formation: a Limestone Member and a Calcarenite Member.

The Neogene sedimentary infill of the Ronda Depression lies unconformably
upon the External Zones and Flysch basement. The boundaries of the depression are not

conditioned by high angle faults such as those for many other basins of the Betic
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Cordillera, like the Granada Basin (Rodriguez-Fernandez and Sanz de Galdeano, 2006).
Only locally inside the Ronda Depression can we find NE-SW and NNW-SSE minor
normal faults, which do not reach cartographic scale. These brittle structures mainly
deform the Tortonian calcarenites of the Setenil formation and are concentrated in the

southern part of the basin.

ORTHOGONAL FOLDS IN THE RONDA DEPRESSION

The Neogene sediments of the Ronda Depression are deformed mainly by two
sets of NNE-SSW and WNW-ESE kilometre scale folds (Fig. 2). These structures have
a heterogeneous pattern of distribution and are mainly located in the southern and
southwestern parts of the Depression. In the eastern sector, outcrops are scarce because
the zone is extensively cultivated, and there is no significant relief due to the low dip of
the layers and the outcropping marls. In the northern part, however, fluvial incision
allows us to observe tilted Tortonian-Messinian calcarenites (Fig. 3A). Thus, folds
probably do not propagate through these regions and affect only the southwestern part
of the Depression.

The Salinas Fold is the major structure observed in the whole Depression. It is a
NNE-SSW box shaped antiform with a two-kilometre-wide crest. The dip of the flanks
(Figs. 2, 3 and 4) increases sharply, from 20° to 70°. This feature produces straight
boundaries in the topographic intersection that are not related to large NE-SW normal
faults, as suggested by previous authors (Serrano, 1979). The antiform culmination is
essentially flat, with dips lower than 20°. Therefore, the geometry of the fold could be
described as a box-fold without vergence (Fig. 3B). Although previous authors
(Rodriguez-Fernandez 1982) point to the local presence of some patches of Triassic

rocks cropping out in the core of the antiform, only Tortonian-Messinian calcarenites
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from Setenil Formation and some patches of Messinian marls have been distinguished
in this study. Six cartographic folds could be described running parallel to the Salinas
Fold, constituting a fold set that deforms an area 6 km long and 8 km wide (Figs. 2 and
3B). In addition, it is possible to identify minor folds with metre wavelengths and the
same orientation as the Salinas antiform, approximately N30°E. Their geometry is open,
with flanks dipping around 15-20°. These minor folds are fundamentally located in the
crest zone of the Salinas Fold and deform the calcarenites of Setenil Formation. It is not
possible to determine if they also deform the Late Messinian Limestone Member of the
Setenil Formation, because there are scarce outcrops of these rocks, and in all of them a
10° southeastward dip is observed.

The WNW-ESE Sierra de la Sanguijuela antiform (Fig. 2), situated SW of the
Salinas Fold, is parallel to the southwestern border of the Depression. Its shape
resembles that of the Salinas antiform and could be considered as the prolongation of
this fold, given that there are no interference structures between the two, although there
is a sharp change in fold axis orientation. There are no minor antiforms parallel to the
Sanguijuela antiform, in contrast to the Salinas one. On both sides of these folds there
are two synforms with the same orientation, NE-SW in the Salinas sector and WNW-
ESE in the Sanguijuela sector (Fig. 2 and 3B). Marls belonging to the Mina Formation
crop out in the core of these synforms.

The most recent rocks deformed by the kilometre scale box-folds are Tortonian-
Messinian calcarenites. The Depression contains no Pliocene deposits and the
Quaternary sediments are limited to non-deformed river channels. Although it is not
possible to determine the cessation of activity of these folds, field observations indicate
that both types of folding were simultaneously active in Late Tortonian to Late

Messinian times.
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GRAVITY ANOMALY AND DEEP STRUCTURE

A new gravity survey was performed in the Ronda Depression in order to
determine the sedimentary thickness and the deep geometry and nature of its basement.
Data were acquired along several profiles covering all the sedimentary infill and the
Depression boundaries. Measurement stations along profiles were spaced at an average
of 250 m. Gravity data were acquired using a Master Worden gravimeter, with a
maximum accuracy of 0.01 mGal. The measurement sites were located with an e-trex
Garmin GPS and a barometric altimeter with 0.5 m altitude precision. The
measurements were referenced to a base station of the I.G.N. national gravimetric
network, located in Malaga, in order to calculate the absolute gravity value. Data
acquisition was carried out in cycles of less than three hours in order to correct
accurately the instrumental drift, tide variations and barometric changes. Topographic
corrections were done using a digital terrain model with a grid of 10 m of cell size for
the first 1600 m, and 200 m thereafter, to a total distance of 22 km. The Bouguer
anomaly was calculated taking into account a standard density (d= 2670 kg/m3) similar
to the density of the Subbetic rocks that form the basement.

The heterogeneous basement lithology (and therefore density) of the region
made it impossible to isolate the residual anomaly associated with the Neogene
sedimentary infill of the Ronda Depression, and therefore constrain its thickness. At the
southern boundary the basement is formed by Subbetic limestones with a high density
contrast, whereas the northern basement comprises Triassic rocks and Flysch units with
density values that are similar to or lower than the sedimentary infill.

In the Bouguer anomaly map 1:1.000.000 (I.G.N., 1976) (Fig. 5.A.), values in

the southern part of the Ronda Depression increase progressively to the SE. However, in
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the western and northern parts, the isolines have a N-S direction, and anomaly values
increase gradually to the W. Changes in the direction of the regional anomaly signalled
by this Bouguer anomaly map are probably related to the deep crustal structure and
make it impossible to distinguish the anomaly related to the basement heterogeneities
and the variations in thickness of sedimentary infill. Therefore, a 2D model that
considers both sedimentary infill and shallow basement structures was made using the
Bouguer anomaly, with the GRAVMAG V.1.7. program of the British Geological
Survey (Pedley et al., 1993). A constant regional anomaly value due to the deep crustal
structures was taken into account.

The main features of the detailed Bouguer anomaly map of the Ronda
Depression (Fig. 5B) are two marked gravity minima observed in the middle and
northwestern parts of the depression. The southernmost one is elongated in NE-SW
orientation and reaches values of -88 mGal, while the minimum placed to the north
reaches -78 mGal. These minima are not detected in the regional gravity map of Spain
1:1.000.000 (I.G.N., 1976; Fig.5.A.) due to its scale and to the large distance between
measurements. There is a good correlation between the southernmost minimum and the
main structures of the Ronda Depression.

In sedimentary basins, minima are generally related to depocentres located on
synformal structures. Yet the correlation of the Bouguer gravity minima with the
Depression’s major structures evidences that the southernmost minimum is over the
Salinas antiform, which is the main antiform of the Depression (Fig.5.B.). In some cases
gravity minima could also be related to ancient depocentres that are inverted. However,
this is not the situation in the Ronda Depression, where the lower parts of the

sedimentary sequence are located in the core of the antiform. In other words, the gravity
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anomaly in this region allows us to determine the basement structure of the depression,
but does not enable us to estimate accurately the sedimentary infill geometry.

In order to integrate the surface geological data, a NW-SE gravity model
orthogonal to the main NE-SW folds was developed (Fig. 5C). The average density
assigned to each geological unit is related to the main lithology observed in the field
according to Telford et al. (1990): 2300 kg/m’ for the sedimentary infill, 2670 kg/m’ for
the Subbetic limestones, 2350 kg/m® for the Flysch sandstones, and 2000 kg/m’ for the
Triassic marls with gypsum. The anomaly values change gradually, with no sharp
variations at the boundaries of the sedimentary infilling. This fact, together with the
surface geological data, suggests that the borders of the depression are unconformities
and are not related with high angle faults. In the southern part of the Depression, the
Neogene sediments lie over Subbetic units with a continuous NE-SW structure.
However, northwest of the Salinas fold, the basement has a chaotic structure and there
are kilometre scale limestone blocks included in a Triassic matrix.

The thickness of the Neogene sedimentary infill is irregular and may attain 300
m according to the geological data and the gravity modelling, although this cannot be
proved because there are no clearly related residual anomalies. Moreover, the thickness
of Triassic rocks located at the base of the model cannot be established accurately due
to the lack of other geophysical data such as well logs or seismic profiles. However, it is
possible to determine the areas where these rocks are close to the surface and their
geometry. The gravity method can provide evidence of lateral contrasts in density, but
not the vertical contrast, as horizontal layers whose effect is a constant regional level

may be overprinted upon regional anomalies.

DISCUSSION
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In neotectonic studies, the precise dating of structures is essential for elucidating
the tectonic evolution of a region. The study of deformed intramontane sedimentary
basins is especially interesting, because it allows for precise estimations of the age of
recent tectonic structures. However, it is necessary to establish the mechanisms of
deformation in order to distinguish regional tectonic structures from local reactivations
that may lead to erroneous interpretations. In this way, the development of orthogonal
oriented structures, such as folds, should be analysed in detail in order to determine
their simultaneous development in a deformation stage, or the overprinting that would
provide evidence of two regional deformation stages. The presence of low density rocks
at depth is the main mechanism responsible for reactivation of earlier structures through
salt tectonics involving only local deformations. The Ronda Depression, affected by
irregularly distributed orthogonal folds, provides a good opportunity to investigate the
late development of folds and to discuss the implications thereof.

In the Western Betics, a main part of the brittle and ductile deformation of the
outcropping tectonic units took place before Tortonian, as rocks of Late Miocene age lie
unconformably over the deformed External Zones and Flysch Units. In addition,
deformation in these Late Miocene rocks is local and generally of low intensity,
consisting of tilting, gentle folds and very scarce faults with small displacements. The
NE-SW fold-and-thrust belt that determines the structure of the Subbetic basement (Fig.
6A) was developed in a post-Early Burdigalian deformation event (Crespo-Blanc and
Campos, 2001; Pérez-Lopez and Pérez Valera, 2007; Crespo-Blanc, 2008). In this stage,
accompanied by regional NW-SE compression due to the Eurasian-African plate
convergence, low density rocks were differentially accumulated at the core of the

antiformal structures.
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Gravity data acquired in the Depression allow us to discern the different nature
of the basement beneath the current Neogene sedimentary succession. This fact
conditions the heterogeneous distribution of the folds deforming the Late Miocene
infill. Subbetic limestones are identified continuously from the southern border of the
Depression up to its central part. In addition, northwards of the Salinas antiform, large
kilometre scale blocks of high density (Fig. 5C) are attributed to Jurassic limestones of
the Subbetic units, which may represent the Subbetic Chaotic Complexes. Bouguer
gravity minima point to areas of accumulation and the shallow position of the low
density Triassic rocks. These minima have NE-SW elongated shapes (Fig. 5B), similar
to the trend of the folds that deform the surrounding basement and the southern part of
the Depression. In the northwestern minimum, the gravity model suggests that Triassic
rocks are located directly under the undeformed sedimentary infill. However, the
southeastern minimum coincides with the core of the Las Salinas antiform (Fig. 5B and
(), suggesting that low density rocks were related to the fold development.

During Late Tortonian-Late Messinian, marine sediments of the Ronda
Depression were deposited in a progressive unconformity (Rodriguez-Ferndndez, 1982)
over the Salinas antiform due to the interference of sedimentation, erosion, and tectonic
processes (Fig. 6B). The development of box-fold geometries could be the consequence
of remobilization and uplift of previous thick Triassic rock accumulations (Fig. 6C)
simultaneous with the uplift of the Betic Cordillera and the transition from marine to
continental sedimentation. Other factors are needed to develop this type of fold in
compressional settings, as has been established using analogue models (Bonini, 2003):
the load due to the overlying sedimentary sequence, the presence of fluids and, indeed, a
sharp inversion of density in the sedimentary sequence. The combination of these

factors may condition the fold type: from type 1 (Bonini, 2003) localized above a thrust
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up to type 2, formed in front of the most external thrust. The development of box fold
geometries, as the Salinas-Sanguijuela antiform, is a transitional situation between these
cases.

Previous studies (Serrano 1979) have proposed a strictly diapiric origin of the
Salinas fold controlled by the presence of ductile Triassic rocks in its core. In any case,
the previous tectonic setting would have conditioned an early NE-SW elongated
accumulation of low-density rocks that determined the late reactivation of the fold. This
setting, where the fold orientation is inherited, may then be analysed to understand the
local deformations, but cannot be used to determine recent regional deformation stages.

The salt tectonics that occurred during the reactivation of the Salinas antiform
may be responsible for its geometry and location, featuring sharp boundaries, box-fold
shape without predominant vergence, and restricted deformation in the southeastern part
of the depression. The orthogonal development of the Sanguijuela fold was produced
roughly simultaneously to the formation of the Salinas fold. Both folds are connected
along an area of highly curved crest line showing none of the typical dome-and-basin
interference structures that are generally seen in orthogonal trending folds. The sharp
change in orientation in the southern part of the Depression may be due to the WNW-
ESE thick, rigid limestones of the southwestern boundary of the depression. The late
folds do not propagate outside the depression. The competent folded upper layer, made
up of the Jurassic limestones and Neogene sedimentary infill, accommodates the
southward pushing of the Las Salinas antiform by the development of the La
Sanguijuela antiform. Similar examples of fold development related to a high
accumulation of ductile Triassic rocks have been described by other authors in the Betic

Cordillera (Lopez-Garrido and Vera, 1974).
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The slightly deformed and unconformable Neogene sedimentary infill in the
Western Betic Cordillera suggests that the deformation is concentrated largely in
correspondence of deep rooted structures that only affect the frontal part. Piggy-back
basins like the Ronda Depression mainly underwent northwestward transport and uplift.
Crespo-Blanc and Campos (2001) considered the late folds to be open, deforming the
thrust planes that affect the basement of the depression. However, the continuity of the
folds affecting the surrounding basement with the folds observed in the Late Miocene
infill is not well constrained, and probably does not occur because field observations
give no evidence that the basal unconformity has been affected by these structures in the
basin boundaries. Thus, folds of the Late Miocene sedimentary infill are local, restricted

to the Ronda Depression and may not be used to date the regional deformation stages.

CONCLUSIONS

A detailed study of the Ronda Depression, including field geological and gravity
observations, has provided some insights for analysis of fold reactivation in a
framework of heterogeneity of the basement and sedimentary infill. An early
deformation stage during NW-SE African and Eurasian plate convergence affected the
basement during Early and Middle Miocene times and produced a NE-SW oriented
fold-and-thrust belt. During this stage, the accumulation of ductile low density Triassic
rocks, belonging to the Subbetic sequence, took place in the core of NW vergent folds.
Since the Late Miocene, the Ronda Depression may be considered a northward-moving
piggy-back basin, having experienced uplift, evidenced by the elevation of the
unconformable Tortonian-Messinian marine sediments, but scarce tectonic deformation.
The remobilization of this inherited and heterogeneous distribution of Triassic rocks is

evidenced by Bouguer gravity minima. The accumulation of low density basement
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rocks controlled the development of the Salinas box-shaped antiform, while the
simultaneously developed orthogonal Sanguijuela fold is determined by the competent
southern border of the basin.

Reactivation of basement folds by diapirism is one of the main mechanisms of
deformation of the sedimentary infill placed above low density basement rocks.
Although reactivated folds are generally elongated and may be interpreted as a
consequence of a new regional tectonic compressive deformation stage, several features
may be considered as evidence of the different mechanisms at work during their origin:
heterogeneous fold distribution; no dominant vergence and mostly box geometries.
Furthermore, this setting can give rise to the simultaneous development of folds with
orthogonal axes. These recent folds are formed by salt tectonics and should be analysed
with caution, as has been done in the Ronda Depression, because they document local

deformation stages only.
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FIGURES

Figure 1. Geological setting of the Ronda Depression in the framework of the Betic and
Rif Cordillera.

Figure 2. Tectonic sketch of the Ronda Depression. Cross sections of Fig. 3 and gravity
profile of Fig. 5c¢ are indicated. UTM coordinates are in kilometres.

Figure 3. Geological NW-SE cross-sections of the Ronda Depression. The position of
the cross-sections is marked in Fig. 2. Gravity data have been qualitatively taken into
account to constraint the deep structure. The legend is the same as in Fig. 2.

Figure 4. Panoramic view and orthophoto image of the Salinas Antiform. Photographs

show the high dip of the flanks in this box fold.
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Figure 5. Bouguer anomalies and gravity model: a. Bouguer anomaly map of Betic
Cordillera 1:1.000.000 (I.G.N. 1976); b. Bouguer anomaly map of Ronda Depression.
The modelled profile and the axial traces of the folds are drawn (in grey: minor open
folds; in white: Salinas and Sanguijuela folds); c. 2D NW-SE gravity model.

Figure 6. Tectonic evolution sketch of fold reactivation in the Ronda Depression. a)
Post-Early Burdigalian deformation event that determines the structure of the Subbetic
due to the NW-SE Eurasian-African plate convergence; b) During Late Tortonian-Late
Messinian, marine sediments of the Ronda Depression were deposited in a progressive
unconformity; c¢) Since Late Tortonian, remobilization and uplift of previous thick

Triassic rock accumulations simultaneous to the uplift of the Betic Cordillera.

1
Page 21 of 27



Figure 1

O

A\
etic

{\\\ D Cordillera

[36°N x Alboran Sea  36°NI

,\
N\
WS
894

Neogene sediments|
Flyschs

External Zones
Internal Zones
Variscan basement \\\4

SN

L)
LA

®SEVILLA

GIBRALTAR r }

»

N
A\
N

2

S

& W
N
A\\\\\\\:‘:g..
)P

< ¢/ = 2 o
q

M/‘ _,,?;”'.‘égé

=

(=

CAMPO DE

ALBORAN SEA

i

=

I:I Neogene basins

External Zones

&N Guadalquivir Olistostromic Complex

Subbetic Chaotic Complexes
| | Subbetic

Internal Zones

Malaguide Complex

Alpujarride Complex (p. Peridotites)

- Variscan Basement

Fig.1 Ruiz-Constan et al.

Alozaina, Predorsal and Dorsal Comp.

Page 22 of 27



Figure 2

[ Messinian |

Tortonian

Ronda Depression

0 10 k
|:| Quaternary sediments m
Subbetic
Setenil Formation
Subbetic Chaotic Complexes IZ' ! I Thrust ' Town
Mina Formation
Flyschs Undifferentiated contact Synform
N ) - Tajo Formation ~
N Dorsal Unit -~ Unconformity Antiform

- Gastor Formation g

Fig.2 Ruiz-Constan et al.

Page 23 of 27



Figure 3

229 Salinas antiform

Synform

Antiform

Thrust

Fig.3 Ruiz-Constan et al.

Page 24 of 27



Figure4d

Salinas antiform

Fig 4. Ruiz-Constan et al.

Page 25 of 27



BOUGUER ANOMALY mGal

5 ) E—— —
160 140 100 60 20 -20 -60 -100-120

4°W 2°W 0°

. Stations m Antiform \\ Boundary of the

depression
= Gravity profile W Synform

— - Observed
- 2300 kg/m’ ~7] 2670 kg/m’ / anomaly

Santes

- 5 5 _--~" Calculated
2350 kg/m 2000 kg/m [ anomaly

N
“%

X

mGal

=

— Tt

_ g WIS o
S oo S ';—}” —"",g?’_;}"
S e S I I I
I S e

i

s

km

Fig.5 Ruiz-Constan et al.

Page 26 of 27



Figure6

[a] Early-Middle Miocene
NW \ SE
*W"

[b]

Sedimentation

\

Since Late Tortonian

Betic Cordillera uplift

t ¢ t

T ——<
.
. . - -
Iberian Massif ——<_
= —

Fig6. Ruiz-Constan et al.

Page 27 of 27



