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Abstract

Schelling (1969, 1971a,b, 1978) considered a model with individual agents who only
care about the types of people living in their own local neighborhood. The spatial
structure was represented by a one- or two-dimensional lattice. Schelling showed
that an integrated society will generally unravel into a rather segregated one even
though no individual agent strictly prefers this. We generalize this spatial proximity
model to a proximity model of segregation, examining models with individual agents
who interact ’locally’ in a range of more general social network structures. The
levels of segregation attained are in line with those reached in the lattice-based
spatial proximity model.

Keywords: Spatial proximity model, Social segregation, Schelling, Proximity pref-
erences, Social networks, Undirected graphs, Best-response dynamics.

JEL Classification: C72, C73, D62.

∗We thank Yannis Ioannides, Giulia Iori, Alan Kirman, Akira Namatame, workshop participants of
iNeck (Strasbourg), WEHIA 2005 (Colchester), SCE 2005 (Washington DC) and Complexity 2006 (Aix
en Provence) as well as the theory reading group at QM (London) for their comments. Part of this work
was done while G.F. was visiting the Bureau d’ Economie Théorique et Appliquée (BETA), Université
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1 Introduction

Segregation has been for some time one of the most important socio-political and public

economic issues in the USA and has also increasingly become one in many Western-

European countries. As segregation has increasingly been recognized as one of the most

important public policy issues in countries such as the UK, the Netherlands, France, and

Germany, various countries have started evaluating and questioning the effectiveness of

decades of integration policies (see, e.g., Baldwin and Rozenberg, 2004, and Commissie

Blok, 2004). The widely accepted view is that these policies have essentially been fail-

ures as integration simply did not happen. As Trevor Phillips (2005), chairman of the

Commission for Racial Equality in the UK, puts it, “we are sleepwalking our way to

segregation” . The main objective of this paper is to improve our understanding of this

issue.

The prevalent form of integration policy in countries such as the UK and the Nether-

lands has been one of promoting multiculturalism by focusing on the individual citizens’

preferences1. The idea was that promoting openness and tolerance with respect to diver-

sity would allow integration to take place.

Individual preferences are exactly what the spatial proximity model of Schelling (1969,

1971a,b, 1978) focuses on. Schelling considered a simple model with individual agents

who only care about the types of people living in their own local neighborhood. The

spatial structure was represented by a one- or two-dimensional lattice. Schelling showed

that an integrated society will generally unravel into a rather segregated one even though

no individual agent strictly prefers this. This segregation seemed due to the spontaneous

dynamics of the economic forces, with all individuals following their incentives to move

to the most attractive locations. In doing so, they create externalities for other people,

who will respond to their changed incentives, and so on.

The preferences considered in the spatial proximity model are said to be mild, as

everybody would be happy in a perfectly integrated society2. Pancs and Vriend (2007)

1This focus can be explained by the practical difficulties with other policy measures aimed at inte-
gration (see Pancs and Vriend, 2007, for details).

2As this occurs without any of the individuals involved explicitly designing this outcome, the sleep-
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examined the robustness of the spatial proximity model. They showed that the model

can be further simplified (rendering the individual preferences even more salient as an ex-

planatory variable of segregation) and that these proximity preferences may be even more

extreme in favor of integration. This focus on mild individual preferences or preferences

that even favor integration is not to say that institutional constraints or racism may not

hinder integration. But what the model shows is that even without such obstacles one

should perhaps expect segregation. It seems that any integration policy must be based

on a good understanding of these spontaneous dynamics.

The idea that people care about their spatial proximity can be justified by the fact

that this is where people mow their lawns, where their children play outside, where they

do their shopping, and where they park their car. The social environment is, however,

not limited to this spatial proximity. People also interact through networks of friends,

relatives, and colleagues, and through virtual communities on the internet, and they are

likely to have preferences with whom they do this, just as they have preferences regarding

their spatial proximity. Similarly, segregation need not necessarily occur at the spatial

(neighborhood) level. One might conceive of people who are socially segregated despite

being spatially integrated3. Therefore, a better understanding of the phenomenon of

segregation in more general network structures seems desirable.

In this paper we will make some steps to generalize the spatial proximity model to a

proximity model of segregation. That is, we will examine models with individual agents

who interact ’locally’ in a range of network structures with topological properties that

are different from those of regular lattices, while having mild preferences regarding with

whom they interact. We stick to standard assumptions as far as types and preferences are

concerned, and we study best-response dynamics. Apart from the socio-political interest

in this, this seems also intellectually interesting as, after all, a lattice is just a special type

of network, and we may want to know whether mild proximity preferences can explain

segregation also in more general types of networks.

walking metaphor may seem appropriate.
3This appeared to be the case with some of the recent terror suspects in the Netherlands and the

UK.
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The paper is organized as follows. In Section 2 we present the model. Section 3

discusses in more detail the classes of networks that we consider in our analysis. The

various indices used to measure segregation in social networks are introduced in Section

4. Section 5 contains our analysis of the model, including a sensitivity analysis of the

parameter setup. Finally, Section 6 concludes.

2 The Model

Consider a society composed of N agents who can locate themselves in one of the M ≥
N ≥ 3 available locations. Each location can contain at most one agent. Locations can

be connected or not. We model locations and connections through a non-directed graph

(NDG) G composed of M nodes and a collection of non-directed edges linking any pair of

nodes. Edges are described by the (symmetric) M ×M sociomatrix W = {wkh}, where

wkk = 0 ∀k = 1, ..., M and wkh = whk = 1 if and only if there is an edge connecting

nodes k and h, and zero otherwise. We define the “neighborhood” Vk (or the “interaction

group”) of a node k as the set of nodes that node k is linked to:

Vk = {h ∈ IM : wkh = whk = 1}, (1)

where IM = {1, ...,M}.
We suppose that each node is empty (i.e., it does not contain an agent) with proba-

bility θ ∈ (0, 1), while it is occupied with probability 1− θ. Therefore, on average, there

are N = (1− θ)M agents in the society. Each agent can be one of two types, say −1 and

+1. Time is discrete, and time ticks are labeled by t = 0, 1, 2, ....

Agents have standard, binary, Schelling-type preferences: they are happy if and only

if the relative frequency of agents of their own type is greater or equal than 0.50 in their

neighborhood. More formally, if node i is occupied by an agent of type s ∈ {−1, +1} at

time t,

4
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uit = uit(s) =





1

0

if xit(s) ≥ 0.5

otherwise
, (2)

where uit = uit(s) is the utility of agent i (of type s) at time t and xit(s) is the current

relative frequency of agents (i.e., filled nodes) of type s in Vi
4.

The initial state of the system is characterized by (i) an instance of the network

structure, that is, a graph G0 = {IM ,W0} (more on that below), and (ii) an allocation

of agents and types across the M available nodes. The initial allocation of agents and

types across the M nodes is drawn uniform randomly. Thus, at t = 0, each node i ∈ IM

will either be empty or occupied. If it is occupied, this will be either a −1 or a +1 agent,

each with probability 0.5. Thus, in the society there will be, on average, N/2 agents of

type −1 and N/2 agents of type +1.

The dynamics is as follows. At each t > 0, an agent is drawn at random (and

independently) from IN = {1, ..., N}. This agent checks every available node in the

network G0 (i.e., his current node plus all empty nodes) and computes the utility that he

could earn at each of these nodes. The agent chooses the node that provides the highest

achievable utility level. Agents resolve ties by randomizing among all nodes providing

the same maximal utility level.

Notice that we assume no inertia in the agents’ choices. That is, the agents’ current

locations do not bias their choices (e.g., because of moving costs). We also assume that

agents can move to any empty node in the network (i.e., there are no information or

moving constraints or costs). In Section 5.3 we will study the effect of removing these

assumptions.

3 Network Structures

To investigate the scope of proximity preferences explaining segregation, we do not con-

strain the graph G0 to be a lattice-type of network. Instead, we explore a number of

4In line with Pancs and Vriend (2007), we assume that the utility associated with an empty neigh-
borhood is zero.
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classes of NDGs characterized by very different structural and topological properties.

This allows us to investigate how segregation levels, emerging out of the best-response

dynamics described above, may depend on the type of network. We study six classes

of NDGs: two-dimensional lattices with Von-Neumann neighborhoods (2D-VN ), two-

dimensional lattices with Moore neighborhoods (2D-M ), regular NDGs (REG), and ran-

dom (RAND), small-world (SW) and scale-free (SF ) NDGs. We now discuss each of

these network structures in more detail.

3.1 Two-dimensional boundary-less lattices with Von-Neumann

neighborhoods (2D-VN)

The two lattice-type networks are considered to benchmark our analysis against the

standard Schelling model. The difference between these two classes of lattices lies in the

metrics employed to compute the distance among any two nodes. Neighborhoods are

accordingly defined as containing all nodes that lie within a certain integer interaction

radius r ≥ 1. In the 2D-VN lattice, the “Manhattan” metrics is used and neighborhoods

of radius r ≥ 1 have a “diamond” shape. That is, if any node h has coordinates (xh, yh),

the distance is defined as

δ(k, k′) = |xk − xk′|+ |yk − yk′ |, (3)

where k and k′ are any two nodes. We avoid singularities in the lattice by placing nodes

on a torus. A node’s neighborhood is thus defined as

Vk(r) = {h = 1, ..., M : δ(k, h) ≤ r}, (4)

where r is the neighborhood radius. Notice that the degree dk of any node k; that is, the

number of inward (and outward) links to (and from) k, is

dk(r) = |Vk(r)| = 2r(r + 1). (5)

6
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(a) 2D-VN: r=1 (b) 2D-M: r=1 

Figure 1: An Example of Neighborhood Shapes with 2-Dimensional Von-Neumann (2D-VN) and Moore
(2D-M) lattices for r = 1

See Figure 1, panel (a), for an example of the shape of Vk(r) for r = 1 in the case

of 2D-VN. Notice that the links actually in place in a 2D-VN lattice with r > 1 dif-

fer from those present in the lattice (with r = 1). In fact, any agent is connected

through additional direct links with all agents placed 2, ..., r steps away. For example,

if r = 2, the agent placed in the node (x, y) is not only linked with the agents placed

in (x− 1, y), (x + 1, y), (x, y − 1), (x, y + 1) (whose links with (x, y) are present in the

lattice), but also with agents placed two steps away in the underlying lattice.

3.2 Two-dimensional boundary-less lattices with Moore neigh-

borhoods (2D-M)

In this case, the lattice is endowed with the “spherical” metrics, which entails “box-

shaped” neighborhoods:

δ(k, k′) = max{|xk − xk′|, |yk − yk′|}, (6)

where k and k′ are any two nodes. Again, we avoid singularities in the lattice by placing

nodes on a torus. Here, the degree dk of any node k is

dk(r) = |Vk(r)| = 4r(r + 1), (7)

where Vk(r) is defined as in (4). Notice that given any interaction radius r ≥ 1, 2D-M

lattices have neighborhoods twice as large as those of 2D-VN lattices. An alternative

7
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way to put this (for the case r = 1) is to say that the 2D-VN lattices have only lateral

(horizontal and vertical) links, whereas the 2D-M lattices have all diagonal links in place

as well. An example of the shape of Vk(r) for r = 1 in the case of 2D-M graphs is reported

in Figure 1, panel (b), where such additional links for the agent concerned are shown with

dashed lines.

As happens with 2D-VN lattices, also here for r > 1 there are additional links in

place. For example, for r = 2, also agents that would be two steps away from each other

in the 2D- M lattice with r = 1 are directly linked.

3.3 Regular NDG (REG)

Two-dimensional lattices are regular NDGs (i.e., NDGs where all nodes have the same

degree, as they hold the same number of edges). Lattices, however, possess further spatial

homogeneity and symmetry properties, such as invariance to roto-translation (i.e., all

neighborhoods are invariant up to a translation in space and/or a rotation around their

center). Therefore, the third class of NDG we explore is the one of regular NDGs,

which are simply defined as NDGs where all nodes have the same degree d, but do

not necessarily satisfy the additional spatial homogeneity and symmetry properties that

lattices do. At time t = 0, we choose at random a regular NDG of degree d using the

algorithm proposed by Steger and Wormald (1999). Under this routine, regular graphs

of degree d are generated (approximately) uniformly at random. A graphical instance of

a regular NDG with d = 4 and M = 20 is shown in Figure 2. 5

3.4 Random NDG (RAND)

We, then, discard the hypothesis of regularity, by considering the class of random NDGs.

Given an average degree equal to (M − 1)p, we generate the graph by allowing each

edge to be in place, independently of all other edges, with a probability p. Therefore,

unlike regular NDGs, nodes will generally have different degrees. In fact, the degree

distribution is symmetric, appears to be quite dispersed over the support {0, ..., M − 1},
5This and all subsequent network graphs have been plotted using UCINET 6.

8
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Figure 2: An example of a regular graph with
degree d = 4 and M = 20 nodes. Notice how all
nodes hold exactly 4 links.

Figure 3: An example of a random graph with
average degree d = 4 and M = 20 nodes. Nodes
color depends on node degree. Black nodes: d >
4. Grey nodes: d = 4. White nodes: d < 4.

and has average degree d = (M − 1)p. See Figure 3 for an example.

3.5 Small-World NDG (SW)

Next, we consider two additional NDG classes that, due to their close relationships

with empirically observed social and economic networks (for an introduction, see, e.g.,

Barabási, 2003), have received increasing attention over the last decade. First, we study

small-world NDGs (SW). The main features of SW networks (Watts, 1999, 2003) are that

they tend to have a small “path length” (i.e., average distance between any two nodes)

and a large “clustering coefficient” (i.e., likelihood that any two neighbors of an agents

are also neighbors of each other). To generate a small-world NDG, we start from a two-

dimensional boundary-less lattice with Von-Neumann neighborhoods as in 3.1 above, for

a certain value of r. Then, each edge (h, k) is independently rewired to a randomly chosen

node, say k′, outside Vh(r) with some probability β ∈ (0, 1). In case of rewiring, the edge

(h, k) is deleted and replaced by the new edge (h, k′). If β is close to one and M is very

large, this procedure yields a random NDG. Otherwise, the degree distribution will be

symmetric, centered around 2r(r + 1) but less dispersed than the one associated with

a random NDG. In the results presented, we employ β = 0.26. A graphical example of

6This value for the rewiring probability typically yields NDGs with the small-world property, see
Watts and Strogatz (1998). However, our results are not altered if one tunes β in a wider range values.
More on that below.

9
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Figure 4: An example of a small-world graph ob-
tained from M = 100 nodes originally lying on
a circle and interacting with their nearest neigh-
bors only (r = 1). Rewiring probability β = 0.2.
Nodes color depends on degree after rewiring.
Black nodes: d ≥ 3. Grey nodes: d = 2. White
nodes: d = 1.

Figure 5: An example of a scale-free graph ob-
tained applying a preferential attachment algo-
rithm. The initial population size is M0 = 16.
Final population size is M = 100. All initial
nodes have degree d = 4. White nodes are the
“hubs”.

a SW graph is in Figure 4, where a population of M = 100 nodes initially lying on a

one-dimensional boundary-less lattice (i.e., a circle) with r = 1 is rewired using β = 0.2.

Notice how a small fraction of nodes (in black) hold more than two links, with some of

their links being to nodes located arbitrarily far from them on the circle, while the other

nodes (in grey or white) who kept only one or two links are usually linked to their direct

neighbors only.

3.6 Scale-Free NDG (SF)

Finally, we consider scale-free NDGs (SF ). A scale-free NDG has a skewed, power-law

degree distribution, with few nodes holding a large number of edges (i.e., the hubs of the

network) and many nodes with few edges. To build a SF graph, we employ a standard

“preferential attachment” procedure (Barabási and Albert, 1999), starting with M0 nodes

linked through a 2D-VN lattice with r = 1 (and thus an initial degree d = 4). One node

at a time is added until a size M is reached. In any step, the additional node is allowed

to form 4 links. Each new link is formed by choosing one of the existing nodes with a

probability proportional to its current degree. The larger the initial number of nodes,

the smaller is the degree heterogeneity (the less skewed the degree distribution). The

underlying assumption of this setup is that any node can hold at no cost any arbitrarily
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large number of nodes (as M increases). When a SF network is in place, there is a small

set of agents that hold a large number of links, while all the others hold a small number of

links. Thus, the degree distribution is skewed to the right, with a relatively small average

and a fat right tail. As Figure 5 shows for an instance of a scale-free NDG obtained

by applying the above procedure for M = 100, a few “hubs” (in white) holding a large

number of links coexist with many nodes (in black) connected with a small number of

other nodes, and possibly with the hubs. As expected, the average degree of a SF network

generated from an initial node size M0 always tends to have the same average degree.

Moreover, this average degree is not monotonically increasing in M0. In fact, our analysis

shows that the following (approximate) relation holds

d ' 0.00003 ·M3
0 − 0.0062 ·M2

0 + 0.3485 ·M0 + 3.1916. (8)

Hence, D grows for M0 ≤ 39 and decreases for M0 ≥ 40.

3.7 System- and Network-specific Parameters

Given a certain class within this range of networks, we need to specify the system- and

network-specific parameters. System parameters are M (number of nodes) and θ (average

percentage of empty nodes). Given the class of networks to be implemented, network

specific parameters characterize the set of possible networks from which the one actually

in place will be drawn (see Table 1).

Parameters
Network System Network-specific Node degree
2D-VN r d = 2r(r + 1)
2D-M r d = 4r(r + 1)
REG (M, θ) d d

RAND p d = (M − 1)p

SW r d = 2r(r + 1)
SF M0 See (8)

Table 1: Network Classes and System Parameters: M : Number of Nodes; θ average percentage of empty
nodes; d: Graph Average Degree; r: Interaction Radius; p: Link Probability; M0: Initial Number of
Nodes in a preferential-attachment graph formation mechanism.

Table 1 also shows how the node degrees depend on the chosen network-specific pa-
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rameter values. When we compare segregation levels in networks from different classes,

we will keep the system parameters and the average node degree constant across the

networks considered. We achieve this by tuning the network-specific parameters. Thus,

the values for the radius r in the 2D-VN and 2D-M lattices, the probability p in the

random graphs, the radius r in the starting lattice for the small world networks, and M0

in the scale-free networks are all chosen such that the ensuing (average) node degrees d

match those considered for the other network classes. In other words, implicitly the only

network-specific parameter to be considered is the (average) node degree d.

In the lattice-case (i.e., 2D-VN and 2D-M), the initial graph is automatically defined

once one specifies the interaction radius r (and consequently the degree d). In all other

cases, given a choice for the network class and for the network-specific parameters of that

class (e.g., the degree d in a regular graph), each time we draw G0 (uniform) randomly

from the set of all possible graphs belonging to that class and with the given network-

specific parameters (e.g., all regular graphs with degree d).

4 Measuring Segregation in Social Networks

A number of indices have been suggested in the literature to measure segregation when

the agents are located on generic NDGs (see, e.g., Freeman 1972, Mitchell 1978, Freeman

1978, Fershtman 1997, Echenique and Fryer 2005, and references therein). We mainly

employ two indices. The first one is Freeman’s segregation index (FSI) (Freeman, 1972,

1978); see the Appendix (available on the JEBO website) for details. The rationale

underlying the computation of the FSI is that if a given agent-attribute (in our case the

type +1 or −1) does not matter for social relationships (i.e., for the link structure as

described by G0), then the links among the agents should be distributed randomly with

respect to that attribute. Therefore, suppose we observe a given allocation of agent types

across the M nodes, connected through the NDG G0. Let us, then, split the agents in two

groups according to their type and, for each type, let us count the number of cross-group

links (i.e., the number of links connecting any pair of agents of different types), as well the

12
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number of within-group links (i.e., the number of links connecting any pair of agents of

the same type). This gives us a 2×2 contingency table whose generic entry lxy gives us the

number of links between type-x and type-y agents in G0. Similarly, one can compute the

expected contingency table for a random allocation of agent types on G0. The difference

between the number of cross-group ties expected by chance and the number of observed

ties (divided by expected ones) gives us the FSI. The index ranges between −1 and 1,

with the highest segregation level obtained when there are no cross-group links in place.

Second, we compute the more sophisticated (but less intuitive) “spectral” segregation

index (SSI) for social networks recently proposed in Echenique and Fryer (2005). The

index has two remarkable properties: (i) it disaggregates at the level of individuals and

types (that is, one can compute the extent to which each single individual, or a given

type, is segregated in the society), and (ii) the level of segregation of any individual

increases linearly with the level of segregation of his neighbors. Notice that the FSI does

not possess this “linearity” feature. In fact, the FSI counts indiscriminately any within-

and cross-group link among any two agents belonging to a cluster of connected agents

of the same type. The SSI, on the other hand, takes into account the fact that agents

located close to the fringe of such a cluster are less segregated that those near its center.

More formally, the SSI associated with a given type s ∈ {−1, +1} is defined as the largest

eigenvalue of the sub-matrix obtained from the sociomatrix W0 by considering only the

rows and the columns associated with the nodes whose current type is s. In our analysis,

we report the average SSI, computed over the two types s ∈ {−1, +1} and suitably

rescaled to have an index ranging in the unit interval (see the Appendix for details).

We also check our results against a number of alternative segregation indices, such as

those proposed in Fershtman (1997) and Freeman (1978), and some of those originally

developed in the lattice-case (see Pancs and Vriend, 2007), for example the average mix

deviation index (MD). The latter is defined as the absolute deviation between a 50-50

neighborhood and the current frequency of like agents in the neighborhood, averaged over

all agents. As we discuss in more details below, our main results are not qualitatively

altered if one considers these additional segregation measures. Therefore, in what follows

13
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we will mainly focus on FSI and SSI as our measures of segregation in networks.

5 Analysis of the Model

In this section, we present an analysis of our model for a society of M = 100 nodes.

Initially, we set the average percentage of empty nodes θ = 0.3, and for any given network

class we choose the network-specific parameters. Section 5.2 presents a sensitivity analysis

across the parameter space as described in Table 1. Our analysis will take the form of a

Monte Carlo (MC) analysis. The procedure is as follows.

For each choice of network class and network-specific parameters we generate a number

of independent runs. For each run, where necessary, we randomly select a specific instance

of the network class, and we generate an initial allocation of agents and types across

the network uniformly at random. We, then, let the best-response dynamics run and

collect system statistics when either segregation measures or the configuration of types

across the M nodes have reached a steady-state7. This typically happens well before

T = 50000 time-steps with probability one. We independently repeat this exercise 1000

times, computing the Monte Carlo (MC) average and standard deviation for the relevant

measures. Since across-run variability turns out to be very small (across-run standard

deviations are of an order of magnitude of 10−5) and MC distributions appear to be

symmetric, we report below MC averages of segregation measures only.

5.1 Some Benchmark Results

The main question we are interested in here is whether mild proximity preferences can

explain segregation also in more general network structures, for example, when the under-

lying network is not necessarily a proxy of geographic space but it rather has structural

properties that make it resemble more of a social network. Second, we also want to know

whether segregation levels emerging in non-lattice NDG vary across different families of

7Notice that whenever the system does not seem to converge to a stable configuration of types across
the M nodes, a cyclical behavior is typically observed with agents who keep switching among a small
sets of locations. In these cases, segregation levels do converge to stable levels well before the system
begins cycling.
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Figure 6: Average Freeman’s Segregation Index
(FSI) v. Network Classes. Average Degree d = 4.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.
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Figure 7: Average Freeman’s Segregation Index
(FSI) v. Network Classes. Average Degree d = 8.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.

networks, and if so, how.

To begin answering these questions, we compare MC averages of the FSI and SSI in

the benchmark case θ = 0.3 where agents are placed in one of our six different classes of

NDGs (see Table 1). Initially, we restrict our attention to network-specific parameters

implying NDGs with (average) degree d ∈ {4, 8}. This allows us to compare non-lattice

NDGs directly with either a 2D-VN lattice or a 2D-M lattice with r = 1 (and thus d = 4

or d = 8).

As Figures 6 - 9 show, segregation levels are rather similar in all network classes con-

sidered. Lattice-type networks seem to display a higher average FSI, but this effect is

weaker for the SSI. This means that once one takes into account “linearity” in segregation

(that is, an individual’s segregation level increases with that of his peers), little differ-

ence in segregation can be detected across different network structures8. The structural

properties of the network do not seem to engender a strong impact on segregation levels

attained in the long- run by the system.

To put the values of the segregation indices found into perspective, we make the fol-

8According to standard statistical tests for the difference between two means, all reported values
are not statistically different. Notice, however, that one can make any pair of average segregation levels
statistically different by sufficiently increasing the MC sample size. Therefore, we do not report statistical
tests for the difference between any two average indices.
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Figure 8: Average Spectral Segregation Index
(SSI) v. Network Classes. Average Degree d = 4.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.
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Figure 9: Average Spectral Segregation Index
(SSI) v. Network Classes. Average Degree d = 8.
Parameters: M = 100, θ = 0.3. MC Sample Size
= 1000.

lowing two observations. First, for each network class and combination of network-specific

parameters, we compare the values of the FSI and SSI obtained through best-response

dynamics with the distribution of values for these indices over the set of all possible al-

locations of agents and types across M = 100 nodes (keeping θ = 0.3 as above). We

numerically generated proxies for these “theoretical” distributions by computing our seg-

regation indices over 100,000 random allocations of agents and types for each given net-

work class and network-specific parameters. Consider, for example, the FSI distributions

(similar results hold also for SSI). The resulting simulated “theoretical” distribution of

the FSI appears to be symmetric around 0. The corresponding MC distributions obtained

by running our model lie clearly to the right of the simulated “theoretical” distributions

(see Figures 10 and 11 for the case of the FSI in 2D-M and REG networks with degree

d = 8)9.

Second, to benchmark our results against those reported in Pancs and Vriend (2003),

we computed the average “mix deviation” index (see Section 4). Pancs and Vriend (2003)

find an average mix deviation level of 0.19 for a 2D-M lattice without boundaries in the

case r = 1 (and thus d = 8) and θ = 0.2. As Figure 12 shows, our model yields average

mix-deviation levels that are similar to Pancs and Vriend’s values. Moreover, the mix-

9All densities have been estimated using a normal kernel with a 0.20 bandwidth.
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Figure 10: FSI levels generated by the model
(solid line) v. FSI Simulated Theoretical Distri-
bution (dashed line). Network: 2D-M lattice with
r = 1 (d = 8). Parameters: M = 100, θ = 0.3.
Sample Sizes: Model = 1000; Simulated Index
Distribution = 100,000.
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Figure 11: FSI levels generated by the model
(solid line) v. FSI Simulated Theoretical Distri-
bution (dashed line). Network: Regular lattice
with d = 8. Parameters: M = 100, θ = 0.3.
Sample Sizes: Model = 1000; Simulated Index
Distribution = 100,000.

deviation index seems to be quite stable across all network classes we employed (including

the 2D-M one), as well as for other degree values (see Figure 13). This result corroborates

our choice of focusing on FSI and SSI as segregation measures.

5.2 Sensitivity Analysis: Empty Spaces, Connectivity, and Net-

work Size

The findings of previous sections show that proximity preferences can explain segregation

in a wide range of networks. In this section we turn to a sensitivity analysis of the model.

We are interested in assessing how, for each given class of networks, segregation levels

depend on the particular parametrization as far as the average percentage of the empty

nodes (θ) and the connectivity of the network (measured by its average degree d) are

concerned. Therefore, we first consider a range of different values of θ and d, and compute

MC averages of the FSI and SSI over 1000 independent runs for each combination of

parameter values. Figure 14 shows the SSI against average degree d for various fractions

of empty nodes θ, with each panel concerning one of the network classes considered10 11.

10For the scale-free networks, we employed values for M0 ∈ {9, 16, 25, 36}, which implies approximate
average node degrees d ∈ {5.82, 7.36, 8.50, 9.11}.

11Similar results are obtained also for the FSI.
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Figure 12: Average Mix Deviation Index v. Net-
work Classes. Average Degree d = 8. Parame-
ters: M = 100, θ = 0.2. MC Sample Size = 1000.
PV: Average values reported in Pancs and Vriend
(2003) for the case 2D-M without boundaries and
same parameter values.
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Figure 13: Average Mix Deviation Index v. Net-
work Classes. Average Degree d = 4. Param-
eters: M = 100, θ = 0.2. MC Sample Size =
1000.

— Figure 14 about here —

We see that segregation levels are decreasing with the average degree in every network

class and for any value of θ. Very high segregation levels are attained by the system when

the society is poorly connected and there is a small percentage of empty nodes. As the

connectivity increases, segregation becomes somewhat less pronounced, but even in very

connected societies, segregation levels remain significantly higher than the expected level

for random allocations.

— Figures 15 and 16 about here —

Figure 14 also shows that the SSI decreases with the percentage of empty nodes. This

is, however, not true for the FSI. The FSI, unlike the SSI, declines for small values of θ and

then remains fairly stable in each given network class. Figure 15 presents a comparison of

FSI and SSI against θ for the case of small-world networks. This difference seems due to

the linearity taken into account by the SSI. That is, only if one measures segregation by

taking into account the structure of emerging clusters does a higher percentage of empty

nodes negatively affect the measured segregation levels. This means that the larger the

degrees of freedom the agents have in their moving choices, the less the society ends up
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in “thick” segregated clusters, where many agents are “far” from the fringe. When θ is

very large, the society tends to be segregated in less structured clusters with many agents

located on the “border” between clusters of agents of the same type and an empty space.

That is why the FSI does not detect large drops of segregation levels even for large values

of θ.

It must be noticed that the foregoing findings about small-worlds are not affected by

the particular choice of the rewiring probability β employed to build the network. As

Figure 16 shows, both SSI and FSI display a low sensitivity to varying β for different

average degrees. This is not surprising, as previous results indicated statistically not

significant differences between segregation levels in 2D-VN lattices and random NDGs

(as we noted in Section 3, a small-world NDG recovers the lattice case when β = 0, while

it tends to a random NDG when β → 1).

The inverse relation between degree of the network (number of links per agent) and

measures of segregation may appear puzzling. In fact, one might think that the higher

the number of links an agent controls, the higher the number of affected agents at any

time an agent makes a move is; those losing a neighbour and those gaining one. Since any

move is more likely to bring about an increment of segregation, we may expect higher

segregation, not lower, for higher degree networks. In fact, this is not the case. The

reason is that when agents have many links, a change of state of one of those links is

relatively less relevant than when agents are linked with fewer nodes. In other words, the

relative impact on an agent by one individual change is inversely related to the number

of links. While in a low degree network, the move by one agent is very likely to trigger

further moves by affected agents, in high degree networks it is far more likely that changes

are absorbed by affected agents, since the change will be small.

The same line of reasoning provides an explanation for the relatively low segregation

levels generated by “sparse” populations, where agents are thinly scattered over a large

number of (mostly empty) nodes. In these conditions, the choice of an agent to move is

likely to affect a smaller number of agents, other things being equal, and therefore agents

can easily find a configuration that makes them happy without the need to form thick
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homogeneous clusters.

Next, we analyze what happens when the network size (M) increases. In particular, we

consider different network sizes, while we fix the network density (i.e., the ratio between

average degree d and network size M) at various levels. We allow for more time to let

the dynamics settle (close) to a steady-state, and we collect segregation measures across

1000 independent simulations as before.

— Figure 17 about here —

Our results (see Figure 17 for the case of a RAND NDG) show a mild size effect. For a

given network density (d/M), segregation is generally weaker the larger the absolute size

of the society, but there seems to be some lower bound that is quickly reached as networks

get larger. Figure 17 also confirms the fact that segregation levels decrease with average

degrees, as we found in the case M = 100. As we see, for a given network size, societies

characterized by a larger (absolute) average degree tend to reach lower segregation levels.

5.3 Sensitivity Analysis: Inertia and Local Moves

In the basic model presented in Section 2, agents choose pure best- responses. That is,

if an agent is drawn at time t to revise his current state, he constructs his choice set,

which includes his current location plus all vacant locations, and chooses the best option

in this set, randomizing in case the best-response is not unique. Although our analysis

shows that mild proximity preferences alone are sufficient to explain segregation in a wide

range of general network structures, it may be interesting to analyze whether additional

constraints on the individual behavior lead to different segregation levels.

Therefore, we first examine the effect of introducing inertia in individual decisions.

Suppose that at time t > 0 the s-type agent located in node i is drawn at random from

IN = {1, ..., N}. With inertia, this agent stays put if there is no vacant location that he

would strictly prefer to his current location. The idea of inertia is based on the implicit

modelling assumption of some small costs of moving (smaller than the smallest possible

difference in satisfaction between any two locations, but otherwise arbitrarily small).

Notice that under the inertia rule, satisfied agents will never move.
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Second, we restrict the choices of the individual agents to local-moves-only. With

local-moves-only the agents’ moves are restricted to the agents’ direct neighborhoods only.

Suppose the agent drawn, say the one located in node k, considers to move. He checks

every node that is currently empty in his interaction group Vk only, and then behaves

as in the basic model as far as his decision is concerned. This can be based either on

the additional assumption of moving costs that increase with the distance travelled in

the network such that they are greater than the greatest possible improvement in utility

derived from the neighborhood for any move beyond the current neighborhood, or on

some information costs preventing agents from observing anything that is outside their

current neighborhood. Notice that in both cases, the agents will tend to explore a smaller

number of options and the ensuing dynamics will be more ’sticky’.

— Figure 18 about here —

Figure 18 presents the average degree in four network classes (with θ = 0.3) for three

cases: (i) the basic model without inertia and allowing global moves, (ii) the model with

inertia and global moves, and (iii) the model with inertia and local-moves-only12. As

expected, segregation levels decrease when one introduces subsequently the assumptions

of inertia and local-moves-only, especially in lattice-type of networks. In all other cases,

the effect is relatively small.

6 Conclusions

Considering six different classes of networks, we generalized the spatial proximity model

by Schelling (1969, 1971a,b, 1978). For each network structure, we considered two types

of agents who occupy nodes in the network, with some nodes being empty. The agents

have preferences regarding the composition of their own neighborhood in the network and

move to available vacant locations following myopic best-responses. We analyzed the en-

suing dynamics, performing also a sensitivity analysis of a range of parameter values and

setups. The main result of our analysis is an affirmative answer to the question whether

12These results do not qualitatively vary if one considers the SSI.
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mild proximity preferences as such may suffice to explain segregation in a wide range of

network structures. In other words, our analysis confirms mild proximity preferences as

an important possible explanation of segregation not only in regular spatial networks,

but also in more general social networks.

Schelling’s original results on the emergence of segregation were obtained in a model

with a specific topology of the space in which the agents were allowed to move. In fact,

a lattice is a very peculiar topology, with a rigid and regular structure constraining the

interaction possibilities among the agents. Hence, it is not clear from Schelling’s spatial

proximity model how far the emerging segregation depended on the dynamic behavior of

the agents and how far it depended on the structural properties of the environment in

which the agents interacted. Our contribution in this respect suggests that the spatial

proximity model’s explanation of segregation lies in the dynamic part of the model (the

best-response dynamics based on mild preferences) rather than the very rigid topological

constraints used in the original model.

Apart from the general policy importance to improve our understanding of the phe-

nomenon of segregation, this has also some more specific possible policy relevance. Po-

tential policies to favor integration may include initiatives meant to alter the topology

in which people interact. That is, for example, building communication links to allow a

wider possibility of contacts among people from distant communities. In this way, one

may think, people would be offered different potential social links and their diversity may

contribute to reduce segregation. Although our analysis is not explicitly concerned with

policy issues, our results suggest that such measures, as long as they do not affect peoples

preferences, are likely to have limited relevance.

An example of social interactions fitting this kind of model is a network of profes-

sional relationships, such as interactions with colleagues, suppliers, customers, and so

on. Typically an agent searching for a job needs to find a vacancy (empty node), and

when starting a new job he ’inherits’ the links that come with his new position while

severing ties related to his previous job. A similar pattern applies to positions in sports

clubs or, say, orchestras. Although by far most such moves seem to take place in exist-
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ing networks, obviously, not all social interactions are adequately described by a given

network structure. People may build new houses, start their own firm, school, football

team or orchestra. Therefore, the next step of our research will be to study models of

segregation based on proximity preferences in which the network structure may evolve

endogenously, with individual agents forming new ties or severing existing ones according

to their proximity preferences in response to their environment.
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Appendix

A Segregation Indices

In this appendix we formally define the segregation indices that we employ in our analysis.

• Freeman Segregation Index (FSI)

Consider a NDG G over M nodes described by the sociomatrix W . Nodes can be

of three types: +1, −1 or 0 (with 0 meaning that the node is empty). Let NA and

NB be the number of agents of types A = +1 and B = −1. Let us define the 2x2

mixing matrix P where entry pab with a, b ∈ {A,B} counts the number of links

connecting an a-type node with a b-type node. It is easy to see that

P = E ′AE,

where A is the N × N socio-matrix obtained from W by deleting rows/columns

associated with empty nodes, and E is the N · 2 matrix (state indicator matrix)

where columns refer to the type {A,B} and rows to the node. Any row i can either

be (1, 0) if node i is of type A or (0, 1) if node i is of type B. Given the mixing

matrix of cross-group ties P , define the expected matrix of cross-group ties by E(P )

using the standard expected contingency matrix. Operationally, let

P =

[
pAA pAB

pBA pBB

]

be the mixing matrix. Freeman (1972) asked how we could identify segregation in

a social network. Theoretically, he argues, if a given attribute (group label) does

not matter for social relations, then relations should be distributed randomly with

respect to the attribute. Thus, the difference between the number of cross-group

ties expected by chance and the number of observed ties (divided by expected ones)

measures segregation:

FSI =
[E(pAB) + E(pBA)]− [pAB + pBA]

E(pAB) + E(pBA)
.
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To compute expected values, consider the row and column sums:

pA· = pAA + pAB

pB· = pBA + pBB

p·A = pAA + pBA

p·B = pAB + pBB

p·· = pAA + pAB + pBA + pBB

and let

E(pAB) =
pA· × p·B

p··

E(pBA) =
pB· × p·A

p··

Notice that in principle Freeman’s index should be computed as:

FSI∗ = max{FSI, 0}

because it measures whether there are fewer cross-group links than expected. As

Mitchell (1978) argues, there is no way to compute systematic integration. Freeman

(1978) then suggest computing two different indices, one for segregation and one

for integration, namely,

FSI∗∗ =
[E(pAB) + E(pBA)]− [pAB + pBA]

E(pAB) + E(pBA)−min{E(pAB) + E(pBA)} .

Since min{E(pAB) + E(pBA)} = 0, this means that when measuring systematic

segregation we have FSI∗∗ = FSI. Similarly, the index measuring systematic

integration is

FII =
[E(pAB) + E(pBA)]− [pAB + pBA]

E(pAB) + E(pBA)−max{E(pAB) + E(pBA)} ,

where max{E(pAB)+E(pBA)} = NA ·NB. We compute FSI and FII for agents of

types A = −1 and B = +1. A larger value for any of the two indices means “more”

of what it measures.

• Spectral Segregation Index (SSI)

The Spectral segregation index is computed as follows (see Echenique and Fryer,

2005, for additional details and applications). Consider the M×M socio-matrix W

and the current configuration of types across the M nodes. Define as Ax the sym-

metric, square sub-matrix obtained from W by considering only the rows/columns
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associated with agents of type x ∈ {−1, +1}. If there are K = N/2 agents of each

type (assuming N even), both A−1 and A+1 are K × K symmetric matrices. For

each type x ∈ {−1, +1}, define the Spectral segregation index with SSI(x) as the

largest eigenvalue of Ax. The entries of the eigenvector associated with SSI(x),

suitably scaled so that the average of the entries are equal to the eigenvalue SSI(x),

give the segregation levels of the individuals belonging to group x. Notice that

dmin(x) ≤ d(x) ≤ SSI(x) ≤ dmax(x),

where dmin(x), d(x) and dmax(x) are, respectively, the minimum, average and max-

imum degree of the nodes associated with agents of type x in the sub-graph W

composed of nodes hosting an agent of type x. Therefore, to have an index ranging

in the unit interval, one can employ

SSI∗(x) =
SSI(x)− dmin(x)

dmax(x)− dmin(x)
.

In our results, we typically get that SSI∗(−1) and SSI∗(+1) are very close in each

run and parametrization. This is because of symmetry between types in the initial

random allocation, with equal numbers of agents of each type. Therefore, we report

the average SSI index,

SSI =
SSI∗(−1) + SSI∗(+1)

2
,

as our spectral measure of segregation for the society as a whole.
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(a) 2D-VN Lattice
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(b) 2D-M Lattice
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(c) Regular
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(d) Random
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(e) Small-World
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Figure 14: SSI v. Average Degree for Different Levels of θ. Parameters: M = 100, MC Sample Size:
1000
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Figure 15: Small-World Networks. SSI (left) and FSI (right) v. θ for Different Average Degrees. Param-
eters: M = 100, MC Sample Size: 1000
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Figure 16: Small-World Networks. SSI (left) and FSI (right) v. different rewiring probabilities β and
alternative average degrees. Parameters: M = 100, MC Sample Size: 1000
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Figure 17: SSI (left) and FSI (right) v. Network Size (M) for different levels of network density (d/M).
Random NDG. Parameters: θ = 0.3, MC Sample Size: 1000
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Figure 18: FSI v. Average Degree in three alternative setups: (i) Basic Model; (ii) Inertia in individual
decision rules; (iii) Inertia in individual decision rules and local moves. See Section 5.3 for details.
Parameters: M = 100, θ = 0.3, MC Sample Size: 1000
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