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Gravitational and magnetic

models of the core–mantle boundary

and their correlation

I. Prutkin ∗

Delft Institute of Earth Observation and Space Systems (DEOS)
Delft University of Technology

2629 HS Delft, Kluyverweg 1, The Netherlands

Abstract

On the basis of a technique for 3D potential field data inversion worked out by
the author earlier, gravitational and magnetic models of the core–mantle boundary
(CMB) have been developed. The gravitational model agrees quite well with seis-
mological data. The magnetic model represents a homogeneously magnetized body
with the same external magnetic field as the Earth’s core; the uplifts of its surface
are related to regions with increased values of the magnetic field. The comparison of
the models has revealed the correlation that regions exhibiting high magnetic field
values in the Earth’s core correspond to depressions in the core-mantle boundary, as
reconstructed from gravity data. This correlation has led us to an hypothesis about
core material flow. To examine the hypothesis in an indirect way, CMB magnetic
field models at various epochs inferred by assuming a non-magnetic mantle and a
homogeneously magnetized core have been studied. Changes of their shape appear
to confirm our hypothesis.

Key words: Core–mantle boundary, Gravitational and magnetic models, Core
material flow, Potential field data inversion.

1 Introduction

Bowin (2000) noted that, despite dynamic topography solutions, the problem
to explain the main geoid anomalies (degrees 2-10) still exists. Due to the over-
whelming degree 2 and 3 contributions, the global pattern of geoid anomalies
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has no consistent correlation with the topography, plate tectonic patterns or
the magnetic field. At the same time, according to Bowin (2000), bands of
positive anomalies in the degree 4-10 geoid pattern match well with locations
of subduction zones. Very detailed considerations led Bowin (2000) to his sug-
gestion to separate the sources into two parts: deep ones, responsible for the
large energy of degrees 2 and 3, and shallower sources, responsible for degree
4-10 contributions. From his viewpoint, the first source should be core–mantle
boundary topography, which might be produced by processes within the core
rather than within the mantle.

The hypothesis that the CMB may be rough was advanced by Garland (1957).
Later concepts of the existence of CMB relief irregularities were used system-
atically in the studies of Hide (1969, 1970). In particular, he suggested (Hide
and Malin, 1970) that large scale gravity and magnetic anomalies could be
a result of the very same irregularities of CMB topography. Thereafter, the
interest to the relief of this boundary has increased considerably thanks to the
papers (Gudmundsson et al., 1986; Morelli and Dziewonski, 1987; Doornbos
and Hilton, 1989), in which details of core geometry were investigated for the
first time based on seismological data. Therefore, it seems quite topical to
construct gravitational and magnetic models of the relief of the CMB and to
compare them with seismological models and with each other.

In Bowin (2000), four point masses were used to simulate CMB topography.
In this paper a more complex 3D geometry of the Earth’s core is determined
by means of new algorithms of potential field data inversion for 3D objects
of arbitrary shape, developed by the author earlier (Prutkin, 1989). A short
description of our approach is presented in section 2. Section 3 is devoted to the
main features of the gravitational model and its comparison with seismological
data. The characteristics of the magnetic model and its relation with physics
are discussed in section 4. A correlation which has been observed between
the models, is the subject of section 5. In this section an hypothesis about
core material flow as a possible explanation of the correlation is suggested. An
attempt to prove the hypothesis is also included in section 5.

Our idea to obtain an independent confirmation of the hypothesis is to study
solutions, corresponding to various geomagnetic epochs. It should be empha-
sized that new gravity and magnetic data has become available owing to recent
satellite missions. Earth gravity field model from GRACE (Tapley et al., 2005)
is used while finding our gravitational model of the CMB. But the real chal-
lenge for our investigation is to compare magnetic models, corresponding to
International Geomagnetic Reference Field for the epoch 2000, derived from
the Ørsted and CHAMP missions (Maus et al., 2005), to IGRF1980, based on
MAGSAT data, and to IGRF1960. The results of this comparison are included
in Section 5. Section 6 contains the main conclusions of this study.
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2 Mathematical theory

In this section the approach to 3D potential field data inversion is briefly de-
scribed. For more details we refer to Prutkin (1989). We seek geometry of an
unknown homogeneous body; the only requirement is that the object sought
is assumed to be star convex relative to some point of the body. This means
that there exists a point of the body such that the line segment from this
point to any other point of the body is contained in the body. In this case
we can introduce spherical coordinates r, θ, φ relative to the point, the body
boundary can be determined by the equation r = r(θ, φ), where r(θ, φ) is a
single–valued function. In the case of the core–mantle boundary, the unknown
function r(θ, φ) determines the geometry of the Earth’s core, so the star con-
vexity is not a substantial limitation. We introduce a Cartesian coordinate
system, whose origin coincides with the center of the spherical coordinate sys-
tem. Assume that r is the radius–vector of the observation point. If V (r) and
W (r) denote gravitational and magnetic potentials of the body respectively,
we introduce the following functions into consideration (Prutkin, 1989):

Ψ(r) = V (r) −
1

2
r · ∇V (r) = V −

1

2
r
∂V

∂r
, (1)

ΨM(r) = W (r) − r · ∇W (r) = W − r
∂W

∂r
.

It was demonstrated (Prutkin, 1989) that the following relations are valid:

Ψ(r) =
Gσ

2

2π
∫

0

π
∫

0

r3(θ, φ) sin θ dθ dφ
√

r2(θ, φ) − 2br(θ, φ) + a2

, (2)

ΨM(r) =

2π
∫

0

π
∫

0

(d − cr(θ, φ))r3(θ, φ) sin θ dθ dφ

(r2(θ, φ) − 2br(θ, φ) + a2)3/2
, (3)

where G is the gravitational constant, σ is density, r = (x, y, z), b = x sin θ cos φ+
y sin θ sin φ+z cos θ, a2 = x2+y2+z2, c = Ix sin θ cos φ+Iy sin θ sin φ+Iz cos θ,
d = Ixx + Iyy + Izz, Ix, Iy, Iz are magnetization components.

We proposed that (2) and (3) be used as integral equations for inverse problems
in gravimetry and magnetometry. If a potential or its derivatives are given in
the form of a volume integral, then the kernel function in the corresponding
equation is rather complicated and, in addition, is a transcendental function
of r(θ, φ). If we apply a representation in the form of a surface integral, then
the integrand includes derivatives of the unknown function, but differentia-
tion of the approximately computed function r(θ, φ) is an ill-posed problem.
Equations (2) and (3) are free from both disadvantages: their integrands are
algebraic relative to the function sought and do not contain its derivatives.
The use of modified potentials instead of the conventional gravitational and
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magnetic potentials does not introduce any additional difficulties in construct-
ing global models, because in such cases the harmonic coefficients of potential
are applied, which relations with the harmonic coefficients of Ψ(r) and ΨM(r)
are described by very simple formulas, as it follows from (1).

The author proposed (Prutkin, 1983) the local corrections method for solv-
ing nonlinear potential inverse problems like (2) and (3). Its idea is that, in
computing the integrals in (2) and (3), and also in evaluating the field values
on some closed surface, containing the object sought within it, the very same
nodes (θi, φj) are used; in each iteration an attempt is made to decrease the
difference between the given and approximate field values at a fixed node only
by means of a change in the value of the function sought at the same node.
These considerations lead to decomposition of the inverse problem and reduc-
tion of time expenditures to solve it approximately by an order of magnitude.

To improve the solution, we are proceeding from the local corrections method
to a solving of the integral equation for the inverse problem by the Newton
method. This method is applied rather rarely, since it ensures convergence
(but extremely rapid) only in the presence of an initial approximation close
to the solution sought. In our case, such an approximation is provided by the
local corrections method.

As is known, the Newton method involves solving of the linearized problem in
each iteration. Assume that variation of the object boundary is described by
the function δr(θ, φ) and δV (r) is the corresponding variation of the gravity
potential. It is found that the following relation holds:

δV (r) = Gσ

2π
∫

0

π
∫

0

r2(θ, φ) sin θ δr(θ, φ)
√

r2(θ, φ) − 2br(θ, φ) + a2

dθ dφ . (4)

Applying the operator Ix
∂
∂x

+Iy
∂
∂y

+Iz
∂
∂z

to both sides of the equation (4) and
using the Poisson formula, for the variation of magnetic potential, we obtain

δW (r) =

2π
∫

0

π
∫

0

(d − cr(θ, φ))r2(θ, φ) sin θ

(r2(θ, φ) − 2br(θ, φ) + a2)3/2
δr(θ, φ)dθdφ . (5)

The same notations are used in (4) and (5) as in (2) and (3). Formulas (4)
and (5) are proposed as integral equations for the linearized inverse problems
in gravimetry and magnetometry. In their properties, they are entirely similar
to equations (2) and (3). Their integrands are algebraic relative to the func-
tion r(θ, φ) and do not contain its derivatives. This circumstance is extremely
important because the kernel of the integral equation of the linearized problem
in the Newton method must be computed again in each iteration.

A study is made for the problem of parameterization of the solution. It is sug-
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gested that a solution be sought in the form of a truncated spherical harmonic
expansion. In such a case, linear systems of small size are derived and the
solution of regularization problem is very simple.

As the regularizing functionals, we use analogs of the Tikhonov first-order
smoothing functional. A complexity is that the derivatives of the spherical
functions, in contrast, for example, to the terms of a double Fourier series, no
longer form an orthogonal system. The following functional is applied:

Ω(r) =

2π
∫

0

π
∫

0





(

∂

∂θ
r(θ, φ)

)

2

sin θ +

(

∂

∂φ
r(θ, φ)

)

2
1

sin θ



 dθ dφ . (6)

The computations indicated that if r(θ, φ) is substituted into (6) in the form
of a truncated spherical harmonic expansion, a quadratic form is obtained
relative to expansion coefficients, whose matrix is extremely close to a diagonal
one. Accordingly, when one uses the necessary condition of extremum, it is
sufficient to add to the matrix of the linear system of the least squares method
a diagonal matrix multiplied by the regularizing parameter. We note that the
sequence of diagonal elements is ascending, which makes it possible to suppress
undesirable high-frequency oscillations of the boundary of the object sought.

3 Gravitational model

Now we apply the described method of 3D potential field data inversion for
constructing a two-layer model of the Earth. The gravitational model is devel-
oped using equation (2). The values of the function Ψ(r) have been calculated
by means of the harmonic coefficients of gravity field model GGM02C (Ta-
pley et al., 2005), obtained from GRACE data. Coefficients up to degree 10
have been taken into account. The model of the Earth consists of a mantle
and a core, which are assumed to have a homogeneous density. The field of
a rotated ellipsoid with the mean Earth’s density has been subtracted from
the gravity field values. The CMB topography is the source of the residual
field. The CMB density contrast value ∆σ = 4.34 g/cm3 has been taken from
the PREM density model of the Earth (Dziewonski and Anderson, 1981). The
CMB geometry is determined by the function r(θ, φ). The approach described
above has been applied to find it.

Fig. 1.

The obtained CMB relief is shown in Fig. 1. The main feature of the CMB
topography, as revealed in Gudmundsson et al. (1986) using PcP waves and
in Morelli and Dziewonski (1987) using both PcP and PKP waves, turned
out to be an uplift in the northern part of the Greenwich meridian. The same
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uplift is the most essential feature of the relief detected by us proceeding
from gravity data. Using data from PKKP waves, the authors of a later
paper (Doornbos and Hilton, 1989) traced, along with the above-mentioned
uplift, depressions of the core–mantle boundary. The depressions also agree
well with our gravitational topography: the triangle depression in the top left
corner, the depression stretched in horizontal direction in the middle of the
bottom edge of the figure and the isometric depression in the top right corner
are clearly recognisable. In Doornbos and Hilton (1989) the amplitude of the
CMB variation was [−4, 4] km, which is quite close to our results. Similar
estimates of CMB amplitude are obtained also in (Garcia and Souriau, 2000).
Of course, it is possible to explain the Earth’s gravity field without CMB
topography, but the CMB geometry determined by us with the use of gravity
data is adequately supported by seismological data, a fact which makes us
quite confident that the topography actually exists.

4 Magnetic model

The magnetic model is developed using the harmonic coefficients of the 10th

Generation International Geomagnetic Reference Field for the epoch 2000, de-
rived from the Ørsted and CHAMP missions (Maus et al., 2005). The model
of the Earth consists of a non-magnetic mantle and a homogeneously mag-
netized core. The relation of this model with reality is more complex than in
the gravitational case and deserves a more detailed discussion. We should take
into account three models of the sources of the Earth’s main magnetic field.
The first one corresponds to the geomagnetic dynamo theory and represents a
system of electric currents in the core. As is known, each elementary electric
current can be replaced by a magnetic dipole; this leaves the magnetic field
unchanged. These considerations lead us to the second model of the core: an
inhomogeneously magnetized sphere. Finally, a homogeneous equivalent can
be constructed for such a sphere. The three models generate the same external
magnetic field. We are concerned with the development of exactly the third
model: a homogeneous magnetic equivalent for a system of electric currents
in the core. Naturally, this model is the most unrealistic one. At the same
time, the problem of constructing the first two models possesses a principal
ambiguity: it is well known that numerous systems of electric currents and
distributions of alternating magnetization exist, which generate a zero exter-
nal magnetic field. While constructing a homogeneous magnetic equivalent, we
find ourselves in the class of uniqueness. Besides, it is clear that high values of
the internal magnetic field in the Earth’s core lead to high values of magneti-
zation in the second model and raising of the boundary for the homogeneous
equivalent. Then, the shape of the model constructed by us represents a quite
vivid illustration of the internal magnetic field in the core.
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The homogeneous equivalent geometry is determined by the function r(θ, φ).
The approach described in Section 2 has been applied to find this function.
Firstly, the ΨM(r) values at the Earth’s surface have been computed using
equation (1) and the harmonic coefficients of the magnetic potential. Then
the integral equation (3) is solved by the local corrections method. Newton’s
method is used to improve the initial solution. The linearized inverse problem
is solved by means of the integral equation (5). In each iteration, the regular-
ization is applied using the functional (6). Here, like in the gravitational case,
a spherical harmonic expansion of r(θ, φ) up to degree 4 is used according
to Bowin’s (2000) considerations and to the fact that such was the maximal
order of the spherical harmonics used in constructing the CMB topography
on the basis of seismological data. The shape of the model obtained is shown
in Fig. 2.

Fig. 2.

One should not treat the boundary of the homogeneous magnetic equivalent as
a real physical boundary; it is only a representation of the internal magnetic
field in the Earth’s core. A rather considerable amplitude of the boundary
variation could be caused by strong inhomogeneity of the magnetic field in the
core. The isolines exhibit two characteristic trends: from the top left corner
to the middle of the bottom edge of the figure and further to the top right
corner. The same trends are present in all of the above-mentioned seismological
models of the CMB relief. The comparison of our gravitational and magnetic
models with each other is the subject of the next section.

5 Correlation between the models and its possible explanation

The following circumstance, which is revealed by a comparison of the con-
structed gravitational (Fig. 1) and magnetic (Fig. 2) models, seems to be the
most interesting. It turned out that rising of the boundary of the homogeneous
magnetic equivalent corresponds to depressions in the core–mantle boundary,
reconstructed from gravitational data. Hide and Malin (1970) suggested that
the correlation between the global features of the gravity and magnetic fields
of the Earth is due to the fact that both fields are connected with the CMB
topography. Now we can refine the hypothesis: regions exhibiting high val-
ues of the magnetic field in the Earth’s core correspond to depressions in the
core–mantle boundary recovered on the basis of gravity data.

With the aim to quantify the degree of correlation, a correlation coefficient is
calculated between gravitational and magnetic solutions (Fig. 1 and Fig. 2).
It should be noted that CMB topography derived from gravity is more com-
plicated than CMB magnetic model; it includes not only depressions, but also
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uplifts, partly correlated with subduction zones. If we calculate a correlation
coefficient for the whole globe, it is equal to -0.067 (i.e., nearly no correlation).
But if we only take into consideration the area of uplifts of the magnetic model,
the correlation coefficient is -0.797. This means that the absolute value of the
correlation coefficient reaches approximately 80%; it is negative, because we
compare depressions of the gravitational model and uplifts of the magnetic
one.

A possible explanation of the detected correlation is, as the author believes,
the flow of the core material from the core–mantle boundary to the Earth’s
centre. Such a flow could cause the formation of a ”crater” on the surface of
the core, and the crater shows up as a depression according to gravitational
and seismological data. It is also possible that CMB thermal or topographic
structure controls the Earth’s core flow in such a way that the flow is down-
welling under depressions of CMB and these downwellings act to concentrate
magnetic flux. In both cases, the descending flow results in high values of
the magnetic field and, consequently, in rising of the homogeneous equiva-
lent boundary, which is well correlated with depressions of CMB according to
gravity and seismological data.

Most important for us is to draw attention to this correlation. Of course, the
author does not lay claim to any exhaustive physical interpretation of the re-
sults obtained. At the same time, there are some results that seem to be in
favour of our hypothesis. For instance, Whaler (1990) reconstructed a velocity
distribution on the core surface according to magnetic field variations data.
A feature of a descending flow is that its velocity vector is nearly normal to
the surface of the core; therefore, its projection on the surface is close to zero.
In Whaler (1990), regions where the velocity is close to zero form a configura-
tion quite similar to the one shown in Fig. 2. In Bloxham and Jackson (1990),
temperature variations on the core–mantle boundary were investigated. The
shape of the colder regions on the CMB also has substantial similarity with
uplifts of the homogeneous equivalent boundary and depressions of the gravi-
tational model that we found. Finally, in Golovkov et al. (1996), a triangular
region of descending flow of core material is revealed according to geomagnetic
jerks data, which is quite in agreement with Fig. 2.

Instead we have made an attempt to test our hypothesis in an indirect way.
The idea is to find the geometry of homogeneous magnetic equivalents corre-
sponding to various geomagnetic epochs. As mentioned above, the shape of
such a model represents a quite vivid illustration of the internal magnetic field
in the core; besides, by its recovery we find ourselves in the class of unique-
ness. The comparison of homogeneous equivalents corresponding to various
epochs provides an opportunity to observe the dynamics of the magnetic field.
It should be noted that, if we accept the frozen flux hypothesis, the study of
the behaviour of homogeneous magnetic equivalent relief isolines in time could
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be regarded as an independent approach for investigating core material flow.

Assuming that the hypothesis is valid and the flow still takes place, the internal
magnetic field in regions of its increased value must grow further. As a result,
the isolines of homogeneous magnetic equivalent relief should expand. Our
idea to obtain an independent confirmation of the hypothesis is to study the
geometry of homogeneous equivalents corresponding to various geomagnetic
epochs in order to examine if the predicted expansion of their isolines actually
takes place.

The harmonic coefficients of the 10th Generation International Geomagnetic
Reference Field for the epoch 1960, 1980, and 2000 have been used to test
our hypothesis. For each field model, the geometry of homogeneous magnetic
equivalent has been found by means of the algorithm described in Section 2.
Then the solutions corresponding to three different moments of time have
been compared with each other. The results found according to IGRF1960
and IGRF1980 data are shown in Fig. 3.

Fig. 3.

For the uplift in the top right corner the expansion of isolines is visible only
in the eastern part, but for uplifts in the top left corner and in the middle
near to the bottom line of the figure it is quite evident; a new isoline with the
value 4.1 has appeared here.

The next comparison is presented in Fig. 4. In this case we deal with two
solutions found according to harmonic coefficients, both based on satellite
data, being IGRF1980 (MAGSAT) and IGRF2000 (Ørsted and CHAMP).

Fig. 4.

The same isolines (IGRF1980 solution) are displayed with solid lines in Fig. 3
and with dashed lines in Fig. 4. Again the expansion of isolines is clearly
recognizable, especially for the isoline corresponding to the value 4, which has
broken up and bounds now not two separate peaks but one of greater area.

The main tendency of the isolines behaviour, as revealed by both comparisons,
is their expansion. This fact seems to confirm our hypothesis.

We have also calculated differences between our magnetic solutions: epoch
2000 - epoch 1980 and epoch 1980 - epoch 1960 (see Fig. 5). At least two
main depressions (in the top left corner and in the middle of the bottom
edge) are definitely located in the area, where both differences are positive.
Moreover, using these time difference maps, one could estimate the velocity
of the boundary growth for the homogeneous magnetic equivalent.
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6 Conclusions

The following conclusions are drawn from the conducted inversion of gravity
and magnetic data into the CMB topography:

(1) Our algorithms of 3D potential field data inversion can be successfully
applied to obtain global solutions according to harmonic coefficients of
the latest satellite gravity and magnetic field models.

(2) The amplitude of variation and the main features of our gravitational
model of CMB topography agree quite well with seismological data. This
makes us quite confident that the relief actually exists.

(3) The magnetic model represents a homogeneous magnetic equivalent for
the Earth’s core; its shape provides a quite vivid illustration of the inter-
nal magnetic field in the core.

(4) A new correlation has been revealed by the comparison of the obtained
gravitational and magnetic CMB models: regions exhibiting high values
of the magnetic field in the Earth’s core correspond to depressions of the
CMB recovered on the basis of gravity data.

(5) The study of homogeneous magnetic equivalent geometry corresponding
to various geomagnetic epochs is proposed as an independent approach
to investigate the core material flow.

(6) The expansion of the isolines of the solutions, corresponding to epochs
1960, 1980 and 2000, tends to confirm our hypothesis about core material
flow, which is suggested to explain the revealed correlation.
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Fig. 1. CMB topography derived from gravity data. Harmonic coefficients of gravity
field model GGM02C (Tapley et al., 2005) obtained from GRACE data are used,
deviations of the boundary from the spheroid are shown.
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Fig. 2. Magnetic model of CMB. The model represents a homogeneous magnetic
equivalent for the Earth’s core, which is developed using the harmonic coefficients
of IGRF2000 derived from Ørsted and CHAMP missions (Maus et al., 2005).
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Fig. 3. Comparison of magnetic solutions for epoches 1960 and 1980. Geometry of
homogeneous magnetic equivalents corresponding to IGRF1960 (dashed line) and
IGRF1980 (solid line) are shown.
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Fig. 4. Comparison of magnetic solutions for epoches 1980 and 2000. Geometry of
homogeneous magnetic equivalents corresponding to IGRF1980 (dashed line) and
IGRF2000 (solid line) are shown.
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Fig. 5. Differences between magnetic solutions corresponding to various geomagnetic
epochs. (a) Epoch 1980 - epoch 1960. (b) Epoch 2000 - epoch 1980.
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