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Atmospheric effects on satellite gravity gradiometry data
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Abstract
Atmospheric masses play an important role in precise downward continuation and 
validation of satellite gravity gradiometry data. In this paper we present two alternative 
ways to formulate the atmospheric potential. Two density models for the atmosphere 
are proposed and used to formulate the external and internal atmospheric potentials in 
spherical harmonics. Based on the derived harmonic coefficients, the direct atmospheric 
effects on the satellite gravity gradiometry data are investigated and presented in the 
orbital frame over Fennoscandia. The formulas of the indirect atmospheric effects on 
gravity anomaly and geoid (downward continued quantities) are also derived using the 
proposed density models. The numerical results show that the atmospheric effect can 
only be significant for precise validation or inversion of the GOCE gradiometric data at 
the mE level.  

Keywords: satellite gradiometry, direct and indirect atmospheric effects, atmospheric 
density

1. Introduction
Satellite gravity gradiometry (SGG) is a technique by which the second order derivatives of 
the gravitational potential are measured based on differential accelerometry. The atmospheric 
masses below satellites affect SGG data. The Gravity field and Ocean Circulation Explorer 
(GOCE) [see e.g. Balmino et al. (1998, 2001), ESA (1999), Albertella et al. (2002)] is an 
upcoming satellite mission based on this technique, and it is expected to produce an Earth’s 
gravity field model with an improved resolution from space. The SGG data can directly be 
continued downward to the sea level for the local gravity field determination. Therefore it is 
necessary to consider the gravitational effects of the topography and static atmosphere to 
smooth the gravity field and simplify the downward continuation process. Temporal 
variations of the atmospheric density are beyond the scope of this paper, but such variations 
will be an obligatory part of data processing of GOCE as it was for GRACE as well 
[Flechtner et al. 2006]. These effects should also be considered if validation of the SGG data 
is of interest. The topographic effect has largely been investigated by many scientists and in 
different applications; see e.g., Martinec et al. (1993), Martinec and Vaníček (1994), Sjöberg 
(1998), Sjöberg and Nahavandchi (1999), Sjöberg (2000, 2007), Tsoulis (2001), Heck (2003), 
Seitz and Heck (2003), Wild and Heck (2004a, 2004b), Makhloof and Ilk (2005, 2006), 
Makhloof (2007) and Eshagh and Sjöberg (2008a, 2008b).   

* Manuscript
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Some primary assumptions are needed for considering the atmospheric effects. The 
atmosphere is usually assumed to be layered spherically above a sphere approximating the 
Earth surface. Also Moritz (1980), Sjöberg (1993, 1998, 1999, 2001), Sjöberg and 
Nahavandchi (1999) and Nahavandchi (2004) used spherical approximation of sea level and 
considered the topographic heights with respect to this sphere. Similar assumptions are 
considered for the atmospheric density through this study although we know that the semi-
major axis of the ellipsoidal Earth is 21 km longer than the semi-minor one, this 
approximation results an overestimation and an underestimation in the atmospheric effect at 
the poles and equator, respectively. In order to solve this problem the ellipsoidal harmonics 
should be used and more complicated formulation is needed which is not in scope of this 
paper neither. This matter was well investigated by Sjöberg (2006). 

Ecker and Mittermayer (1969) used an ellipsoidal approach to study the atmospheric 
gravitational potential and acceleration; they proposed a mathematical model for the direct 
atmospheric effect (DAE), which is well-known as the IAG (International Association of 
Geodesy) approach. Anderson et al. (1975) considered the effect of the atmospheric masses in 
physical geodesy problems and computed the global values of the atmospheric effect on 
gravity and the geoid. Sjöberg (1993) investigated the effect of terrain in the atmospheric 
gravity and geoid corrections, Sjöberg (1998) presented the atmospheric correction on the 
gravity anomaly, geoid and on the satellite derived geopotential coefficients. Sjöberg (1999) 
found some shortcomings in the IAG approach in atmospheric geoid correction and proposed 
a new strategy to solve them. Sjöberg and Nahavandchi (2000) investigated the direct and 
indirect effect of the atmosphere in modified Stokes’ formula and they showed that the DAE 
on the geoid can reach 40 cm. Novák (2000) presented a density model for the atmosphere 
based on a simple polynomial fitting and used that model to compute the atmospheric effect 
on the geoid. The polynomial function was used only for atmospheric mass density modeling 
within the topography, i.e., below the elevation of highest spot on the Earth (approximately 10 
km above the mean sea level). The atmospheric masses above 10 km elevation can be 
considered by using United States Standard Atmospheric model (USSA76)[United State 
atmosphere, 1976]. For more details about his method see e.g. Novák (2000). Sjöberg (2001) 
investigated the atmospheric correction and found that the atmosphere contributes with the 
zero-degree harmonic of magnitude of 1 cm on the geoid. Nahavandchi (2004) presented 
another strategy for the direct atmospheric gravity effect in geoid determination. He 
numerically compared his new strategy with old formulas in Iran and found 17 cm difference 
on the geoid between both formulas in that region, but as Sjöberg (1998) argued the direct 
effect is considerably reduced after restoring the atmospheric effect. Sjöberg (2006) showed 
that the atmospheric effect in geoid determination needs a correction for the geometry when 
applying the spherical approximation of Stokes formula. According to his conclusions the 
correction needed to the atmospheric effect in spherical Stokes formula varies between 0.3 
and 4.0 cm on the geoid at the equator and pole, respectively. Tenzer et al. (2006) considered 
the effect of atmospheric masses for Stokes problem with concentration on the direct and 
secondary indirect atmospheric effects.  They found the complete effect of the atmosphere on 
the ground gravity anomaly varies between 1.75 and 1.81 mGal in Canada, and the effects are 
mainly dependent on the accuracy of the atmospheric density model (ADM).  Novák and 
Grafarend (2006) proposed a method to compute the effect of topographic and atmospheric 
masses on spaceborne data based on spherical harmonic expansion with a numerical study in 
North America. 

In this paper, another approach to the atmospheric effect on the SGG data is proposed than 
that used by Novák and Grafarend (2006). The main difference is related to the used ADM. 
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We expand the atmospheric potential in spherical harmonics based on the Kunglia Tekniska 
Högskolan Atmospheric density model (KTHA) and we modify that model based on the 
USSA76 and compare it with the original KTHA. Finally, we propose a new KTHA 
(NKTHA) based on Novák’s atmospheric density model (NADM) and the KTHA. The DAE 
on the SGG are derived in orbital frames over Fennoscandia; and their statistics, based on 
different methods, are compared and discussed. Since the SGG can be continued downward 
using inversion of second order derivatives of the extended Stokes or Abel-Poisson integrals, 
we will formulate the internal type of the gravitational effect of the atmosphere on gravity 
anomaly and geoid (restoration of the atmospheric effects) as the results of the inversion. It 
should be mentioned that such gravitational effect, can be considered on the downward 
continued SGG data too. The paper is arranged as follows.

In the next section different ADMs including the NKTHA are introduced. In Sections 3 
and 4 we formulate the external and internal atmospheric gravitational potentials in spherical 
harmonics based on the KTHA and NKTHA, respectively. In Section 5 we explain how to 
compute the DAE on the SGG data in the orbital frame. Section 6 presents the formulas for 
the indirect atmospheric effects (IAE) on the gravity anomaly and geoid. Section 7 deals with 
numerical studies on the ADMs and DAE on the SGG data over Fennoscandia, and the article 
is ended by the conclusions in Section 8.  

2. Atmospheric density models (ADMs)
There are different models for the density of the atmosphere. One of the most well-known 
models was issued by NOAA (National Oceanic and Atmospheric Administration), NASA 
(National Aeronautics and Space Administration) and USAF(United State Air Force) as 
United States Standard Atmospheric model in 1976 (USSA76) [United State Standard 
Atmosphere, 1976]. This model is a complicated model depending on atmospheric pressure 
and molecular-scale temperature. For considering these parameters, the atmospheric masses 
(up to the height of 86 km), are divided into seven layers, and in each layer a molecular-scale 
temperature and pressure are defined according to some other mathematical models. 
However, this model is not preferred in geodesy, and simpler approximating models are 
sought. In the following we review two ADMs and present a new ADM which is formulated 
based on the two previous ADMs. 

2. 1 KTH atmospheric density model (KTHA)
Sjöberg (1998) assumed that the atmospheric density is laterally layered and changes only 
with elevation. This assumption is not so far from reality as the atmospheric density reduces 
by increasing height.  Based on the results of Ecker and Mittermayer (1969) which were 
derived from the US standard atmospheric density model presented in 1961 (USSA61) 
[Reference Atmosphere Committee, 1961], Sjöberg (1998) proposed the following ADM:

 a R
r

r


     
 

0 ,   (1)

where,  a r is the atmospheric density, R ( set to 6378137 m) is the Earth’s mean radius, R 

  r R+ Z is the geocentric radius of any point inside the atmosphere, , 0 =1.2227 kg/ 3m is 

the atmospheric density at the sea level, and   850 is an estimated constant.  We name this 
model KTHA. 
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2.2 Novák’s atmospheric density model (NADM)
The maximum value of the atmospheric density is at the sea level and decreases fast with 
increasing elevation. Novák (2000) proposed the following model to approximate the vertical 
behaviour of the atmospheric density (NADM):

 a r H H      
2

0 1 ,  (2)

where, -5-7.6495 10   m1 , -92.2781 10   m2 and H = r-R with 0   H <10 km. The 
other parameters of this model are the same as defined in previous section. As Novák (2000) 
mentioned his model fits the USSA76 with the accuracy of about 310 to up to 10 km above 
sea level. For higher elevations the USSA76 should be used.

2.3 New KTH atmospheric density model (NKTHA) 
We now propose the following model (NKTHA) for the atmospheric density, which in fact is 
a direct combination of the NADM and KTHA: 

 
 

a v
a

H H , H H

r ,R H
H , H H Z

r



       
        

 

2
0 0

0
0 0

1 0

(3)

where H0 =10 km and  a H 0 =0.4127 kg/ 3m is based on the NADM. By using this ADM we 

approximate the atmospheric density at higher levels by a simple mathematical model and it 
can be considered up to the satellite level. The parameter v=890 was derived based on a 
simple least-squares fit to the USSA76 elevations of above 10 km. 

3. Atmospheric potential based on KTHA
In this section we derive the atmospheric potentials considering the KTHA as the ADM. The 
atmospheric potential can be expressed according to the well-known Newtonian volume 
integral as 

   
Z

S

r 2
Q Qa a

Q
PQr

r dr
V P G r d

l

    ,               (4)

where, G is the Newtonian gravitational constant,  aV P stands for the atmospheric potential 

at point P,  a
Qr is the atmospheric density function at point Q (integration point),  is the 

full solid angle of integration, Sr  and Zr  are the topographic surface, and the upper limit of the 

atmosphere, PQl is the distance between computation point P and integration point Q. Qdr and 

d  are the radial and horizontal integration elements, respectively. In order to obtain the 
external atmospheric potential PQl1 is expanded into a Legendre series of external type as: 
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 
n

Q
n PQ

nPQ P P

r
P cos

l r r





 
  

 


0

1 1
.    (5)

where P Qr r is the geocentric radius of the computation point P, and PQ is the geocentric 

angle between P and Q. By substituting Eq. (5) into Eq. (4) and considering Eq. (1) as the 
ADM we have:

   
Z

S

r
a n 2
ext 0 Q Q n PQn 1

n 0 P r

R
V P G r dr P cos d

r


 


 

      ,   (6)

and after integrating radially  and regarding Sr R H   and Zr R Z   (where H is a function 

of position whereas Z is a constant) we obtain

     
n 3 n 3n 3

a
ext 0 n PQn 1

n 0 P

R Z H
V P G 1 1 P cos d

r n 3 R R

   


 

                      
  .   (7)

The two terms in square bracket can be expanded into a binomial series and eventually 
truncated, since the series is converging fast. In our investigation we consider the expansion 
to fourth order. Cf. Sun and Sjöberg (2001). Further simplifications yield

     
n 3

a
ext 0 n PQn 1

n 0 P

R
V P G F Q P cos d

r




 

     ,   (8)

where 

      Z H Z H Z H
F Q n n n

R R R

  
        

2 2 3 3

2 3
2 2 1

2 6
. (9)

According to the addition theorem of the fully-normalized spherical harmonics

     
n

n PQ nm nm
m n

1
P cos Y Q Y P

2n 1 

 
  , (10)

where  nmY P and  nmY Q  are the spherical harmonics at any point P and Q and

   nm n m nn mmY Q Y P d   


    4 , (11)

where  is Kronecker’s delta, we have 

     
n 1

n
a 2 a
ext 0 ext nmnm

n 0 m nP

R 1
V P 4 G R F Y P

r 2n 1




 

 
      

  ,             (12)

where
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      
2 2 3 3

a n0 nm n0 nm n0 nm
ext 2 3nm

Z H Z H Z H
F n 2 n 2 n 1

R 2R 6R

     
         , (13)

where nmH , 2
nmH  and 3

nmH are the spherical harmonic coefficients of H, 2H and 3H , 

respectively derived in a global spherical harmonic analysis of topographic heights. 
Considering in Eq. (12) that

eGM GR /  34 3 , (14)

where e  =5500 kg/ 3m [Novák and Grafarend, 2006] is the mean density of the Earth, and M 

is the Earth’s mass, we finally obtain

     
n 1

n
a a
ext ext nmnm

n 0 m nP

GM R
V P v Y P

R r




 

 
  

 
  , (15)

where

   a a0
ext extnm nm

e

3
v F

(2n 1)




 
. (16)

Equation (16) represents the spherical harmonic coefficients of the external atmospheric 
potential. The above formula is analogous to that obtained by Novák and Grafarend (2006). 
The only difference is related to the ADM, which leads to the following harmonic coefficients 
in Novák and Grafarend (2006):

       
2 2 3 3

a 2n0 nm n0 nm n0 nm
ext 2 3nm

Z H Z H Z H
F n 2 R n 2 n 1 2 R 2 R

R 2R 6R

                 
.

(17)

It is now worth to compare Eq. (17) with Eq. (13). By comparing the second order terms in 
those equations, we observe that there is R 596.55    in Novák and Grafarend’s model, 
while we have   850 in KTHA. Also, the coefficient of the third term in Eq. (13) can be 

written as     n n n         
22 1 1 , and as one can see, an extra term appears vs. 

Novák and Grafarend’s model. The constant terms of both formulas are not comparable as 
they are R 226623.09 22 and  2 722500 . However when the terms are divided by 6R 3 the 
effect of the third term is considerably reduced.  In comparison with Sjöberg (1998), we can 
say that, since Sjöberg’s emphasis was on the DAE of the gravity anomaly and geoid, the 
upper limit of the radial integral in Eq. (4) was set to infinity, and the internal type of 
Legendre expansion was used instead of Eq. (5), but in our case that we want to obtain the 
DAE on the SGG data we have to limit this upper bound to the specific value zr =6628137 m. 

It means that we assume the massive part of the atmosphere is below zr  level from the Earth’s 

mean sphere. It is also possible to consider the satellite elevation as this specific value. 

Now, consider the computation point to be below the atmospheric masses, in such a case 
the internal atmospheric potential should be formulated. Similar to the external atmospheric 
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potential formulation in spherical harmonics, we start with the Newtonian volume integral, 
Eq. (4) and consider Eq. (1) as the ADM (KTHA). If we expand the PQl1 into Legendre series 

of internal type 

 
n

P
n PQ

nPQ P Q

r
P cos

l r r






 
   

 


1

0

1 1
, (18)

and put it back into Eq. (4), after some further simplifications we have

   
Z

S

r
a n 1 n
int 0 P Q Q n PQ

n 0 r

V P G R r r dr P cos d


  

 

      . (19)

In a similar way as for the external atmospheric potential we obtain

   

   

 
n 2 n 2n 2 n

a P
int 0 n PQ

n 0

R r Z H
V P G 1 1 P cos d

n 2 R R

    

 

                       
  . (20)

If the two terms in the square bracket are expanded into a binomial series up to fourth order,  
after some simplifications we obtain 

       
n 2 n n

a aP
int 0 int nm nm

n 0 m n

R r
V P G F Q Y Q d Y P

2n 1

 

  

  
   , (21)

where

          2 2 3 3

a
int 2 3

Z H Z HZ H
F Q n 1 n 1 n

R 2R 6R

 
           . (22)

Again, spherical harmonic expansion of H and Z yields 

     
n

n
a 2 aP
int 0 int nmnm

n 0 m n

r1
V P 4 G R F Y P

2n 1 R



 

 
      

  , (23)

where

          a 2 2 3 3n0 nm
int n0 nm n0 nm2 3nm

n 1 n 1 nZ H
F Z H Z H

R 2R 6R

         
       
 

, (24)

and according to Eq. (14), we finally arrive at

     
n

n
a aP
int int nmnm

n 0 m n

rGM
V P v Y P

R R



 

 
  

 
  , (25)

where

   a a0
int intnm nm

e

3
v F

(2n 1)




 
. (26)
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This derivation is comparable with that obtained by using the NADM for the internal 
atmospheric potential in spherical harmonics yielding [Eshagh and Sjöberg, submitted]

      
2 2 3 3

a 2n0 nm n0 nm n0 nm
int 2 3nm

Z H Z H Z H
F n 1 R 1 n n 2 R 2 R

R 2R 6R

                 .

(27)

Novák (2000) proposed to use atmospheric shells with different densities (based on the 
USSA76) for generating the atmospheric potential between 10 and 86 km levels. The 
potential of such atmospheric shells can be considered as an additional value to the zero-
degree harmonic coefficient; see Novák (2000). On the contrary, there is no restriction in 
elevation for the KTHA, and it can theoretically be considered up to infinity. However the 
approximations used in generating the atmospheric potential may not be accurate enough for 
higher elevations based on this model. As Z in Eq. (9) is a constant it only contributes to the 
zero-degree harmonic. It is obvious that when increasing the elevation of the upper boundary 
of the atmosphere, the magnitude of this harmonic can increase unboundedly. In order to 
solve this problem we propose to use the following relation for the zero-degree harmonic 
coefficient of the atmospheric potential (which follows from Eq. 6 for n=0). 

   
a
ext

e

Z
v H

R

             

3

0

0

3
1

3
, (28)

where

H
H d

R





      
3

1
1

4
. (29)

The integral of Eq.(29) can be solved numerically.

4. Atmospheric potential based on the NKTHA
Now we consider the NKTHA that we proposed in Section 2.3. This model is a combination 
of the NADM and the KTHA. In the following we express how to use this NKTHA for 
formulating the external and internal atmospheric potentials in spherical harmonics. 

Inserting the NKTHA into Eq. (4) and considering Eq. (3) and the external type of 
expansion of PQ1 l  we obtain

       
0 Z

S 0

H r
a a n 2 a n 2
ext Q Q Q Q Q Q n PQn 1

n 0 P r H

1
V P G r r dr r r dr P cos d

r


 


 

 
      

  
    .           (30)

The ADM in the first integral in the square bracket is related the upper function of Eq.(3) and 
the second integral relates to the lower function.  Therefore the solution of the first term is the 
same as in Eq. (17). Considering the second part of Eq. (3) as the ADM above 0H , the 

solution of the second integral becomes

    
0

n 3n 3n 3R Z
0n 2 0 0

0 0 Q Q

R H

H R H HZ
H R H r dr 1 1 1

n 3 R R R

  
  



                         
 ,
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            (31)

Since this term is a constant w.r.t integration point Q in Eq. (31), it associates just with the 
zero-degree harmonic. The unitless spherical harmonic coefficients of the external 
atmospheric potential can thus be written in the following form

        a a
ext 0 ext 0 nnm nm

e

3
v F H G

2n 1
  

 
,           (32)

where  a
ext nm

F  was defined in Eq. (17),  and 

n 3n 3

0 0
n n0

H H1 Z
G 1 1 1

n 3 R R R

                         
.                (33)

Inserting Eqs. (33) and (17) into Eq. (32) and setting n0 0 n0Z H   we have

        
2 2

a 0 n0 nm 0 n0 nm
ext 0 2nm

e

H H H H3
V n 2 R n 2 n 1 2 R

2n 1 R 2R

                     
                

  n 3n 33 3
02 0 n0 nm 0 0

n03

HH H H HZ
2 R 1 1 1

6R n 3 R R R

                                   
,

            (34)
For generating the external atmospheric potential based on the NKTHA it is sufficient just to 
insert the harmonic coefficients generated according to Eq. (34) into Eq. (15).

We can also consider our new atmospheric model NKTHA to generate the internal type of the 
atmospheric potential. By considering Eq. (18) and Eq. (3) (the NKTHA) and reinserting into 
Eq. (4) we obtain

       
0 Z

S 0

H r
a n a n 1 a n 1
int P Q Q Q Q Q Q n PQ

n 0 r H

V P G r r r dr r r dr P cos d


   



 
      

  
   . (35)

The first integral in the square bracket is the same as in the internal type of the NADM and is 
also the same as Eq. (27). The second part can be written

    
0

n 2n 2n 2R Z
0n 1 0 0

0 0 Q Q

R H

H R H HZ
H R H r dr 1 1 1

n v 2 R R R

    
   



                          
 ,  (36)

and the harmonic coefficients of the internal atmospheric potential can thus be written 

        a a
int 0 int 0 nnm nm

e

3
v F H K

2n 1
  

 
, (37)
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where  a
int nm

F  is the same as in Eq. (27) and

n 2n 2

0 0
n n0

H H1 Z
K 1 1 1

n v 2 R R R

                           
. (38)

Finally we obtain

        
2 2

a 20 n0 nm 0 n0 nm
int 0 2nm

e

H H H H3
V n 1 R 1 n n 2 R 2 R

2n 1 R 2R

                        

  n 2n 23 3
00 n0 nm 0 0

n03

HH H H HZ
1 1 1

6R n v 2 R R R

                                   
. (39)

It should be noted that these harmonic coefficients should be inserted into Eq. (25) for 
generating the internal atmospheric potential. 

5. DAE on the SGG data 
According to the spherical harmonic coefficients of the external atmospheric potential, the 
DAE can easily be computed by putting the harmonic coefficients into the spherical harmonic 
expansion of the SGG data either in a geocentric spherical, local, or orbital frame. In our 
study we use the orbital frame to present the effects. The non-singular expression of the 
gradients in this frame is preferrable for us, as we do not have to compute the associated 
Legendre function derivatives. These formulas were originally presented by Petrovskaya and 
Vershkov (2006). The orbital frame is defined by u, v and w axes so that w axis coincides 
with z and upward, v points towards the instantaneous angular momentum vector and u 
complements the right-handed triad. The mathematical models of the SGG data in such a 
frame are presented as follows [Petrovskaya and Vershkov, 2006]:

        
n

N n
a

uu ext m P n,m, n, mnm
n m n P

GM R
V P v Q cos f cos n n P

R r



 

              
 

3

2
13

2

2 1 2        

  m P nm,Q sin f   22 (40)

        
n

N n
a

vv ext m P nm, n, mnm
n m n P

GM R
V P v Q cos f sin n n P

R r



 

               
 

3

2
13

2

2 1 2        

  m P nm,Q sin f   22 (41)

         
n

N n
a

uv ext m P nm, n, mnm
n m n P

GM R
V P v Q sin f cos sin n n P

R r



 

                
 

3

13
2

2 1 2        

  m P nm,Q cos f   22 (42)

       
n

N n
a

uw ext m P nm, m P nm,nm
n m n P

GM R
V P v Q cos f Q sin f

R r




 

 
         

 
 

3

3 43
2

(43)

       
n

N n
a

vw ext m P nm, m P nm,nm
n m n P

GM R
V P v Q sin f Q cos f

R r




 

 
          

 
 

3

3 43
2

(44)



Page 11 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

11

        
n

N n
a

ww ext m P n, mnm
n m n P

GM R
V P n n v Q P

R r



 

 
    

 
 

3

3
2

1 2 (45)

where,  Pn, m n, mP P cos   and  nm, nm, Pf f 1 1

 nm, P nm nm nmn, m n, m n, mf a P b P c P    1 2 2 , (46)

 nm, P nm nm nmn , m n , m n , mf d P g P h P       2 1 2 1 1 2 , (47)

 nm, P nm nmn, m n, mf P P     3 1 1 , (48)

 nm, P nm nmn , m n , mf P P       4 1 1 1 1 , (49)

  P

m P
P

cos m m
Q

sin m m

     

0

0
  (50)

where,  a
ext nm

v is the spherical harmonic coefficients of the external atmospheric potential, P

and P and Pr  are the co-latitude, longitude and geocentric radius of the point P or the satellite 

position. N is the maximum degree of harmonic expansion, and n, mP  is the fully-normalized 

associated Legendre function of degree n and order m.   is the satellite track azimuth. nma , 

nmb , nmc , nmd , nmg , nmh , nm , nm , nm and nm  are the constant coefficients presented in 

Appendix B. 

These formulas were generally designed for gravitational gradients of the disturbing 
potential. We can include the effect of zero- and first-harmonics separately. The contribution 
of these harmonics is presented in Appendix C.  

6. Remote-Compute-Restore scheme 
In the remove-compute-restore approach, the external topographic and atmospheric potentials 
are removed and the result will be no-topography and no-atmosphere potentials. The effect of 
the topographic and atmospheric masses must be restored after computations (this is why the 
method is called remove-compute-restore). The gravity field can also be determined locally 
from SGG data using inversion of the second order derivatives of extended Stokes or Abel-
Poisson integrals. The downward continued gravity anomaly or disturbing potential at sea 
level is the results of this inversion process. One can also downward continue the SGG data 
directly to geoid height or gravity anomaly at sea level. In any case, the effect of the removed 
atmospheric potential should be restored on these quantities. In the following we present these 
indirect atmospheric effects on the gravity anomaly and geoid height. 

According to the fundamental equation of physical geodesy we have [Heiskanen and 
Moritz, 1967, p. 86]:

     
a
inta a

in d int
P P

V P
g P V P

r r


   


2

. (51)
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 a
indg P  is the indirect atmospheric effect on gravity anomaly which should be restored. By 

putting the internal atmospheric potential given by Eq. (25) we obtain

       
nN n

a aP
ind int nmnm

n m n

rGM
g P n v Y P

R R



 

      
 

 
1

2
0

2 , (52)

and at the very approximate geoid Pr R  we have

       
N n

a a
ind int nmnm

n m n

GM
g P n v Y P

R  

    2
0

2 . (53)

The indirect atmospheric effect on the geoid will be

     
N n

a a
ind int nmnm

n 0 m n

GM
N P v Y P

R  

  
   . (54)

7. Numerical studies
Let us start with a simple investigation of the mathematical models approximating the 
atmospheric density. First we compare the NADM and KTHA with the USSA76 up to 86 km 
elevation (which is the maximum level of the USSA76). In the following figures, these 
approximating density models are visualized with respect to the elevation

Figure 1

Figure 1 shows that the NADM is valid up to 10 km elevation above sea level; see Novák 
(2001). The KTHA agrees with the USSA76 more or less but underestimates the atmospheric 
density below 20 km and overestimates it in higher altitudes. It should be mentioned that the 
main aim of Novák (2000) was to formulate the atmospheric topography. This is why he 
considered a simple polynomial to model the atmospheric density up to 10 km. Since 80% of 
atmospheric masses are below 12 km [Lambeck 1988], it is reasonable to use a simple 
polynomial to express the effect of atmospheric roughness although Wallace and Hobbs 
(1977) believes that 99% of the masses lie within the lowest 30 km above sea level. 

For investigating the DAE on the SGG data, we generate the external atmospheric potential 
coefficients considering Z=10 km using both the NADM and the KTHA. The orbital frame is 
used to generate the DAE at 250 km level with 2-months revolution of the GOCE satellite 
over Fennoscandia. The position of the satellite can be generated using a numerical 
integration technique and an existing geopotential model. For more details the reader is 
referred to e.g., Hwang and Lin (1998), Eshagh (2003), Eshagh (2005) and Eshagh and 
Najafi-Alamdari (2006). The statistics of the computations are summarized in Table 1.
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Table 1

It illustrates that the DAE on the SGG data is dependent on the ADM. The KTHA shows  
small DAE since it underestimates the massive part of the atmosphere in the lower altitudes. 
This underestimation of the atmospheric density directly affects the zero-degree harmonic 
coefficient of the atmospheric potential. Since uuV , vvV and wwV include this harmonic in their 

formulation, we can expect to see larger DAE based on the NADM than the KTHA. uvV , 

uwV and vwV are more or less in the same order in both approaches because of their 

independency from the zero-degree harmonic. However, it should be noted that uwV and 

vwV include also the first-degree harmonics. 

The following figure shows more details about the behaviour of the zero-degree harmonic 
with respect to elevation. 

Figure 2

Figure 2 illustrates values of the zero-degree harmonic based on the NADM and KTHA. As 
we know the NADM is valid just up to 10 km height, and it is not surprising to see larger 
values when applying it for the external potential to higher elevations. The horizontal line 
presented in the figure is the true value of the zero-degree harmonic computed by Eq. (28). As 
it is expected, this harmonic should be treated as a bounded function when increasing the 
elevation. However, Figure 2a shows that the approximations of the true mathematical 
expressions with binomial expansion which was used in Eq. (13) is good just for elevations 
lower than 20 km. The zero-degree harmonic has smaller value up to 50 km when KTHA is 
used vs. the NADM, while it is larger at 250km. It means that the approximation used Eq. 
(13) is not good enough for higher elevations and can destroy the solution even worse than the 
NADM see Figure 2a. The simplest way to get a non-diverging value for the zero-degree 
harmonic is to avoid approximations in this harmonic in the KTHA using Eq. (53).  As we 
mentioned previously we can consider the atmospheric shells above 10 km and compute the 
atmospheric potential corresponding to each shell and add it in this harmonic; see Novák 
(2000). 

The next point of our discussion is to consider a possible improvement of KTHA model. As 
we explained before the KTHA was derived using the results of Ecker and Mittermayer 
(1969) and USSA61 but the NADM is based on the USSA76. The difference between these 
two models is due to the differences in the original data used; see Table 2.

Table 2
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Figure 1 shows that the KTHA are not well-fitted to the USSA76. Assuming the densities 
generated by the USSA76 as true values, we can modify the KTHA to obtain better fit to the 
USSA76. In Figures 3a and 3b results of this modification to the KTHA is presented. 

Figure 3

By fitting the KTHA to the USSA76 we obtain the value   930. This modified KTHA is 
visualized in Figure 3a, which figure shows that, although the modified KTHA has very good 
fit to the USSA76 in higher elevations, it underestimates the density of the most massive part 
of the atmosphere in low levels. Therefore it is expected to see small DAE on the SGG data. 
In Table 3 the statistics of these DAE based on the KTHA and the modified KTHA over 
Fennoscandia are presented. 

Table 3

The differences are again mainly related to the diagonal elements uuV , vvV  and wwV  of the 

gradiometric tensor as they, unlike the other elements, include the zero-degree harmonic. The 
difference between the DAEs generated based on the original and modified KTHA is related 
to the underestimation of the atmospheric density in the modified KTHA and also to 
significant overestimation of KTHA in higher elevation. However, since the most massive 
part of the atmosphere lies below 10 km level we can expect that the underestimation of the 
atmospheric density in the modified KTHA is the main reason for these differences. The only 
advantage of the modified KTHA relative to the original KTHA is thus to have a better fit in 
the higher elevations. Consequently, the modified KTHA is inferior to the original KTHA in 
context of the gravimetric data processing.

We also consider another approach in which the NADM is used for the heights below 10 
km and another modified KTHA for considering higher levels. In this case the atmospheric 
density generated by the NADM at 10 km is considered as a reference value and the KTHA 
model is modified to get best fit to the densities of the USSA76 after 10 km. Figure 3b shows 
the result of this fitting. The figure shows that the atmospheric densities are overestimated by 
the NKTHA with respect to the USSA76 between 20 and 60 km levels. However since the 
atmospheric density decreases fast by increasing the elevation we can expect that such 
misfitness is insignificant in higher levels. In this case we estimate  =890.1727 890, see 
Eq. (3). The RMSEs of the model fittings are 0.038, 0.032 and 0.0027 kg/m 3 for KTHA, 
modified KTHA and new KTHA, respectively.

In Table 4 the statistics of the DAE on the SGG data over Fennoscandia are presented 
based on the NKTHA.

Table 4
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Since in the NKTHA we use the NADM for the elevations below 10 km, we expect to see a 
good fit to the DAE for these ADMs, which is confirmed by the statistics in Tables 1 and 4. 

In the following we present the maps of the DAE on the SGG data over Fennoscandia. In 
order to simulate the satellite orbit the 4-th order Runge-Kutta integrator was used to integrate 
the satellite accelerations generated from EGM96 geopotential model to degree 360. Two-
month revolution of the satellite with 30 second integration step size was considered in our 
investigation over Fennoscandia.  The lower boundary of the atmosphere was considered the 
Earth surface and the upper bound at satellite level. The JGP95e global topographic model
was also used to generate the topographic harmonics to degree and order 360. 

Figure 4

Figure 4 illustrates the DAE on the SGG data at 250km based on the NKTHA. (a), (b), (c), 
(d), (e) and (f) are uuV , vvV , wwV , uvV , uwV  and

vwV

vwV , respectively. The largest DAE is about 

5.1381 mE and related to wwV as would we expect, and the smallest DAE (about -0.0276 mE) 

is related to uvV . 

The numerical results show that the DAE on the SGG data based on all ADMs is at mE level. 
Such effects are significant in precise validation of the SGG data. On the other hand, Xu 
(1992, 1998) and Xu and Rummel (1994) concluded that in inverting the SGG data for the 
determination of the local gravity anomaly at the mean sphere of the Earth with 5 mGal level 
of accuracy, 0.01E accuracy for the SGG data is enough. Hence if such an accuracy for 
gravity anomaly be required one can safely ignore the DAE on the SGG data. It should be 
mentioned that the atmospheric effect is also highly variable in time, which would have to be 
taken into account in future gradiometric missions. 

8. Conclusions
The KTH atmospheric density model (KTHA) was modified so that it delivers better fit to the 
United States atmospheric density model (USSA76) than the original one (which was derived 
based on the United States atmospheric density model presented in 1961, USSA61), and the 
constant =930 was obtained for the modified model. Numerical studies show that this model 
underestimates the most massive part of the atmosphere which is below 10 km more than the 
original one, but it has better fit for higher elevations, and this effect on the satellite gravity 
gradiometry is less than 1mE and negligible. A combination of both density models presented 
by Novák (2000) and Sjöberg (1998) with a simple modification was proposed as a new 
model (NKTHA). This model has good fit with the USSA76 for low and high levels. The 
spherical harmonics coefficients of the atmospheric potential generated based on this new 
model were used to compute the DAEs on the SGG data in the orbital frame. Numerical 
results show that the maximum DAE is related to wwV  and about 5.13 mE. In comparison 

with Novák (2000) model, which generate the corresponding value 4.44 mE, one can state 
that the effect of the atmospheric masses above 10 km is less than 1 mE but significant for 
precise validation of the SGG. We recommend the use of NKTHA in considering atmospheric 
effects in satellite gradiometry data processing and any other gravimetric applications.
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Appendix A
The constant coefficients related to Eqs. (40)-(45) are [Petrovskaya and Vershkov 2006]:

 
nm 2m ,2 2

0 m 0,1

a 1
n m 1 n m n m 2 2 m n

4

 


   
       


                   (A.1)

  
 

nm
2 2

n m 1 n m 2
m 0,1

2 m 1
b

n m 3n 2
2 m n

2

    


 
   

 

                            (A.2)

 

 

m ,

nm

n m n m n m , m ,
c

n m n m n m , m n

  
       
       

20 2

22

1
1 2 0 1

4
1

1 2 2
4

                       (A.3)

 2nm 2
m ,2

0 m 1

d m 2n 1
1 n m 1 n m n m 2, 2 m n

4 m 2n 1

 


  
          

    (A.4)

 
nm

m 2n 1
n 1 n 1 n 2 , m 1

4 m 2n 1
g

m 2n 1
n m n m , 2 m n

2 2n 1

 
     


    

                       (A.5)

 
nm

22

m 2n 1
n 3 n 2 n 1 n 2, m 1

4 m 2n 1
h

m 2n 1
n m 1 n m n m 2, 2 m n

4 m 2n 1

 
      

        

                       (A.6)

nm

m ,1

0 m 0

n 2
1 n m n m 1, 1 m n

2

 
   

      

                              (A.7)

   

 
nm

n n 1
n 2 , m 0

2

n 2
n m n m 1, 1 m n

2

 
  
  

     

                           (A.8)

nm m ,1

m n 2 2n 1
1 n m n m 1

m 2 2n 1

            
                                               (A.9)



Page 17 of 28

Acc
ep

te
d 

M
an

us
cr

ip
t

17

nm

m n 2 2n 1
v n m n m 1

m 2 2n 1

         
                                                             (A. 10)

where   is Kronecker’s delta.

Appendix B 
The contribution of the zero- and the first-degree harmonics to Eqs (40)-(45) can be derived 
based on the original formulas of the gravitational gradients in the orbital frame as (see also 
Petrovskaya and Vershkov 2006, Eq. 45):
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where superscripts of 0 and1 stand for the zero- and the first-degree harmonics, respectively. 

00C , 10C , 11C , 10S  and 11S  are the fully-normalized zero- and the first-degree geopotential 

coefficients.
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Figure 1. (a) NADM in green, KTHA in red and USSA76 in blue versus elevation (vertical axis is in 
logarithmic scale), (b) deference between NADM and USSA76 in blue, KTHA and USSA76 in red, 

respectively to 10-km elevation
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Table 1. DAE on the SGG data at 250km level based on the NADM and the KTHA up to 10 km. Unit: 1mE

NADM KTHA
max mean min std max mean min std

uuV -2.0069 -2.2153 -2.391  0.0762 -0.6957 -0.8831 -1.0405  0.0693

vvV -1.9238 -2.2247 -2.4123  0.1062 -0.6159 -0.8831 -1.0491  0.0966

wwV 4.6257 4.4400 3.9364  0.1520 1.9352 1.7662 1.3171  0.1392

uvV 0.0729 -0.0276 -0.1119  0.0403 0.0679 -0.0229 -0.1004  0.0370

uwV 0.2976 0.0110 -0.2984  0.1125 0.2632 0.0063 -0.2706  0.1038

vwV 0.3544 0.0125 -0.2043  0.0879 0.3213 0.0140 -0.1822  0.0809

Table
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                                    (a)                                                                         (b)                                             
Figure 2. Behaviour of the unitless zero-degree harmonic of the atmospheric potential versus various Z. (a) Z=0 to 

50 km and (b) Z=0 to 250 km
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Table 2. Values of the atmospheric mass density based on the USSA61 and USSA76, Unit: kg/ 3m

Elevation 
(km)

USSA61 USSA76 difference

0 1.2225 1.2227 0.0002
2 1.0067 1.0047 -0.0020
4 8.2362 110 8.1780 110 -0.0582 110
6 6.6511 110 6.5888 110 -0.0623 110
8 5.2702 110 5.2479 110 -0.0223 110

10 4.0937 110 4.1273 110 0.0336 110
12 3.1131 110 3.1135 110 0.0004 110
14 2.3211 110 2.2742 110 -0.0469 110
16 1.7007 110 1.6615 110 -0.0392 110
18 1.2289 110 1.2142 110 -0.0147 110
20 8.8025 210 8.8741 210 0.0716 210
30 1.8410 210 1.8375 210 -0.0035 210
40 3.9957 310 3.9878 310 -0.0079 310
50 1.0269 310 1.0248 310 -0.0021 310

Table
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(a)        (b)

(c)

Figure 3. (a) Modified KTHA in red (vertical axis is in logarithmic scale),  (b) NKTHA based on the USSA76 in red 
(vertical axis is in logarithmic scale), (c) differences between approximating models of KTHA, modified KTHA 
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Table 3. Statistics of DAE on the SGG data at 250 km level based on the KTHA and the modified KTHA, Unit: mE

KTHA Modified KTHA
max mean min std max mean min std

uuV -0.8718 -1.0590 -1.2166  0.0693 -0.7800 -0.9661 -1.1228  0.0690

vvV -0.7920 -1.0590 -1.2249  0.0966 -0.7005 -0.9657 -1.1306  0.0961

wwV 2.2875 2.1180 1.6694  0.1392 2.1005 1.9319 1.4859  0.1385

uvV 0.0680 -0.0229 -0.1004  0.0370 0.0677 -0.0227 -0.0998  0.0369

uwV 0.2632 0.0063 -0.2706  0.1038 0.2615 0.0061 -0.2691  0.1033

vwV 0.3213 0.0140 -0.1822  0.0809 0.3196 0.0141 -0.1811  0.0805

Table
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Table 4. Statistics of the DAE on the SGG data at 250 level based on the NKTHA, Unit: mE

NKTHA
max mean min std

uuV -2.3564 -2.5643 -2.7406  0.0762

vvV -2.2733 -2.5738 -2.7617  0.1062

wwV 5.3250 5.1381 4.6355  0.1520

uvV 0.0729 -0.0276 -0.1119  0.0403

uwV 0.2976 0.0110 -0.2984  0.1125

vwV 0.3544 0.0125 -0.2043  0.0879

Table
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                    (a)                                               (b)                                               (c)

                    (d)                                              (e)                                               (f)

Figure 4. DAE on the SGG at 250km based on the NKTHA, (a), (b), (c), (d), (e) and (f) are 
uuV , 

vvV , 
wwV , 

uvV , 
uwV

and 
vwV , respectively. Unit: mE

Figure


