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Atmospheric masses play an important role in precise downward continuation and validation of satellite gravity gradiometry data. In this paper we present two alternative ways to formulate the atmospheric potential. Two density models for the atmosphere are proposed and used to formulate the external and internal atmospheric potentials in spherical harmonics. Based on the derived harmonic coefficients, the direct atmospheric effects on the satellite gravity gradiometry data are investigated and presented in the orbital frame over Fennoscandia. The formulas of the indirect atmospheric effects on gravity anomaly and geoid (downward continued quantities) are also derived using the proposed density models. The numerical results show that the atmospheric effect can only be significant for precise validation or inversion of the GOCE gradiometric data at the mE level.

Introduction

Satellite gravity gradiometry (SGG) is a technique by which the second order derivatives of the gravitational potential are measured based on differential accelerometry. The atmospheric masses below satellites affect SGG data. The Gravity field and Ocean Circulation Explorer (GOCE) [see e.g. [START_REF] Balmino | European Views on Dedicated Gravity Field Missions: GRACE and GOCE[END_REF][START_REF] Balmino | CHAMP, GRACE and GOCE: Mission concepts and cimulations[END_REF], [START_REF] Esa | Gravity field and steady-state ocean circulation mission[END_REF], [START_REF] Albertella | GOCE: The earth field by space gradiometry[END_REF]] is an upcoming satellite mission based on this technique, and it is expected to produce an Earth's gravity field model with an improved resolution from space. The SGG data can directly be continued downward to the sea level for the local gravity field determination. Therefore it is necessary to consider the gravitational effects of the topography and static atmosphere to smooth the gravity field and simplify the downward continuation process. Temporal variations of the atmospheric density are beyond the scope of this paper, but such variations will be an obligatory part of data processing of GOCE as it was for GRACE as well [START_REF] Flechtner | De-aliasing of short-term atmospheric and oceanic mass variations for GRACE[END_REF]]. These effects should also be considered if validation of the SGG data is of interest. The topographic effect has largely been investigated by many scientists and in different applications; see e.g., [START_REF] Martinec | On Helmert's 2 nd condensation method[END_REF], [START_REF] Martinec | Direct topographical effect of Helmert's condensation for a spherical geoid[END_REF], [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF], [START_REF] Sjöberg | On the indirect effect in the Stokes-Helmert method of geoid determination[END_REF], [START_REF] Sjöberg | Topographic effects by the Stokes-Helmert method of geoid and quasigeoid determinations[END_REF][START_REF] Sjöberg | The topographic bias by analytical continuation in physical geodesy[END_REF], [START_REF] Tsoulis | Terrain correction computations for a densely sampled DTM in the Bavarian Alps[END_REF], [START_REF] Heck | On Helmert's Methods of Condensation[END_REF], [START_REF] Seitz | Efficient calculation of topographic reductions by the use of tesseroids[END_REF], Wild andHeck (2004a, 2004b), [START_REF] Makhloof | The use of topographic-isostatic mass information in geodetic applications[END_REF]Ilk (2005, 2006), [START_REF] Makhloof | The use of topographic-isostatic mass information in geodetic applications[END_REF] and [START_REF] Eshagh | Step-variable numerical orbit integration of a low Earth orbiting satellite[END_REF]Sjöberg (2008a, 2008b).

A c c e p t e d M a n u s c r i p t 2 Some primary assumptions are needed for considering the atmospheric effects. The atmosphere is usually assumed to be layered spherically above a sphere approximating the Earth surface. Also [START_REF] Moritz | A new strategy for the atmospheric gravity effect in gravimetric geoid determination[END_REF], [START_REF] Sjöberg | Terrain effects in the atmospheric gravity and geoid correction[END_REF][START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF][START_REF] Sjöberg | The IAG approach to the atmospheric geoid correction in Stokes's formula and a new strategy[END_REF][START_REF] Sjöberg | Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one[END_REF], [START_REF] Sjöberg | On the indirect effect in the Stokes-Helmert method of geoid determination[END_REF] and [START_REF] Moritz | A new strategy for the atmospheric gravity effect in gravimetric geoid determination[END_REF] used spherical approximation of sea level and considered the topographic heights with respect to this sphere. Similar assumptions are considered for the atmospheric density through this study although we know that the semimajor axis of the ellipsoidal Earth is 21 km longer than the semi-minor one, this approximation results an overestimation and an underestimation in the atmospheric effect at the poles and equator, respectively. In order to solve this problem the ellipsoidal harmonics should be used and more complicated formulation is needed which is not in scope of this paper neither. This matter was well investigated by Sjöberg (2006). [START_REF] Ecker | Gravity corrections for the influence of the atmosphere[END_REF] used an ellipsoidal approach to study the atmospheric gravitational potential and acceleration; they proposed a mathematical model for the direct atmospheric effect (DAE), which is well-known as the IAG (International Association of Geodesy) approach. [START_REF] Mather | Atmospheric effects in physical geodesy[END_REF] considered the effect of the atmospheric masses in physical geodesy problems and computed the global values of the atmospheric effect on gravity and the geoid. [START_REF] Sjöberg | Terrain effects in the atmospheric gravity and geoid correction[END_REF] investigated the effect of terrain in the atmospheric gravity and geoid corrections, [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF] presented the atmospheric correction on the gravity anomaly, geoid and on the satellite derived geopotential coefficients. [START_REF] Sjöberg | The IAG approach to the atmospheric geoid correction in Stokes's formula and a new strategy[END_REF] found some shortcomings in the IAG approach in atmospheric geoid correction and proposed a new strategy to solve them. [START_REF] Sjöberg | The atmospheric geoid effects in Stokes formula[END_REF] investigated the direct and indirect effect of the atmosphere in modified Stokes' formula and they showed that the DAE on the geoid can reach 40 cm. [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] presented a density model for the atmosphere based on a simple polynomial fitting and used that model to compute the atmospheric effect on the geoid. The polynomial function was used only for atmospheric mass density modeling within the topography, i.e., below the elevation of highest spot on the Earth (approximately 10 km above the mean sea level). The atmospheric masses above 10 km elevation can be considered by using United States Standard Atmospheric model (USSA76) [United State atmosphere, 1976]. For more details about his method see e.g. [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF]. [START_REF] Sjöberg | Topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of harmonics of degrees zero and one[END_REF] investigated the atmospheric correction and found that the atmosphere contributes with the zero-degree harmonic of magnitude of 1 cm on the geoid. [START_REF] Moritz | A new strategy for the atmospheric gravity effect in gravimetric geoid determination[END_REF] presented another strategy for the direct atmospheric gravity effect in geoid determination. He numerically compared his new strategy with old formulas in Iran and found 17 cm difference on the geoid between both formulas in that region, but as [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF] argued the direct effect is considerably reduced after restoring the atmospheric effect. Sjöberg (2006) showed that the atmospheric effect in geoid determination needs a correction for the geometry when applying the spherical approximation of Stokes formula. According to his conclusions the correction needed to the atmospheric effect in spherical Stokes formula varies between 0.3 and 4.0 cm on the geoid at the equator and pole, respectively. [START_REF] Tenzer | Atmospheric effects in the derivation of geoid-generated gravity anomalies[END_REF] considered the effect of atmospheric masses for Stokes problem with concentration on the direct and secondary indirect atmospheric effects. They found the complete effect of the atmosphere on the ground gravity anomaly varies between 1.75 and 1.81 mGal in Canada, and the effects are mainly dependent on the accuracy of the atmospheric density model (ADM). [START_REF] Novák | The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data[END_REF] proposed a method to compute the effect of topographic and atmospheric masses on spaceborne data based on spherical harmonic expansion with a numerical study in North America.

In this paper, another approach to the atmospheric effect on the SGG data is proposed than that used by [START_REF] Novák | The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data[END_REF]. The main difference is related to the used ADM. Since the SGG can be continued downward using inversion of second order derivatives of the extended Stokes or Abel-Poisson integrals, we will formulate the internal type of the gravitational effect of the atmosphere on gravity anomaly and geoid (restoration of the atmospheric effects) as the results of the inversion. It should be mentioned that such gravitational effect, can be considered on the downward continued SGG data too. The paper is arranged as follows.

In the next section different ADMs including the NKTHA are introduced. In Sections 3 and 4 we formulate the external and internal atmospheric gravitational potentials in spherical harmonics based on the KTHA and NKTHA, respectively. In Section 5 we explain how to compute the DAE on the SGG data in the orbital frame. Section 6 presents the formulas for the indirect atmospheric effects (IAE) on the gravity anomaly and geoid. Section 7 deals with numerical studies on the ADMs and DAE on the SGG data over Fennoscandia, and the article is ended by the conclusions in Section 8.

Atmospheric density models (ADMs)

There are different models for the density of the atmosphere. One of the most well-known models was issued by NOAA (National Oceanic and Atmospheric Administration), NASA (National Aeronautics and Space Administration) and USAF(United State Air Force) as United States Standard Atmospheric model in 1976 (USSA76) [United State Standard Atmosphere, 1976]. This model is a complicated model depending on atmospheric pressure and molecular-scale temperature. For considering these parameters, the atmospheric masses (up to the height of 86 km), are divided into seven layers, and in each layer a molecular-scale temperature and pressure are defined according to some other mathematical models. However, this model is not preferred in geodesy, and simpler approximating models are sought. In the following we review two ADMs and present a new ADM which is formulated based on the two previous ADMs. [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF] assumed that the atmospheric density is laterally layered and changes only with elevation. This assumption is not so far from reality as the atmospheric density reduces by increasing height. Based on the results of [START_REF] Ecker | Gravity corrections for the influence of the atmosphere[END_REF] which were derived from the US standard atmospheric density model presented in 1961 (USSA61) [Reference Atmosphere Committee, 1961], [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF] proposed the following ADM:

1 KTH atmospheric density model (KTHA)

  a R r r           0 , (1) 
where,   a r  is the atmospheric density, R ( set to 6378137 m) is the Earth's mean radius, R  r  R+ Z is the geocentric radius of any point inside the atmosphere, ,  0 =1.2227 kg/ 3 m is the atmospheric density at the sea level, and   850 is an estimated constant. We name this model KTHA.

A c c e p t e d M a n u s c r i p t

Novák's atmospheric density model (NADM)

The maximum value of the atmospheric density is at the sea level and decreases fast with increasing elevation. [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] proposed the following model to approximate the vertical behaviour of the atmospheric density (NADM):

  a r H H            2 0 1 , (2) 
where,
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   m 1 , - 9 
2.2781 10    m 2 and H = r-R with 0  H <10 km. The other parameters of this model are the same as defined in previous section. As [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] mentioned his model fits the USSA76 with the accuracy of about 3 10  to up to 10 km above sea level. For higher elevations the USSA76 should be used.

New KTH atmospheric density model (NKTHA)

We now propose the following model (NKTHA) for the atmospheric density, which in fact is a direct combination of the NADM and KTHA:

    a v a H H , H H r , R H H , H H Z r                              2 0 0 0 0 0 1 0 (3) 
where H 0 =10 km and   a H  0 =0.4127 kg/ 3 m is based on the NADM. By using this ADM we approximate the atmospheric density at higher levels by a simple mathematical model and it can be considered up to the satellite level. The parameter v =890 was derived based on a simple least-squares fit to the USSA76 elevations of above 10 km.

Atmospheric potential based on KTHA

In this section we derive the atmospheric potentials considering the KTHA as the ADM. The atmospheric potential can be expressed according to the well-known Newtonian volume integral as

    Z S r 2 Q Q a a Q PQ r r dr V P G r d l       , ( 4 
)
where, G is the Newtonian gravitational constant,   a V P stands for the atmospheric potential

at point P,   a Q r 
is the atmospheric density function at point Q (integration point),  is the full solid angle of integration, S r and Z r are the topographic surface, and the upper limit of the atmosphere, PQ l is the distance between computation point P and integration point Q. Q dr and d are the radial and horizontal integration elements, respectively. In order to obtain the external atmospheric potential PQ l 1 is expanded into a Legendre series of external type as:

A c c e p t e d M a n u s c r i p t   n Q n PQ n PQ P P r P cos l r r            0 1 1 . ( 5 
)
where P Q r r  is the geocentric radius of the computation point P, and PQ  is the geocentric angle between P and Q. By substituting Eq. ( 5) into Eq. ( 4) and considering Eq. ( 1) as the ADM we have:

    Z S r a n 2 ext 0 Q Q n PQ n 1 n 0 P r R V P G r dr P cos d r               , (6) 
and after integrating radially and regarding S r R H   and Z r R Z   (where H is a function of position whereas Z is a constant) we obtain

      n 3 n 3 n 3 a ext 0 n PQ n 1 n 0 P R Z H V P G 1 1 P cos d r n 3 R R                                          . ( 7 
)
The two terms in square bracket can be expanded into a binomial series and eventually truncated, since the series is converging fast. In our investigation we consider the expansion to fourth order. Cf. [START_REF] Sun | Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections[END_REF]. Further simplifications yield

      n 3 a ext 0 n PQ n 1 n 0 P R V P G F Q P cos d r            , (8) 
where

       Z H Z H Z H F Q n n n R R R                2 2 3 3 2 3 2 2 1 2 6 . ( 9 
)
According to the addition theorem of the fully-normalized spherical harmonics 

      n n PQ nm nm m n 1 P cos Y Q Y P 2n 1      , (10) 
    nm n m nn mm Y Q Y P d           4 , ( 11 
)
where  is Kronecker's delta, we have

      n 1 n a 2 a ext 0 ext nm nm n 0 m n P R 1 V P 4 G R F Y P r 2n 1                 , ( 12 
)
where

A c c e p t e d M a n u s c r i p t 6        2 2 3 3 a n 0 nm n 0 nm n 0 nm ext 2 3 nm Z H Z H Z H F n 2 n 2 n 1 R 2R 6R                   , ( 13 
)
where nm H , 2 nm H and 3 nm H are the spherical harmonic coefficients of H, 2 H and 3 H , respectively derived in a global spherical harmonic analysis of topographic heights. Considering in Eq. ( 12) that e GM GR /   3 4

3 , ( 14)

where e  =5500 kg/ 3 m [START_REF] Novák | The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data[END_REF] is the mean density of the Earth, and M is the Earth's mass, we finally obtain

      n 1 n a a ext ext nm nm n 0 m n P GM R V P v Y P R r              , ( 15 
)
where

    a a 0 ext ext nm nm e 3 v F (2n 1)     . ( 16 
)
Equation ( 16) represents the spherical harmonic coefficients of the external atmospheric potential. The above formula is analogous to that obtained by [START_REF] Novák | The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data[END_REF].

The only difference is related to the ADM, which leads to the following harmonic coefficients in [START_REF] Novák | The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data[END_REF]:

       2 2 3 3 a 2 n 0 nm n 0 nm n 0 nm ext 2 3 nm Z H Z H Z H F n 2 R n 2 n 1 2 R 2 R R 2R 6R                       . ( 17 
)
It is now worth to compare Eq. ( 17) with Eq. ( 13). By comparing the second order terms in those equations, we observe that there is R 596.55    in Novák and Grafarend's model, while we have   850 in KTHA. Also, the coefficient of the third term in Eq. ( 13) can be . However when the terms are divided by 6R 3 the effect of the third term is considerably reduced. In comparison with [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF], we can say that, since Sjöberg's emphasis was on the DAE of the gravity anomaly and geoid, the upper limit of the radial integral in Eq. ( 4) was set to infinity, and the internal type of Legendre expansion was used instead of Eq. ( 5), but in our case that we want to obtain the DAE on the SGG data we have to limit this upper bound to the specific value z r =6628137 m.

written as      n n n              2 2 1 1 ,
It means that we assume the massive part of the atmosphere is below z r level from the Earth's mean sphere. It is also possible to consider the satellite elevation as this specific value. Now, consider the computation point to be below the atmospheric masses, in such a case the internal atmospheric potential should be formulated. Similar to the external atmospheric A c c e p t e d M a n u s c r i p t potential formulation in spherical harmonics, we start with the Newtonian volume integral, Eq. ( 4) and consider Eq. ( 1) as the ADM (KTHA). If we expand the PQ l 1 into Legendre series of internal type

  n P n PQ n PQ P Q r P cos l r r               1 0 1 1 , (18) 
and put it back into Eq. ( 4), after some further simplifications we have

    Z S r a n 1 n int 0 P Q Q n PQ n 0 r V P G R r r dr P cos d              . ( 19 
)
In a similar way as for the external atmospheric potential we obtain

          n 2 n 2 n 2 n a P int 0 n PQ n 0 R r Z H V P G 1 1 P cos d n 2 R R                                           . ( 20 
)
If the two terms in the square bracket are expanded into a binomial series up to fourth order, after some simplifications we obtain

        n 2 n n a a P int 0 int nm nm n 0 m n R r V P G F Q Y Q d Y P 2n 1              , (21) 
where

           2 2 3 3 a int 2 3 Z H Z H Z H F Q n 1 n 1 n R 2R 6R               . ( 22 
)
Again, spherical harmonic expansion of H and Z yields

      n n a 2 a P int 0 int nm nm n 0 m n r 1 V P 4 G R F Y P 2n 1 R                , ( 23 
)
where

           a 2 2 3 3 n0 nm int n0 nm n0 nm 2 3 nm n 1 n 1 n Z H F Z H Z H R 2R 6R                        , (24) 
and according to Eq. ( 14), we finally arrive at

      n n a a P int int nm nm n 0 m n r GM V P v Y P R R             , ( 25 
)
where

    a a 0 int int nm nm e 3 v F (2n 1)     . ( 26 
)
A c c e p t e d M a n u s c r i p t 8 This derivation is comparable with that obtained by using the NADM for the internal atmospheric potential in spherical harmonics yielding [Eshagh and Sjöberg, submitted]  

     2 2 3 3 a 2 n 0 nm n 0 nm n 0 nm int 2 3 nm Z H Z H Z H F n 1 R 1 n n 2 R 2 R R 2R 6R                      .
(27) [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] proposed to use atmospheric shells with different densities (based on the USSA76) for generating the atmospheric potential between 10 and 86 km levels. The potential of such atmospheric shells can be considered as an additional value to the zerodegree harmonic coefficient; see [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF]. On the contrary, there is no restriction in elevation for the KTHA, and it can theoretically be considered up to infinity. However the approximations used in generating the atmospheric potential may not be accurate enough for higher elevations based on this model. As Z in Eq. ( 9) is a constant it only contributes to the zero-degree harmonic. It is obvious that when increasing the elevation of the upper boundary of the atmosphere, the magnitude of this harmonic can increase unboundedly. In order to solve this problem we propose to use the following relation for the zero-degree harmonic coefficient of the atmospheric potential (which follows from Eq. 6 for n=0).

    a ext e Z v H R                         3 0 0 3 1 3 , (28) 
where

H H d R              3 1 1 4 . ( 29 
)
The integral of Eq.( 29) can be solved numerically.

Atmospheric potential based on the NKTHA

Now we consider the NKTHA that we proposed in Section 2.3. This model is a combination of the NADM and the KTHA. In the following we express how to use this NKTHA for formulating the external and internal atmospheric potentials in spherical harmonics.

Inserting the NKTHA into Eq. ( 4) and considering Eq. ( 3) and the external type of expansion of PQ 1 l we obtain

        0 Z S 0 H r a a n 2 a n 2 ext Q Q Q Q Q Q n PQ n 1 n 0 P r H 1 V P G r r dr r r dr P cos d r                         . ( 30 
)
The ADM in the first integral in the square bracket is related the upper function of Eq.( 3) and the second integral relates to the lower function. Therefore the solution of the first term is the same as in Eq. ( 17). Considering the second part of Eq. (3) as the ADM above 0 H , the solution of the second integral becomes

     0 n 3 n 3 n 3 R Z 0 n 2 0 0 0 0 Q Q R H H R H H Z H R H r dr 1 1 1 n 3 R R R                                                 , A c c e p t e d M a n u s c r i p t 9 (31)
Since this term is a constant w.r.t integration point Q in Eq. ( 31), it associates just with the zero-degree harmonic. The unitless spherical harmonic coefficients of the external atmospheric potential can thus be written in the following form

          a a ext 0 ext 0 n nm nm e 3 v F H G 2n 1       , ( 32 
)
where   a ext nm F was defined in Eq. ( 17), and

n 3 n 3 0 0 n n 0 H H 1 Z G 1 1 1 n 3 R R R                                        . ( 33 
)
Inserting Eqs. ( 33) and ( 17) into Eq. ( 32) and setting

n 0 0 n 0 Z H    we have          2 2 a 0 n 0 nm 0 n 0 nm ext 0 2 nm e H H H H 3 V n 2 R n 2 n 1 2 R 2n 1 R 2R                               n 3 n 3 3 3 0 2 0 n0 nm 0 0 n0 3 H H H H H Z 2 R 1 1 1 6R n 3 R R R                                                    , (34) 
For generating the external atmospheric potential based on the NKTHA it is sufficient just to insert the harmonic coefficients generated according to Eq. (34) into Eq. ( 15).

We can also consider our new atmospheric model NKTHA to generate the internal type of the atmospheric potential. By considering Eq. ( 18) and Eq. (3) (the NKTHA) and reinserting into Eq. ( 4) we obtain

        0 Z S 0 H r a n a n 1 a n 1 int P Q Q Q Q Q Q n PQ n 0 r H V P G r r r dr r r dr P cos d                        . ( 35 
)
The first integral in the square bracket is the same as in the internal type of the NADM and is also the same as Eq. ( 27). The second part can be written

     0 n 2 n 2 n 2 R Z 0 n 1 0 0 0 0 Q Q R H H R H H Z H R H r dr 1 1 1 n v 2 R R R                                                    , (36) 
and the harmonic coefficients of the internal atmospheric potential can thus be written F is the same as in Eq. ( 27) and

          a a int 0 int 0 n nm nm e 3 v F H K 2n 1       , (37) 
n 2 n 2 0 0 n n 0 H H 1 Z K 1 1 1 n v 2 R R R                                         . ( 38 
)
Finally we obtain

         2 2 a 2 0 n 0 nm 0 n 0 nm int 0 2 nm e H H H H 3 V n 1 R 1 n n 2 R 2 R 2n 1 R 2R                                  n 2 n 2 3 3 0 0 n0 nm 0 0 n0 3 H H H H H Z 1 1 1 6R n v 2 R R R                                                     . ( 39 
)
It should be noted that these harmonic coefficients should be inserted into Eq. ( 25) for generating the internal atmospheric potential.

DAE on the SGG data

According to the spherical harmonic coefficients of the external atmospheric potential, the DAE can easily be computed by putting the harmonic coefficients into the spherical harmonic expansion of the SGG data either in a geocentric spherical, local, or orbital frame. In our study we use the orbital frame to present the effects. The non-singular expression of the gradients in this frame is preferrable for us, as we do not have to compute the associated Legendre function derivatives. These formulas were originally presented by Petrovskaya and Vershkov (2006). The orbital frame is defined by u, v and w axes so that w axis coincides with z and upward, v points towards the instantaneous angular momentum vector and u complements the right-handed triad. The mathematical models of the SGG data in such a frame are presented as follows [Petrovskaya and Vershkov, 2006]:

          n N n a uu ext m P n ,m, n , m nm n m n P GM R V P v Q cos f cos n n P R r                        3 2 1 3 2 2 1 2    m P nm, Q sin f     2 2 (40)           n N n a vv ext m P nm, n, m nm n m n P GM R V P v Q cos f sin n n P R r                         3 2 1 3 2 2 1 2    m P nm, Q sin f     2 2 (41)           n N n a uv ext m P nm, n , m nm n m n P GM R V P v Q sin f cos sin n n P R r                          3 1 3 2 2 1 2    m P nm, Q cos f     2 2 (42)         n N n a uw ext m P nm, m P nm, nm n m n P GM R V P v Q cos f Q sin f R r                       3 3 4 3 2 (43)         n N n a vw ext m P nm, m P nm, nm n m n P GM R V P v Q sin f Q cos f R r                        3 3 4 3 2 (44)
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         n N n a ww ext m P n , m nm n m n P GM R V P n n v Q P R r                3 3 2 1 2 (45)
where,

  P n, m n , m P P cos   and   nm, nm, P f f   1 1   nm, P nm nm nm n, m n , m n, m f a P b P c P       1 2 2 , ( 46 
)   nm, P nm nm nm n , m n , m n , m f d P g P h P          2 1 2 1 1 2 , ( 47 
)   nm, P nm nm n, m n, m f P P        3 1 1 , ( 48 
)   nm, P nm nm n , m n , m f P P          4 1 1 1 1 , (49) 
 

P m P P cos m m Q sin m m            0 0 ( 50 
)
where,   a ext nm v is the spherical harmonic coefficients of the external atmospheric potential, P  and P  and P r are the co-latitude, longitude and geocentric radius of the point P or the satellite position. N is the maximum degree of harmonic expansion, and n, m P is the fully-normalized associated Legendre function of degree n and order m.  is the satellite track azimuth. nm a , nm b , nm c , nm d , nm g , nm h , nm  , nm  , nm  and nm  are the constant coefficients presented in Appendix B. These formulas were generally designed for gravitational gradients of the disturbing potential. We can include the effect of zero-and first-harmonics separately. The contribution of these harmonics is presented in Appendix C.

Remote-Compute-Restore scheme

In the remove-compute-restore approach, the external topographic and atmospheric potentials are removed and the result will be no-topography and no-atmosphere potentials. The effect of the topographic and atmospheric masses must be restored after computations (this is why the method is called remove-compute-restore). The gravity field can also be determined locally from SGG data using inversion of the second order derivatives of extended Stokes or Abel-Poisson integrals. The downward continued gravity anomaly or disturbing potential at sea level is the results of this inversion process. One can also downward continue the SGG data directly to geoid height or gravity anomaly at sea level. In any case, the effect of the removed atmospheric potential should be restored on these quantities. In the following we present these indirect atmospheric effects on the gravity anomaly and geoid height.

According to the fundamental equation of physical geodesy we have [Heiskanen and Moritz, 1967, p. 86]:

      a int a a in d int P P V P g P V P r r       2 . ( 51 
)
A c c e p t e d M a n u s c r i p t   a ind g P  is the indirect atmospheric effect on gravity anomaly which should be restored. By putting the internal atmospheric potential given by Eq. ( 25) we obtain

        n N n a a P ind int nm nm n m n r GM g P n v Y P R R                1 2 0 2 , ( 52 
)
and at the very approximate geoid P r R  we have

        N n a a ind int nm nm n m n GM g P n v Y P R         2 0 2 . ( 53 
)
The indirect atmospheric effect on the geoid will be

      N n a a ind int nm nm n 0 m n GM N P v Y P R         . ( 54 
)

Numerical studies

Let us start with a simple investigation of the mathematical models approximating the atmospheric density. First we compare the NADM and KTHA with the USSA76 up to 86 km elevation (which is the maximum level of the USSA76). In the following figures, these approximating density models are visualized with respect to the elevation

Figure 1

Figure 1 shows that the NADM is valid up to 10 km elevation above sea level; see Novák (2001). The KTHA agrees with the USSA76 more or less but underestimates the atmospheric density below 20 km and overestimates it in higher altitudes. It should be mentioned that the main aim of [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] was to formulate the atmospheric topography. This is why he considered a simple polynomial to model the atmospheric density up to 10 km. Since 80% of atmospheric masses are below 12 km [START_REF] Lambeck | Geophysical geodesy, the slow deformations of the Earth[END_REF]], it is reasonable to use a simple polynomial to express the effect of atmospheric roughness although [START_REF] Wallace | Atmospheric Science-An Introductory Survey[END_REF] believes that 99% of the masses lie within the lowest 30 km above sea level.

For investigating the DAE on the SGG data, we generate the external atmospheric potential coefficients considering Z=10 km using both the NADM and the KTHA. The orbital frame is used to generate the DAE at 250 km level with 2-months revolution of the GOCE satellite over Fennoscandia. The position of the satellite can be generated using a numerical integration technique and an existing geopotential model. For more details the reader is referred to e.g., Hwang and Lin (1998), [START_REF] Eshagh | Step-variable numerical orbit integration of a low Earth orbiting satellite[END_REF], [START_REF] Eshagh | Step-variable numerical orbit integration of a low Earth orbiting satellite[END_REF] and [START_REF] Eshagh | Comparison of numerical Integration methods in orbit determination of low earth orbiting satellites[END_REF]. The statistics of the computations are summarized in Table 1.
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It illustrates that the DAE on the SGG data is dependent on the ADM. The KTHA shows small DAE since it underestimates the massive part of the atmosphere in the lower altitudes. This underestimation of the atmospheric density directly affects the zero-degree harmonic coefficient of the atmospheric potential. Since uu V , vv V and ww V include this harmonic in their formulation, we can expect to see larger DAE based on the NADM than the KTHA. uv V , uw V and vw V are more or less in the same order in both approaches because of their independency from the zero-degree harmonic. However, it should be noted that uw V and vw V include also the first-degree harmonics.

The following figure shows more details about the behaviour of the zero-degree harmonic with respect to elevation.

Figure 2

Figure 2 illustrates values of the zero-degree harmonic based on the NADM and KTHA. As we know the NADM is valid just up to 10 km height, and it is not surprising to see larger values when applying it for the external potential to higher elevations. The horizontal line presented in the figure is the true value of the zero-degree harmonic computed by Eq. ( 28). As it is expected, this harmonic should be treated as a bounded function when increasing the elevation. However, Figure 2a shows that the approximations of the true mathematical expressions with binomial expansion which was used in Eq. ( 13) is good just for elevations lower than 20 km. The zero-degree harmonic has smaller value up to 50 km when KTHA is used vs. the NADM, while it is larger at 250km. It means that the approximation used Eq. ( 13) is not good enough for higher elevations and can destroy the solution even worse than the NADM see Figure 2a. The simplest way to get a non-diverging value for the zero-degree harmonic is to avoid approximations in this harmonic in the KTHA using Eq. ( 53). As we mentioned previously we can consider the atmospheric shells above 10 km and compute the atmospheric potential corresponding to each shell and add it in this harmonic; see [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF].

The next point of our discussion is to consider a possible improvement of KTHA model. As we explained before the KTHA was derived using the results of [START_REF] Ecker | Gravity corrections for the influence of the atmosphere[END_REF] and USSA61 but the NADM is based on the USSA76. The difference between these two models is due to the differences in the original data used; see Table 2.

Table 2
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Figure 1 shows that the KTHA are not well-fitted to the USSA76. Assuming the densities generated by the USSA76 as true values, we can modify the KTHA to obtain better fit to the USSA76. In Figures 3a and3b results of this modification to the KTHA is presented.

Figure 3

By fitting the KTHA to the USSA76 we obtain the value   930. This modified KTHA is visualized in Figure 3a, which figure shows that, although the modified KTHA has very good fit to the USSA76 in higher elevations, it underestimates the density of the most massive part of the atmosphere in low levels. Therefore it is expected to see small DAE on the SGG data. In Table 3 the statistics of these DAE based on the KTHA and the modified KTHA over Fennoscandia are presented.

Table 3

The differences are again mainly related to the diagonal elements uu V , vv V and ww V of the gradiometric tensor as they, unlike the other elements, include the zero-degree harmonic. The difference between the DAEs generated based on the original and modified KTHA is related to the underestimation of the atmospheric density in the modified KTHA and also to significant overestimation of KTHA in higher elevation. However, since the most massive part of the atmosphere lies below 10 km level we can expect that the underestimation of the atmospheric density in the modified KTHA is the main reason for these differences. The only advantage of the modified KTHA relative to the original KTHA is thus to have a better fit in the higher elevations. Consequently, the modified KTHA is inferior to the original KTHA in context of the gravimetric data processing.

We also consider another approach in which the NADM is used for the heights below 10 km and another modified KTHA for considering higher levels. In this case the atmospheric density generated by the NADM at 10 km is considered as a reference value and the KTHA model is modified to get best fit to the densities of the USSA76 after 10 km. Figure 3b shows the result of this fitting. The figure shows that the atmospheric densities are overestimated by the NKTHA with respect to the USSA76 between 20 and 60 km levels. However since the atmospheric density decreases fast by increasing the elevation we can expect that such misfitness is insignificant in higher levels. In this case we estimate   =890.1727  890, see Eq. ( 3). The RMSEs of the model fittings are 0.038, 0.032 and 0.0027 kg/m 3 for KTHA, modified KTHA and new KTHA, respectively.

In Table 4 the statistics of the DAE on the SGG data over Fennoscandia are presented based on the NKTHA.

Table 4

Since in the NKTHA we use the NADM for the elevations below 10 km, we expect to see a good fit to the DAE for these ADMs, which is confirmed by the statistics in Tables 1 and4.

In the following we present the maps of the DAE on the SGG data over Fennoscandia. In order to simulate the satellite orbit the 4-th order Runge-Kutta integrator was used to integrate the satellite accelerations generated from EGM96 geopotential model to degree 360. Twomonth revolution of the satellite with 30 second integration step size was considered in our investigation over Fennoscandia. The lower boundary of the atmosphere was considered the Earth surface and the upper bound at satellite level. The JGP95e global topographic model was also used to generate the topographic harmonics to degree and order 360. is related to uv V .

The numerical results show that the DAE on the SGG data based on all ADMs is at mE level. Such effects are significant in precise validation of the SGG data. On the other hand, [START_REF] Xu | Determination of surface gravity anomalies using gradiometric observables[END_REF][START_REF] Xu | Truncated SVD methods for discrete linear ill-posed problems[END_REF] and [START_REF] Xu | A simulation study of smoothness methods in recovery of regional gravity fields[END_REF] concluded that in inverting the SGG data for the determination of the local gravity anomaly at the mean sphere of the Earth with 5 mGal level of accuracy, 0.01E accuracy for the SGG data is enough. Hence if such an accuracy for gravity anomaly be required one can safely ignore the DAE on the SGG data. It should be mentioned that the atmospheric effect is also highly variable in time, which would have to be taken into account in future gradiometric missions.

Conclusions

The KTH atmospheric density model (KTHA) was modified so that it delivers better fit to the United States atmospheric density model (USSA76) than the original one (which was derived based on the United States atmospheric density model presented in 1961, USSA61), and the constant  =930 was obtained for the modified model. Numerical studies show that this model underestimates the most massive part of the atmosphere which is below 10 km more than the original one, but it has better fit for higher elevations, and this effect on the satellite gravity gradiometry is less than 1mE and negligible. A combination of both density models presented by [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] and [START_REF] Sjöberg | The atmospheric geoid and gravity corrections[END_REF] with a simple modification was proposed as a new model (NKTHA). This model has good fit with the USSA76 for low and high levels. The spherical harmonics coefficients of the atmospheric potential generated based on this new model were used to compute the DAEs on the SGG data in the orbital frame. Numerical results show that the maximum DAE is related to ww V and about 5.13 mE. In comparison with [START_REF] Novák | Evaluation of gravity data for the Stokes-Helmert solution to the geodetic boundary-value problem[END_REF] model, which generate the corresponding value 4.44 mE, one can state that the effect of the atmospheric masses above 10 km is less than 1 mE but significant for precise validation of the SGG. We recommend the use of NKTHA in considering atmospheric effects in satellite gradiometry data processing and any other gravimetric applications.
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Appendix A

The constant coefficients related to Eqs. ( 40)-( 45) are [Petrovskaya and Vershkov 2006 where superscripts of 0 and1 stand for the zero-and the first-degree harmonics, respectively. 
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  and as one can see, an extra term appears vs.

	Novák and Grafarend's model. The constant terms of both formulas are not comparable as
	they are R 226623.09   2 2	and  
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Table 1 .

 1 DAE on the SGG data at 250km level based on the NADM and the KTHA up to 10 km. Unit: 1mE

	Table							
			NADM			KTHA
		max	mean	min	std	max	mean	min	std
	uu V	-2.0069	-2.2153	-2.391	 0.0762 -0.6957 -0.8831 -1.0405  0.0693
	vv V	-1.9238	-2.2247	-2.4123	 0.1062 -0.6159 -0.8831 -1.0491  0.0966
	ww V	4.6257	4.4400	3.9364	 0.1520 1.9352	1.7662	1.3171	 0.1392
	uv V	0.0729	-0.0276	-0.1119	 0.0403 0.0679 -0.0229 -0.1004  0.0370
	uw V	0.2976	0.0110	-0.2984	 0.1125 0.2632	0.0063	-0.2706	 0.1038
	vw V	0.3544	0.0125	-0.2043	 0.0879 0.3213	0.0140	-0.1822	 0.0809

Table 2 .

 2 Values of the atmospheric mass density based on the USSA61 and USSA76, Unit: kg/ 3

	m

Table
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where  is Kronecker's delta.

Appendix B

The contribution of the zero-and the first-degree harmonics to Eqs ( 40)-( 45) can be derived based on the original formulas of the gravitational gradients in the orbital frame as (see also Petrovskaya and Vershkov 2006, Eq. 45):