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We set up a two-stage game with sequential moves by one altruist and n sel…sh agents. The Samaritan's dilemma (rotten kid theorem) states that the altruist can only reach her …rst best when the sel…sh agents move after (before) the altruist. We …nd that in general, the altruist can reach her …rst best when she moves …rst if and only if a sel…sh agent's action marginally a¤ects only his own payo¤. The altruist can reach her …rst best when she moves last if and only if a sel…sh agent cannot manipulate the price of his own payo¤.

A c c e p t e d M a n u s c r i p t

Samaritan vs Rotten Kid: Another Look 1 Introduction

However much we care about other people, we do not wish to invite them to take advantage of our charity. The economic theory of altruism1 o¤ers two con ‡icting pieces of strategic advice: the rotten kid theorem [START_REF] Becker | A theory of social interaction[END_REF][START_REF] Becker | Altruism, egoism, and genetic …tness: Economics and sociobiology[END_REF] and the Samaritan's dilemma [START_REF] Buchanan | The Samaritan's dilemma[END_REF]. In a single-round model with sequential moves by an altruistic agent (the Samaritan or the parent) and a sel…sh agent (the parasite or the kid), the contradiction between the two can be stated as follows.

The rotten kid theorem states that the parent can only reach her …rst best when she moves after the kid. The intuition is that the kid will only act unsel…shly if the parent can reward him afterward. The Samaritan's dilemma, on the other hand, states that the Samaritan can only reach his …rst best when he moves before the parasite. Here, the intuition is that the parasite cannot manipulate the Samaritan's actions when the Samaritan moves …rst.

In this paper we identify the restrictions on the agents' payo¤ functions for either result to hold. For the altruist to reach her …rst best when she moves …rst, a sel…sh agent's actions should on balance a¤ect only his own payo¤; then there are no externalities to his actions. For the altruist to reach her …rst best when she moves last, the sel…sh agents should not be able to manipulate the price of their payo¤s to the altruist (i.e. the altruist's trade-o¤ between her own and the sel…sh agents' payo¤s). Then the sel…sh agents will maximize total payo¤. They will bene…t from this themselves, because their payo¤s are normal goods to the altruist.

Our result for the Samaritan's dilemma is new. For the rotten kid theorem, [START_REF] Bergstrom | A fresh look at the rotten kid theorem-and other household mysteries[END_REF] has performed a similar analysis. His model is a special version of our general setup.

Whereas we do not restrict the nature of the altruist's actions, Bergstrom assumes she distributes a certain amount of money among the sel…sh agents. Removing this restriction results in a more general condition for the rotten kid theorem. Bergstrom also claims that the payo¤ condition is necessary only when money is important enough. We shall demonstrate that this additional condition is not needed. [START_REF] Cornes | Rotten kids, purity, and perfection[END_REF] have found another condition for the rotten kid theorem to hold in Bergstrom's framework. We shall see that this condition applies only in Bergstrom's framework and that there are no additional solutions.

However peripheral to economics the study of altruism may seem, there is in fact an application that takes us to the very heart of the discipline [START_REF] Munger | Five questions: An integrated research agenda for Public Choice[END_REF]. Regarding the welfare-maximizing government as an altruist and the private agents as sel…sh agents, we have a framework for a policy game. This framework allows us to study how the government can shape incentives such that private actions maximize social welfare. [START_REF] Chari | Time consistency and policy[END_REF] and [START_REF] Cubitt | Economic policy precommitment and social welfare[END_REF] have addressed this issue using a similar framework. The present paper o¤ers new insights into this question.

The focus of this paper is on the attainment of the altruist's …rst best. Another interesting question is whether a particular sequence of moves leads to a Pareto-e¢ cient outcome. Obviously, the altruist's …rst best is a Pareto-e¢ cient outcome. Moreover, it can be shown that when the sel…sh agents move …rst, the outcome is Pareto e¢ cient if and only if it is the altruist's …rst best. 2The rest of this paper is organized as follows. In Section 2, we introduce the Samaritan's dilemma and the rotten kid theorem in simple two-agent setups where they are known to hold. In Section 3, we set up a single-round game with n sel…sh agents, deriving the conditions for the Samaritan's dilemma and the rotten kid theorem to hold. In Section 4, we discuss Bergstrom's game as well as Bergstrom's own and Cornes and Silva's conditions for the rotten kid theorem. We conclude with Section 5.

Introductory examples

Samaritan' s dilemma

The Samaritan's dilemma is due to [START_REF] Buchanan | The Samaritan's dilemma[END_REF] who discusses a game between an altruistic Samaritan and a sel…sh parasite. 3 He shows that the Samaritan can reach his …rst best when he moves before the parasite, but not when he moves after the parasite.

In this subsection, we shall present a continuous version of the game. 4 The Samaritan maximizes his objective function W (U 0 ; U 1 ), which is increasing in his own payo¤ U 0 and the parasite's payo¤ U 1 : W k @W=@U k > 0; k = 0; 1. The parasite maximizes his own payo¤ U 1 . The Samaritan's own payo¤ U 0 depends only on his donation y to the parasite, so that we can simply set U 0 = y. The parasite's payo¤ depends on his work e¤ort x and on the Samaritan's donation y. The parasite's payo¤ function U 1 (y; x) has the following properties:

@U 1 =dy > 0; @ 2 U 1 =@y 2 0. The parasite's marginal payo¤ of money is positive and decreasing.

@U 1 =@x > [<]0 for x < [>]x (y).
Given the Samaritan's donation y, there is an optimal work e¤ort x (y) for the parasite, where the marginal payo¤ of extra money earned equals the marginal payo¤ of leisure.

@ 2 U 1 =@y@x < 0. An increase in the parasite's e¤ort decreases his marginal payo¤ of money. This is because the parasite earns money for his work, and his marginal payo¤ of money is decreasing.

The …rst order conditions for the Samaritan's …rst best are, with respect to y and x, respectively

W 0 = W 1 @U 1 @y (1) @U 1 @x = 0: (2) 
We shall now see that the Samaritan can always reach his …rst best when he moves …rst, but he can never reach his …rst best when he moves last. When the Samaritan moves function that only depends on his donation. The active Samaritan's payo¤, on the other hand, must also depend on the parasite's action. This is because when the Samaritan donates, he prefers the parasite to go to work although the parasite prefers to stay in bed. [START_REF] Schmidtchen | To help or not to help: The Samaritan's dilemma revisited[END_REF] analyzes the active Samaritan's dilemma. 4 Jürges (2000) analyzes this game for speci…c functional forms of W: Bergstrom (p.1140-1) analyzes a similar game, where a parent distributes money after his "lazy rotten kids"have set their work e¤orts. Neither Bergstrom nor Jürges identify the game with the Samaritan's dilemma.
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@U 1 @x = 0:
This condition is identical to the …rst order condition (2) for the Samaritan's …rst best with respect to x. Thus, in stage one, the Samaritan can set y according to his …rst best condition (1): The Samaritan can always reach his …rst best when he moves …rst.

The intuition is that the parasite sets the work e¤ort that maximizes his own payo¤, taking the Samaritan's donation as given. Since the parasite's work e¤ort a¤ects only his own payo¤, the parasite takes the full e¤ect of his decision into account. There is no externality, and the Samaritan's …rst best is implemented.

When the parasite moves …rst, the Samaritan sets y according to (1) in stage two. In stage one, the parasite sets the x that maximizes his own payo¤, taking into account that his choice of x a¤ects the Samaritan's choice of y in stage two:

dU 1 dx @U 1 @x + @U 1 @y dy dx = 0:
This corresponds only to the Samaritan's …rst order condition (2) for x when dy=dx = 0 (i.e. the donation reaches its maximum) in the optimum. In order to …nd the expression for dy=dx in the optimum, we totally di¤erentiate the Samaritan's …rst order condition for y (1) with respect to x and substitute (2):

dy dx = W 1 @ 2 U 1 @y@x W 00 + (W 10 + W 01 ) @U 1 @y W 11 @U 1 @y 2 W 1 @ 2 U 1 @y 2 < 0: (3) 
The numerator in (3) is negative because W 1 > 0 and @ 2 U 1 =@y@x < 0. The denominator is positive because this is the second order condition @ 2 W=@y 2 < 0.

Thus, the parasite gets more money from the Samaritan, the less he works. As a result, the parasite will work less than the Samaritan would like him to. The Samaritan cannot reach his …rst best when he moves after the parasite. Intuitively, the less money the parasite earns, the needier he is and the more money he will get from the Samaritan.

When the parasite moves …rst, he can extort money from the Samaritan by working less.
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Rotten kid theorem

In order to introduce the rotten kid theorem, we analyze the simple game discussed by [START_REF] Becker | A theory of social interaction[END_REF][START_REF] Becker | Altruism, egoism, and genetic …tness: Economics and sociobiology[END_REF] and commented upon by [START_REF] Hirshleifer | Shakespeare vs. Becker on altruism: The importance of having the last word[END_REF]. The game is between an altruistic parent and a sel…sh kid. The kid undertakes an action that a¤ects his own as well as the parent's income. The parent can give money to the kid. We shall see that in general, the parent cannot reach her …rst best when she moves …rst, but she can always reach her …rst best when she moves after the kid.5 

Denote the kid's action by x and the parent's transfer by y. Since the only commodity involved is income, we can equate the parent's and kid's payo¤s, U 0 and U 1 respectively, with income and write them in the additively separable form:

U 0 = y + b 0 (x) U 1 = y + b 1 (x): (4) 
Here, b k (x); k = 0; 1; is the e¤ect of the kid's action on the income of the parent and the kid, respectively.

The sel…sh kid maximizes his own payo¤ U 1 . The parent maximizes her objective function W (U 0 ; U 1 ) with W k @W=@U k > 0; k = 0; 1. The …rst order conditions for the parent's …rst best are, with respect to y and x;

W 0 = W 1 (5) W 0 b 0 0 + W 1 b 0 1 = 0: (6) 
Substituting ( 5) into ( 6),

b 0 0 + b 0 1 = 0: (7) 
This implies that in the parent's …rst best, family income

U 0 +U 1 = b 0 +b 1 is maximized.
When the parent moves …rst, the kid will set b 0 1 = 0. In general, this does not correspond to the parent's …rst order condition (7). When the kid moves last, he will maximize his own income instead of family income. Now we let the kid move …rst. In stage two, the parent will set the transfer y that maximizes W , according to (5). In stage one, the kid sets the x that maximizes his A c c e p t e d M a n u s c r i p t income, taking into account that his action a¤ects the parent's transfer:

dU 1 dx dy dx + b 0 1 = 0: (8)
The value of dy=dx follows from the total di¤erentiation of the parent's …rst order condition (5) with respect to x:

(W 00 W 10 ) dy dx + b 0 0 = (W 11 W 01 ) dy dx + b 0 1 : (9) 
By the kid's …rst order condition ( 8), the second term between brackets on the RHS of ( 9) is zero. Thus, the second term between brackets on the LHS of ( 9) must be zero:

dy dx = b 0 0 :
Substituting this into the kid's …rst order condition (8), we see that it is equivalent to the parent's …rst best condition (7): the kid e¤ectively maximizes family income.

Thus, the parent always reaches her …rst best when she moves after the kid. [START_REF] Bernheim | The strategic bequest motive[END_REF] were the …rst to note that this result follows from the assumption that there is only one commodity, namely income. The intuition, due to Bergstrom, is that when there is only one commodity, say income, we can identify payo¤ with income. The kid cannot manipulate the price of his income in terms of the parent's income, because it is always unity. Then the parent and the kid agree that it is a good thing to maximize aggregate income. It is clear that the parent will want to maximize family income. However, as [START_REF] Becker | A theory of social interaction[END_REF] already notes, the kid will only want to maximize family income if he bene…ts from that himself, that is if his payo¤ is a normal good to the parent.

A general analysis 3.1 The model

In this section, we analyze a model with one altruistic agent and n sel…sh agents. We shall see under which conditions the Samaritan's dilemma and the rotten kid theorem hold.

There are n + 1 agents, indexed by k = 0; ; n. Agent 0 is the altruist, and agents i; i = 1;

; n; are the sel…sh agents. Agent i controls the variable x i . Agent 0 can make 7

A c c e p t e d M a n u s c r i p t a contribution y i to each agent i's payo¤ U i . Thus @U i =@y i > 0 and @U i =@y j = 0 for all i; j = 1;

; n; i 6 = j; by de…nition.

The vector y = (y 1 ; ; y n ) must be feasible. The lower bound is y = 0: agent 0 can only give to the other agents; she cannot take away from them. There is also an upper bound to y, which follows from the restriction that agent 0 has only a limited amount of time, money, or whatever the nature of y, to give to the others. The exact formulation of the upper bound depends on the nature of y. We assume that neither the upper nor the lower bound are binding constraints on the equilibria.

When agent 0 ultimately gives money (for instance) to the sel…sh agents, this does not mean that y i has to be stated as a certain amount of money. Instead, y i could take the form of a subsidy on behavior from which other agents bene…t (e.g. chores). 6 Obviously, the distinction between unconditional and incentive payment is only relevant when the altruist moves …rst. Agent 0's payo¤ has the form U 0 (y; x), which is continuous and twice di¤erentiable, with x = (x 1 ; ; x n ). Agent i's payo¤ has the form U i (y i ; x), which is continuous and twice di¤erentiable with @ 2 U i =@x 2 i 0. Each agent i; i = 1;

; n; maximizes his own payo¤. Agent 0 maximizes her objective function W (U); which is continuous and twice di¤erentiable with U = (U 0 ; ; U n ), W k @W=@U k > 0; k = 0; ; n.

Let us now determine the …rst-best outcome for agent 0. We assume that the …rst best is characterized by a unique interior solution. Di¤erentiating W (U) with respect to y i ; and x i respectively, i = 1;

; n, we …nd

W 0 @U 0 @y i + W i @U i @y i = 0 (10) n X k=0 W k @U k @x i = 0: (11) 
Whatever agent 0's precise preferences, her …rst best will always be on the payo¤ possibility frontier P P F:

6 The altruist can also use incentive payments to deal with asymmetric information [START_REF] Cremer | Bequests as a heir "discipline device[END_REF].
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A c c e p t e d M a n u s c r i p t De…nition 1 Let (x ; y ) be a set of feasible actions such that there is no other set (x 0 ; y 0 ) of feasible actions with U k (x 0 ; y 0 ) U k (x ; y ) for all k and U k (x 0 ; y 0 ) > U k (x ; y ) for some k; k = 0;

; n: Each (x ; y ) set implements a payo¤ vector U (U 0 (y ; x ); U 1 (y 1 ; x ); ; U n (y n ; x )):

The Payo¤ Possibility Frontier P P F is the set of all U :

In the following, we shall study the e¤ect of sequential moves. The agents i, i = 1;

; n; always move simultaneously. In subsection 3.2, we see what happens when agent 0 moves before agents i. In subsection 3.3, we analyze the case where the agents i move before agent 0. We assume these games have unique interior solutions. We will derive the conditions for these sequences of moves to result in agent 0's …rst best for all W (U). The conditions will thus be on the payo¤ functions U: We are looking for the necessary and su¢ cient local restrictions on U under which the …rst order conditions of the subgame perfect equilibrium are identical to the …rst order conditions ( 10) and ( 11) of agent 0's …rst best. The local nature of the restrictions means that they must hold on the Payo¤ Possibility Frontier, since any altruistic agent's …rst best must be on the P P F .

We assume that the second order conditions are satis…ed.

In the comprehensive interpretation of the Samaritan's dilemma and the rotten kid theorem, they have not only a positive side to them (agent 0 can reach her …rst best under one sequence of moves), but also a negative side: Agent 0 cannot reach her …rst best under the other sequence. The relation between the two versions is straightforward:

The comprehensive Samaritan's dilemma (rotten kid theorem) holds if and only if the positive Samaritan's dilemma (rotten kid theorem) holds and the positive rotten kid theorem (Samaritan's dilemma) does not hold.

Agent 0 moves …rst

In this subsection, we derive the equilibrium for the game where agent 0 moves before agents i, and we see when this equilibrium corresponds to the …rst best for agent 0. Thus, we shall derive the condition for the positive Samaritan's dilemma to hold.

De…nition 2

The positive Samaritan's dilemma states that agent 0 can reach her …rst best when she moves in stage one and agents i, i = 1;

; n; move in stage two.
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The game is solved by backwards induction. In stage two, each agent i, i = 1;

; n; sets the x i that maximizes his own payo¤, taking y i and all other x l , l = 1; ; i 1; i + 1;

; n; as given:

@U i @x i = 0: (12) 
In stage one, agent 0 sets the y i that maximize her objective function W (U), taking into account that agent i's choice of x i depend upon her choice of y i :

W 0 @U 0 @y i + W i @U i @y i + n X k=0 W k @U k @x i dx i dy i = 0:
Substituting ( 12) and di¤erentiating it totally with respect to y i , this becomes

W 0 @U 0 @y i + W i @U i @y i @ 2 U i =@y i @x i @ 2 U i =@x 2 i n X l=0 l6 =i W l @U l @x i = 0: (13) 
In general, the outcome will not be agent 0's …rst best. We shall now see under which condition agent 0 can reach her …rst best when she moves …rst. 7

Condition 1 For all x as de…ned in De…nition 1 and all i = 1;

; n, @U 0 @x i n X j=0 j6 =i @U 0 =@y j @U j =@y j @U j @x i = 0:

Proposition 1 Given that all agents' second order conditions are satis…ed, the positive Samaritan's dilemma holds for all W (U) if and only if Condition 1 holds.

The intuition behind the result is straightforward. When sel…sh agent i moves last, he does not take into account the e¤ect of his action on any of the other agents'payo¤s.

This can only result in the …rst best for agent 0 if the net e¤ect of agent i on other agents (weighted according to agent 0's objective function) is zero. Then agent i takes the full e¤ect of his actions into account. There is no externality, and agent 0's …rst best is implemented.

In our introductory example of the Samaritan's dilemma (subsection 2.1), Condition 1 holds: the parasite's work e¤ort does not a¤ect the Samaritan's payo¤. The Samaritan's own payo¤ only depends on his donation. In the introductory example of the rotten kid theorem (subsection 2.2), however, Condition 1 does not hold: the kid's action a¤ects both his own and the parent's payo¤.

7 All proofs are available on the JEBO website.
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Agents i move …rst

In this subsection, we derive the equilibrium for the game where agents i move before agent 0, and we see when this equilibrium corresponds to the …rst best for agent 0. Thus, we shall derive the conditions for the positive rotten kid theorem to hold.

De…nition 3 The positive rotten kid theorem states that agent 0 can reach her …rst best when agents i; i = 1;

; n; move in stage one and agent 0 moves in stage two.

We solve the game by backwards induction. In stage two, agent 0 sets the y j that maximize her objective function W (U), taking all x i , i = 1;

; n; as given: 8

W 0 @U 0 @y j + W j @U j @y j = 0:

In stage one, each agent i, i = 1;

; n; sets the x i that maximizes his own payo¤, taking the x l , l = 1; ; i 1; i + 1;

; n; from the other n 1 agents moving in stage one as given, but realizing that his choice of x i a¤ects agent 0's choice of y i in stage two:

dU i dx i @U i @x i + @U i @y i dy i dx i = 0; (15) 
where the values for dy j =dx i , j = 1;

; n; follow from the total di¤erentiation of ( 14)

with respect to x i .

In general, the equilibrium condition (15) for x i ; i = 1; ; n; is not identical to the corresponding …rst order condition (11) for agent 0's …rst best. We shall now see when it is.

8 Obviously, these conditions are identical to the FOCs (10) for agent 0's …rst best with respect to y.
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Condition 2 Take a vector x as de…ned in De…nition 1. For this x , write U i as

U i (y i ; x) = G i (x) + z i (y i ; x) (16) 
with @z i =@y i > 0; i = 1;

; n: Then U 0 should satisfy

U 0 (y; x) = G 0 (x) F (z) (17) 
with z (z 1 ; ; z n ); @F=@z i > 0; and

n X l=1 @ 2 F @z j @z l @G l @x i = 0 (18)
for all i; j = 1;

; n:

The sets of payo¤ functions that satisfy Condition 2 come in two categories:

1. @ 2 F=@z j @z l = 0 for all i; l = 1;

; n in (17). Then ( 16) and ( 17) become

U 0 (y; x) = G 0 (x) n X i=1 z i (y i ; x) U i (y i ; x) = G i (x) + z i (y i ; x):
2. Not all @ 2 F=@z j @z l = 0: Examples in this category are

U 0 (y; x) = G 0 (x) f 1 (z 1 ) z 2 (y 2 ; x) f 0 1 ; f 00 1 > 0 U i (y i ; x) = G i (x) + z i (y i ; x) @G 1 @x i = 0 i = 1; 2 and U 0 (y; x) = G 0 (x) e 1 z 1 + 2 z 2 U i (y i ; x) = i G(x) + z i (y i ; x) X i i i = 0 i = 1; 2:
Proposition 2 Given that all agents' second order conditions are satis…ed, the positive rotten kid theorem holds for all W (U) if and only if Condition 2 holds.

In order to interpret this result, let us state:
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I U 0 (y; x) + n X i=1 P i U i (y i ; x) (21) 
(with P i de…ned by ( 19)) that is a function of x only. The payo¤ functions ( 16) and ( 17) can be written such that I(x) is given by

I(x) = n X k=0 G k (x): (22) 
The income function I(x) is maximized for x = x :

In our introductory example of the rotten kid theorem (subsection 2.2), Condition 2 holds because there is only one commodity, namely monetary income. 9 Then we can identify payo¤s with income and de…ne aggregate or family income. All U P Cs are parallel and have slope 1 because they denote the feasible income distributions given aggregate 9 Formally, the payo¤ functions (4) satisfy z = y and F (z) = z; so that @ 2 F=@z 2 = 0:
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A c c e p t e d M a n u s c r i p t income from the kid's action. The kid cannot manipulate the price of his income to the parent because an extra dollar for the kid is always going to cost the parent one dollar.

In our example of the Samaritan's dilemma (subsection 2.1), however, there are two goods involved: money and the parasite's leisure. The parasite can manipulate the price of his payo¤ to the Samaritan by his choice of leisure. By working less, the parasite has less money of his own and a higher marginal payo¤ of money. In this way he lowers the price of his payo¤ to the Samaritan, so that the Samaritan will buy more of it.

Bergstrom' s rotten kid game

The present paper is not the …rst to have derived conditions for the rotten kid theorem to hold. [START_REF] Bergstrom | A fresh look at the rotten kid theorem-and other household mysteries[END_REF] and [START_REF] Cornes | Rotten kids, purity, and perfection[END_REF] have previously derived a condition from a model more speci…c than ours. In their model, the altruist distributes a certain sum of money among the sel…sh agents. The total amount of money available may depend on the sel…sh agents'actions.

In subsection 4.1, we introduce Bergstrom's game and his own su¢ cient condition for the positive rotten kid theorem. We shall see that as his maximization problem for the altruist is a special case of our more general problem, his payo¤ condition is accordingly a special version of our payo¤ condition. We shall also …nd that Bergstrom was wrong in claiming that the payo¤ condition is necessary only when "money is important enough".

In subsection 4.2, we discuss Cornes and Silva's condition for the positive rotten kid theorem to hold in Bergstrom's model. We shall see that this condition does not carry over to our own more general model and that there are no further solutions to our or Bergstrom's model.

Bergstrom' s solution

In Bergstrom's model, the role of the altruist is limited to the distribution of a certain amount of money. There are three steps involved in moving from our model to Bergstrom's. First, agent 0's actions y are restricted to giving money to the sel…sh agents. The relevant property of money in this context is the following:

15
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As we know from Corollary 1.1, the positive rotten kid theorem holds when there is only one vector x , or equivalently, one Utility Possibility Curve, that implements the whole Payo¤ Possibility Frontier. When y is money, an agent's payo¤ on a U P C depends only on how much money he gets. That means we can identify an agent's payo¤ with the amount of money he gets. This implies a one-to-one tradeo¤ between all agents'payo¤s on the whole U P C and thereby on the whole P P F . Thus, when y is money, the prices of payo¤s are constant along the P P F . However, this is not a necessary condition for the positive rotten kid theorem. Prices can vary along the P P F with the altruist's actions y, as long as they cannot be manipulated by the sel…sh agents' actions x. To put it di¤erently, payo¤ prices can vary as long as there is a single vector of x that maximizes total payo¤, at whatever prices payo¤s are aggregated.

Our Proposition 3 states that condition ( 24) is necessary and su¢ cient for the positive rotten kid theorem to hold. Bergstrom, however, claims that the condition is su¢ cient, but only necessary when combined with two further conditions. These are that all U i are normal goods and that money is important enough. We have already mentioned the normal good assumption in subsections 2.2 and 3.3. It can be shown that this assumption is necessary and su¢ cient for the second order conditions to hold. In our analysis, we have simply assumed that the second order conditions hold. However, we have not encountered anything resembling the condition that money is important enough. We shall now see that indeed this condition is redundant.

In the terminology of our paper, Bergstrom's condition that money is important enough can be stated as follows:

Condition 3 @U i (y i ; x)=@y i > 0 for all y i > 0; i = 1;

; n; and for all feasible x. There is some vector of actions x 0 such that for every agent i, all y i , and all feasible x, there exists y 0 i such that U i (y 0 i ; x 0 ) = U i (y i ; x). Bergstrom uses this condition to show that there is always a Utility Possibility Curve with slope 1. That is there is a vector x 0 such that: @U i (y i ; x 0 )=@y i @U j (y j ; x 0 )=@y j = 1; for all y i ; y j and for all i; j = 1; ; n. However, all that is needed to prove this is the …rst part of Condition 3 which we also used in our analysis, that @U i =@y i > 0. As we have argued above, given any vector x 0 that implements a point on the P P F , a kid i's payo¤ depends only on the amount of money he gets from the parent. This means we can identify agent i's payo¤ given this vector x 0 with the amount of money he gets.

Another way of looking at the issue is illustrated with Figure 2 with two sel…sh agents, 1 and 2. Point A is on the Payo¤ Possibility Frontier P P F and on Utility Possibility Curve

U P C A ; implemented by (x A 1 ; x A 2 ):
The maximum utility for agent 2 on U P C A is A 2 : If money were not important enough, there would be another vector x with which U 2 could 18 A c c e p t e d M a n u s c r i p t exceed A 2 and a point like B on U P C B (U P C B is not shown in Figure 2) would be feasible. However, since point A is on the P P F; U P C B would have to be steeper than U P C A and would have to cross it at some point. As we have seen with Figure 1, the rotten kid theorem does not hold when the P P F consists of multiple U P Cs with di¤erent slopes, crossing each other. Thus, when the rotten kid theorem holds, point B is not feasible with any x: We conclude:

Lemma 3 When the rotten kid theorem holds for all W (U) and all y(x) in agent 0's maximization problem [START_REF] Bernheim | The strategic bequest motive[END_REF]; money is important enough.

Cornes and Silva' s solution

Cornes and Silva recently found another condition for the positive rotten kid theorem to hold in Bergstrom's framework. Under this condition, all kids contribute to a pure public good. In this subsection we shall …rst discuss Cornes and Silva's result in the light of our own analysis, demonstrating why it does not carry over to our more general framework.

We shall also argue that there are no additional conditions under which the rotten kid theorem holds for all W (U), neither in Bergstrom's framework, nor in our more general setup. Finally, we shall discuss the problems associated with Cornes and Silva's solution and conclude that they do not carry over to our general framework, if interpreted strictly.

In the notation of this paper, Cornes and Silva's model can be described as follows.

Agent i; i = 1;

; n; initially has an exogenous endowment m i : From this endowment he can make a contribution x i to the public good X P n i=1 x i . The rest of his endowment plus the transfer t i from agent 0 is available for consumption y i of the private good. Agent 0 has no budget of her own:

P n i=1 t i = 0. Agent 0's budget constraint can also be written as P n i=1 y i = M X, with M P n i=1 m i . How did Cornes and Silva manage to …nd this additional solution? To …nd that out, let us …rst brie ‡y present the derivation of Bergstrom's own solution with our method for deriving Proposition 2. Adapting equation (30) from the proof of Proposition 2, we …nd that dU j =dx i = 0 must hold for all i; j = 1;

; n for the rotten kid theorem to apply for all W (U) and all y(x). The agents i set dU i =dx i = 0 themselves. We need conditions on U to make sure that agent 0 will set dU l =dx i = 0 for all other l; i = 1;

; n; l 6 = i. These conditions are (24).

Instead of having agent 0 set all dU l =dx i = 0 herself, we could impose some restrictions R on the payo¤ functions so that dU i =dx i = 0 automatically implies dU l =dx i = 0 for some (but not all) l; i = 1;

; n; l 6 = i. However, it can be shown that as long as agent 0 still has to set some dU l =dx i = 0 herself, the payo¤ condition will simply be ( 24) with restrictions R.

The only option left is then to impose that when agent i sets dU i =dx i = 0; this should automatically imply dU i =dx l = 0 for all l; i = 1;

; n; l 6 = i. This will be the case if and only if we can de…ne X P n i=1 x i . Then the payo¤ functions become U i (y i ; x) = U i (y i ; X); and the resource constraint turns into y(x) = y(X). The n 2 conditions dU i =dx j = 0 for implementation of agent 0's …rst best reduce to n conditions dU i =dX = 0. Agents i's …rst order conditions are also dU i =dX = 0. Without loss of generality, we can specify y(X) = M X. Then we have reproduced Cornes and Silva's pure public good case.

Note that Bergstrom's result, as stated here in Proposition 3, still stands because Cornes and Silva introduce a restriction y(x) = y(X) on the resource constraint. If we allow for restrictions on y(x); then the only additional payo¤ condition for the rotten kid theorem is Cornes and Silva's.

We can now see why Cornes and Silva's condition does not carry over to our more general framework. When X P n i=1 x i , the agents i, i = 1; ; n; will set dU i =dX = 0:

However, we still have to make sure that agent 0 will set dU 0 =dX = 0. She will do this if and only if the payo¤ functions satisfy Condition 2 with x replaced by X. Thus, it is impossible to …nd any solution other than Condition 2 in the general framework.

Two problems have been noted with regard to this solution. Cornes and Silva acknowledge that there are multiple equilibria because only the equilibrium (and optimum) amount of the public good X is determined, but individual contributions x i are not. All interior equilibria implement the optimum. However, [START_REF] Chiappori | Comment on "Rotten kids, purity, and perfection[END_REF] note that in general, there is no interior solution to the game. Both problems have the same root cause: There is only one optimum condition for X; whereas there are n equilibrium conditions for x in the game. Either the conditions for an interior equilibrium are compatible with each other, in which case there are multiple equilibria (Cornes and Silva), or 20 they are not, in which case there is no interior solution (Chiappori and Werning).

Strictly speaking, the Cornes and Silva solution is not admissible in our framework because we have assumed in subsection 3.1 that the altruist's …rst best is unique in (y; x):

Since the problems of multiple equilibria and nonexistence of interior solutions discussed here derive from the non-uniqueness of the altruist's …rst best, we can be assured that these problems, in this form, will not occur in our framework.

Conclusion

For thirty years, [START_REF] Buchanan | The Samaritan's dilemma[END_REF] Samaritan's dilemma and [START_REF] Becker | A theory of social interaction[END_REF] rotten kid theorem, with their mutually exclusive claims, have coexisted in the economic theory of altruism. This paper has been the …rst to analyze the conditions on the payo¤ functions under which either result holds for any altruistic objective function. We have seen that the altruist can reach her …rst best when she moves …rst if and only if a sel…sh agent's action does not on balance a¤ect any other agent's payo¤ in the optimum. Then there are no externalities to the sel…sh agents'actions. The altruist can reach her …rst best when she moves last if and only if the sel…sh agents cannot manipulate the altruist's trade-o¤ between her own and the sel…sh agents' payo¤s. Then the sel…sh agents will maximize aggregate payo¤ and the altruist will redistribute income.

The focus of this paper has been on the simple one-shot game with complete information with which the theory started in the mid-1970s. Since then, more complex games between altruists and sel…sh agents have been studied. 10 It would be worthwhile to expand the general analysis to encompass multi-period models and incomplete or asymmetric information. The former is especially relevant as we would expect to …nd altruism mainly in ongoing relations.

The theory of altruism can also be applied to government policy. The link between these two …elds of research is that the government can be regarded as an altruist when it maximizes social welfare or any other objective function that depends positively on the payo¤ of other players. Thus, the theory of altruism can contribute to our understanding A c c e p t e d M a n u s c r i p t of when collective and individual interests coincide [START_REF] Shapiro | The coincidence of collective and individual interests[END_REF]Petchey 1998, Munger 2000). Under the conditions of the Samaritan's dilemma, the government can reach the optimum if and only if it can commit to a certain policy. If the Samaritan's dilemma does not apply, commitment does not result in the …rst best. The government may then be better o¤ with a time-consistent policy. Under the conditions of the rotten kid theorem, time-consistent policy even results in the …rst best. Starting with [START_REF] Kydland | Rules rather than discretion: The inconsistency 27[END_REF], most analyses of time consistency have used a more complicated setup than ours.

We o¤er a general framework, akin to [START_REF] Chari | Time consistency and policy[END_REF] and [START_REF] Cubitt | Economic policy precommitment and social welfare[END_REF], along with results to be applied to games between the government and private agents.

Appendix

Proof of Proposition 1. The necessary and su¢ cient condition for (12) to turn into (11)

and for (13) to turn into (10) is

n X l=0 l6 =i W l @U l @x i = 0 (27) 
for all i = 1;

; n: Substituting ( 27) and ( 12) into (13) yields Condition 1.

Proof of Proposition 2. Since agent 0 moves last, the …rst order conditions (10) for agent 0's …rst best with respect to y are satis…ed. Substituting (10) and ( 15), we can rewrite the …rst best conditions (11) for x as

n X l=0 l6 =i W l dU l dx i = W 0 0 B B @ dU 0 dx i n X j=1 j6 =i
@U 0 =@y j @U j =@y j

dU j dx i 1 C C A = 0 (28) 
for all i = 1;

; n; where dU k =dx i ; k = 0;

; n; is de…ned by dU 0 dx i @U 0 @x i + n X j=1 @U 0 @y j dy j dx i dU j dx i @U j @x i + @U j @y j dy j dx i :

To …nd the expressions for dU k =dx i ; write the total di¤erential of agent 0's …rst order Proof of Lemma 2. Applying agent 0's …rst best conditions for y i (10) and x j (11) to the payo¤ functions of Condition 2 yields, respectively,

W 0 @F @z i = W i (35) 
W 0 @G 0 @x j @F @z i @z i @x j + n X i=1 W i @G i @x j + @z i @x j = 0:

Substituting ( 35) into (36), @G 0 @x j + n X i=1 @F @z i @G i @x j = 0:

(37)

This implies that x maximizes income I(x); as given in ( 22), if and only if all @F=@z i can be replaced by ones. We shall now see how this can be accomplished.

1. When @F=@z i is a constant, we can normalize it to one.

2. When @F=@z i is not a constant, then @ 2 F=@z i @z l 6 = 0 for some l; l = 1;

; n: If 25

Figure 1 :

 1 Figure 1: Intersecting Utility Possibility Curves
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AFigure 2 :

 2 Figure 2: When money is not important enough

Figure 3 :

 3 Figure 3: A Payo¤ Possibility Frontier tracing the outlines of parallel Utility Possibility Curves

For the evolutionary roots of altruism, see[START_REF] Henrich | Cultural group selection, coevolutionary processes and large-scale cooperation[END_REF] and the comments on this paper in the Journal of Economic Behavior and Organization 53 (1) Special Issue on evolution and altruism.

Details are available from the author upon request.

Buchanan distinguishes between the active and the passive Samaritan's dilemma. We only discuss the passive Samaritan's dilemma here. The passive Samaritan's preferences are reconcilable with a payo¤

In fact,[START_REF] Becker | A theory of social interaction[END_REF][START_REF] Becker | Altruism, egoism, and genetic …tness: Economics and sociobiology[END_REF] himself does not discuss the order of moves. Citing Shakespeare's King Lear, Hirshleifer was the …rst to point out that the parent's …rst best is implemented only when the kid moves …rst.

Among others,[START_REF] Lindbeck | Altruism and time consistency: The economics of fait accompli[END_REF],Bruce and Waldman (1990, 1991) and[START_REF] Futagami | Government transfers and the Samaritan's dilemma in the family[END_REF] have analyzed two-period lifetime models.[START_REF] Wirl | Paternalistic principals[END_REF] and[START_REF] Lagerlöf | E¢ ciency-enhancing signalling in the Samaritan's dilemma[END_REF] assume asymmetric information.[START_REF] Coate | Altruism, the Samaritan's dilemma, and government transfer policy[END_REF] and[START_REF] Lord | Uncertainty, altruism, and savings: Precautionary savings meets the Samaritan's dilemma[END_REF] include uncertainty.
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Lemma 1 If and only if Condition 2 holds, 1. There is a single vector x that implements the whole PPF.

2. The price of agent j's payo¤ to agent 0 at x = x , P j @U 0 (y; x )=@y j @U j (y j ; x )=@y j ;

is beyond manipulation by agent i:

Let us de…ne a Utility Possibility Curve U P C as the set of vectors U that can be obtained with a given x. Lemma 1.1 says that the whole Payo¤ Possibility Frontier P P F must consist of a single U P C. Figure 1, inspired by Bergstrom's Figure 2, illustrates what goes wrong when a sel…sh agent can in ‡uence the price of his payo¤ or equivalently, when the P P F consists of multiple U P Cs.

In Figure 1, point A on agent 0's indi¤erence curve I A is agent 0's …rst best. It is reached when the single sel…sh agent 1 selects the action x A that implements U P C A .

When agent 1 cannot manipulate the price of his own payo¤, all other U P Cs will be parallel and to the left of U P C A . The whole P P F thus consists only of U P C A . In that case, when U 1 is a normal good to the altruist, agent 1 will select x A . However, suppose now that agent 1 can decrease the price of his own payo¤, either by increasing or decreasing his x. For instance, when agent 1 chooses x B ; the resulting U P C B is ‡atter than U P C A ; lies everywhere below I A and intersects U P C A so that the P P F does not consist of U P C A alone. In point B; where agent 0's indi¤erence curve I B is tangent to U P C B , U 1 is higher than in point A: Thus, agent 1 prefers implementing U P C B to U P C A .

When the sel…sh agents cannot in ‡uence the prices of their payo¤s, we can aggregate all payo¤s along the P P F for x = x using these prices and refer to aggregate payo¤ as income I(x): As Bergstrom (p. 1148) calls it, there is conditional transferable utility (conditional on x). The agents i maximize income and agent 0 redistributes it. In the terminology of [START_REF] Monderer | Potential games[END_REF], Condition 2 turns the game into a potential game where all agents i = 1;

; n maximize the ordinal potential function I(x). Stated formally,
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De…nition 4 When y is money, agent 0's payo¤ depends on how much she does on aggregate for all other agents, but not on the distribution of this total amount among the agents. Then the altruist's payo¤ is given by U 0 (y 0 ; x) with y 0 P n i=1 y i .

When y is money, @U 0 =@y i = @U 0 =@y 0 for all i = 1;

; n: Applying this to Condition 2, we see that the payo¤ functions should satisfy

for i = 1;

; n; with H 0 > 0 and

The second step from our framework to Bergstrom's is that the budget constraint P n i=1 y i y(x) is binding. Then the functional form of U 0 (y; x) is irrelevant, so that ( 23) and ( 25) are no longer needed. Condition (24) must still hold because the equivalent of condition ( 20) is now d @U l (y l ; x)=@y l @U j (y j ; x)=@y j =dx i = 0 for all i; j; l = 1;

; n: The third and …nal step from our framework to Bergstrom's is to exclude U 0 from agent 0's objective function. This …nal step does not lead to additional constraints on the payo¤ functions.

Proposition 3 Given that the second order conditions are satis…ed, the positive rotten kid holds for all W (U) and all y(x) in agent 0's maximization problem

if and only if all U i ; i = 1;

; n; have the form (24).

Condition ( 24) is identical to Bergstrom's payo¤ condition. Our Condition 2 is more general than Bergstrom's as illustrated by the fact that none of our exemplary payo¤ functions given in subsection 3.3 satisfy condition (24). The reason why Bergstrom's condition is more restrictive than ours is that he restricts the altruist's actions to the 16 A c c e p t e d M a n u s c r i p t condition (14) with respect to x i , using (10), as d(@U 0 =@y j ) dx i @U 0 =@y j @U j =@y j d(@U j =@y j )

We want to obtain solutions for dU k =dx i that don't contain second derivatives of W;

because we don't want to put any restrictions on these. The only way to do this is by setting both terms between large square brackets on the LHS of ( 29) equal to zero.

With the second term equal to zero, there can only be de…nite solutions to dU l =dx i ; i = 1;

; n; l = 0;

; n; l 6 = i; if

where dU i =dx i = 0 by (15). When (30) holds, ( 28) is satis…ed and all conditions for the implementation of agent 0's …rst best are met.

We can rewrite the condition that the …rst term in large square brackets on the LHS of (29) equals zero as d @U 0 =@y j @U j =@y j =dx i = 0:

We can always write the agents'payo¤s as

with v (v 1 ; ; v n ); @H=@v i > 0; @v i =@y i > 0; i = 1;

; n: Replacing y j by v j and substituting ( 32) and ( 33), condition (31) becomes

The second equality follows from (30). The following lemma completes the proof:

Lemma 4 Equations ( 32), ( 33) and ( 34) can always be written as ( 17), ( 16) and ( 18).

Proof. The result is obvious if @ 2 H=@v j @x i = 0 for all i; j = 1;

; n: Now suppose there is a @ 2 H=@v j @x i 6 = 0: Then, for the v terms to drop out of (34), the function H(v; x) in ( 32) must have the form

23

A c c e p t e d M a n u s c r i p t

so that by (34),

Then for all l with l > 0; g l (x) must have the form

with P l l l = 1 and P l l @G l =@x i = 0: Then we can de…ne z i as

so that U 0 and U i have the form ( 17) and ( 16) respectively, with

Finally, with @ 2 F=@z j @x i = 0; (34) turns into (18).

Proof of Lemma 1.1. Equation (31) implies that Utility Possibility Curves (U P Cs) cannot cross each other. Then either the whole Payo¤ Possibility Frontier consists of a single U P C; or there are layers of U P Cs with the P P F tracing their outlines, as in Figure 3. A 0 A 1 and B 0 B 1 are two members of a family of parallel U P Cs shrinking to a single point at C: The P P F is given by V 0 V 1 : In agent 0's …rst best (except if it is at point C); her indi¤erence curve is not tangent to the U P C: In Figure 3, for instance, agent 0's optimum is at B 1 on indi¤erence curve I B : B 1 is a corner solution: Agent 0 would like to give more to agent 1, but she has already given him all she has got. First order condition (10) does not hold. Since we have assumed agent 0's …rst best is an interior solution, we cannot allow for a P P F tracing the outlines of parallel U P Cs. Thus, the whole P P F must consist of a singe U P C:

2. Equation ( 20) is equation ( 31) from the proof of Proposition 2.
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there is an i with only one @ 2 F=@z i @z l 6 = 0; then (18) implies that @G l =@x j = 0.

Then we can set @F=@z l equal to any expression, including @F=@z l = 1.

3. For those i with more than one @ 2 F=@z i @z l 6 = 0; we substitute @G l =@x j = 0 for those l identi…ed in step 2 into (18). If this leaves only one term, @ 2 F @z j @z l @G l @x j = 0;

with @ 2 F=@z i @z l 6 = 0, then obviously @G l =@x j = 0 for this l; and we can set @F=@z l = 1. Substitute @G l =@x j = 0 into the expressions (18) for the remaining i; and so on.

4. If there are still i left with more than one term in their expression ( 18), then we can write this expression as

This is because F is a function of z only and G is a function of x only.

(a) If there is only one i left, then rescaling all G l functions in ( 38) such that all l are normalized to one yields n X l=1 @G l @x j = 0;

and we can set @F=@z l = 1 for all l involved.

(b) If there is more than one i left, then the unique solution to the system of (18) equations for these i is @G l =@x j = 0 for all l involved. Again, we can set @F=@z l = 1 for all l involved.