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Superposition of finite-amplitude transverse waves in

deformed Mooney-Rivlin and neo-Hookean materials

E. Rodrigues Ferreira

Département de Mathématique, Université Libre de Bruxelles, Campus Plaine
C.P. 218/1, 1050 Bruxelles, Belgium

Dedicated to Philippe Boulanger on the occasion of his 60th birthday with esteem and
gratitude.

Abstract

In this paper, waves propagating in Mooney-Rivlin and neo-Hookean nonlin-
ear elastic materials subjected to a homogeneous pre-strain are considered. In
a previous paper, Boulanger and Hayes (Q. Jl Mech. Appl. Math. 45 (1992)
575–593) showed, for deformed Mooney-Rivlin materials, that the superpo-
sition of two finite-amplitude shear waves polarized in different directions
(orthogonal to each other) and propagating along the same direction is an
exact solution of the equations of motion. The two waves do not interact.
Here, we are interested in superpositions of waves propagating in different di-
rections. Two types of superpositions are considered: superpositions of waves
polarized in the same direction, and also superposition of waves polarized in
different directions. It is shown that such superpositions are exact solutions
of the equations of motion with appropriate choices of the propagation and
polarization directions.

Key words: finite elasticity, pre-strained materials, exact wave solutions,
superpositions of waves.

1. Introduction

In this paper we consider, in the context of finite elasticity theory, two
models of incompressible materials, the Mooney-Rivlin model and the neo-
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Hookean model. The Mooney-Rivlin model is characterized by two constitu-
tive constants. The neo-Hookean model is characterized by one constitutive
constant, the shear modulus.

Here, we are interested in the superposition of finite-amplitude linearly
polarized transverse homogeneous plane waves propagating in different direc-
tions in Mooney-Rivlin and neo-Hookean materials which are first subjected
to an arbitrary static homogeneous deformation.

In [1], Currie and Hayes showed that two linearly polarized finite-amplitude
transverse waves, polarized in directions orthogonal to each other and to
the propagation direction, may propagate along any direction in a deformed
Mooney-Rivlin material. Later, Boulanger and Hayes [2] [3] [4] made a de-
tailed study of homogeneous plane waves propagating in deformed Mooney-
Rivlin materials. They also showed that the superposition of the two waves
propagating along the same direction, and polarized along directions orthog-
onal to each other, is again an exact solution of the equations of motion.

Here, on the contrary, we are interested in superpositions of waves prop-
agating in different directions. We first consider the possibility of superposi-
tion of finite-amplitude transverse plane waves propagating in different direc-
tions and polarized in the same direction in Mooney-Rivlin and neo-Hookean
materials. Although the theory is nonlinear, it is shown that appropriate su-
perpositions of this type are exact solutions of the equations of motion. Next,
for neo-Hookean materials, it is shown that two appropriate finite-amplitude
transverse homogeneous plane waves propagating and polarized in different
directions may also be superposed. Although the theory is nonlinear such a
superposition is also an exact solution of the equations of motion.

The plan of the paper is as follows. In Section 2, we present the Mooney-
Rivlin and neo-Hookean models for nonlinear incompressible elastic materi-
als.

Then (Section 3), the equations governing a motion superimposed on a
state of arbitrary static homogeneous deformation are recalled. Note that
the displacements due to this motion are not assumed to be small.

In Section 4, we consider the superposition of transverse homogeneous
plane waves propagating in different directions and polarized in the same
direction in deformed Mooney-Rivlin materials. It is shown that such a
superposition is an exact solution of the equations of motion provided that
the polarization direction of the two waves is along a principal direction of the
static strain. The propagation directions are then arbitrary in the principal
plane orthogonal to the polarization direction. Moreover, the waves must be
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of sinusoidal type.
In Section 5, we consider the same superposition as in Section 4, but in

neo-Hookean materials. For neo-Hookean materials, such a superposition be-
comes possible for two arbitrary directions of propagation, both waves being
polarized in the same direction orthogonal to the plane of the propagation
directions.

In Section 6, we consider the superposition of two transverse homoge-
neous plane waves propagating and polarized in different directions in de-
formed neo-Hookean materials. It is shown that such a superposition is an
exact solution of the equations of motion in the case when the direction of
propagation of one of the transverse wave is orthogonal to the polarization
direction of the other.

2. Mooney-Rivlin and Neo-Hookean materials

Incompressible isotropic elastic materials of the Mooney-Rivlin type are
characterized by a strain-energy density W per unit volume given by [5]

2W = C(I1 − 3) +D(I2 − 3) , (1)

where C and D are material constants, and I1, I2 are the first two principal
invariants of the left Cauchy-Green strain tensor B :

I1 = tr B , 2I2 = (tr B)2 − tr (B2) . (2)

Because these materials are incompressible, the third invariant of B is

I3 = detB = 1 . (3)

The components of B, in a rectangular Cartesian-coordinate system, are

Bij = (∂xi/∂XA)(∂xj/∂XA) , (4)

where xi, (i = 1, 2, 3), are the coordinates at time t of the point whose coor-
dinates are XA, (A = 1, 2, 3), in the undeformed reference configuration.

The corresponding constitutive equation for the symmetric Cauchy stress
tensor T is

T = −p∗1 + CB−DB−1 , (5)

where
p∗ = p−DI2 (6)
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is an undetermined pressure.
It will be here assumed that the strong ellipticity conditions hold [6], i.e.

that
C ≥ 0 and D > 0 , or C > 0 and D ≥ 0 . (7)

In order to be consistent with the linearized elasticity theory, we have [7]

C +D = μ , (8)

where μ is the shear modulus of linearized elasticity.
In the special case when D = 0, the elastic material is called “neo-

Hookean”.

3. Equations for motion superimposed on static deformation

Suppose now that these materials are first subjected to a static finite
homogeneous deformation defined by

x = FX , xi = FiAXA , (9)

where FiA is a constant deformation gradient. The corresponding constant
left Cauchy-Green strain tensor is B = FFT and its principal invariants
I1, I2, I3 are constants. On this state of deformation, we superpose a time-
dependent displacement taking the particle at x in the static deformation
to

x = x(x, t) = x(FX, t) = x + u(x, t) . (10)

Let F = ∂x/∂X be the deformation gradient, from the undeformed state, of
the time-dependent deformation resulting from the static deformation and
superimposed displacement u(x, t). The corresponding left Cauchy-Green

strain tensor is B = F F
T

and its principal invariants are denoted I1, I2, I3.
In the absence of body forces, the equations of motion for this time-dependent
deformation are

ρ ẍ = divxT , ρ ẍi = ∂T ij/∂xj , (11)

where ρ and T respectively denote the mass density and Cauchy stress ten-
sor at time t and position x. Using now the state of homogeneous static
deformation as reference state, the Piola-Kirchhoff stress tensor is P given
by

P = (ρ/ρ)T(∂x/∂x)T , P ik = (ρ/ρ)T ij(∂xk/∂xj) , (12)
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and the equations of motion (11) may also be written in the form

ρẍ = divxP , ρ ẍi = ∂P ik/∂xk , (13)

where ρ denotes the constant mass density in the state of static homogeneous
deformation. Note that because of the incompressibility condition, we have

ρ = ρ = ρ0 . (14)

4. Superposition of transverse plane waves propagating in differ-

ent directions and polarized in the same principal direction in

deformed Mooney-Rivlin materials

In [1], it has been shown that, in any direction n of a deformed Mooney-
Rivlin material, two finite-amplitude linearly polarized transverse waves may
propagate. The two polarization directions a and b are such that [2]

a ·B−1b = a · b = 0 , n · a = n · b = 0 , (15)

where B−1 is the inverse of the left Cauchy-Green strain tensor of the homo-
geneous static deformation (9). It has also been shown [2] that the superpo-
sition of these two waves is again an exact solution.

Here, we are interested in superposition of waves propagating in different

directions.
We consider the superposition of two transverse plane waves propagating

in different directions n and n′, and linearly polarized in the same direction
a in deformed Mooney-Rivlin materials. Thus, here, we seek solutions of the
equations of motion of the form

x = x + g(η, t)a + g′(η′, t)a , (16)

p = p+ q(η, η′, t) , (17)

where g, g′, and q are functions to be determined, and we use the notation

η = n · x , η′ = n′ · x . (18)

Note that n and n′ are not taken to be orthogonal. It is just assumed that
they are not parallel. Also, because the superposed waves are transverse, a

is orthogonal to both n and n′,

a · n = 0 , a · n′ = 0 . (19)
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We require that each individual wave (g �= 0, g′ = 0 and g = 0, g′ �= 0) be a
solution. Hence, recalling (15), we have the propagation conditions

b ·B−1a = 0 , with b = n× a , (20)

and
b′ ·B−1a = 0 , with b′ = n′ × a . (21)

It follows from these two propagation conditions that the unit vector a must
be along B−1b×B−1b′, hence along B(b×b′), thus along Ba, which means
that a is along a principal direction of the static strain. The unit vectors n

and n′ are then arbitrary in the principal plane orthogonal to a. Hence, we
also have

n ·B−1a = 0 and n′ ·B−1a = 0 . (22)

The deformation gradient tensor F associated with the motion (16) is
given by

F = (1 + gη a⊗ n + g′η′ a⊗ n′)F . (23)

The left Cauchy-Green strain tensor B = FF
T

associated with the motion

(16), and its inverse B
−1

are given by

B = (1 + gη a⊗ n + g′η′ a⊗ n′)B(1 + gη n⊗ a + g′η′ n′ ⊗ a) , (24)

B
−1

= (1− gη n⊗ a− g′η′ n′ ⊗ a)B−1(1− gη a⊗ n− g′η′ a⊗ n′). (25)

For the principal invariants I1, I2, I3 of B, we have, using (22),

I1 = I1 + g2

η n ·Bn + g
′2

η′ n′ ·Bn′ + 2gη g
′

η′ n ·Bn′ , (26)

I2 = I2 + g2

η a ·B−1a + g
′2

η′ a ·B−1a + 2gη g
′

η′ a ·B−1a (n · n′) , (27)

I3 = I3 . (28)

The Cauchy stress tensor T associated with the superposed motion (16)
is given by

T = −p
∗
1 + CB−DB

−1
, (29)

where
p
∗

= p−DI2 . (30)

Introducing (27) into (30), we obtain

p∗ = p+q(η, η′, t)−D(I2 +g2

ηa ·B
−1a+g

′2

η′a ·B−1a+2gη g
′

η′ a ·B−1a (n ·n′)) .
(31)
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The components of the stress tensor T are functions of η, η′ and t, or
equivalently η, η′ and t. Thus, using η = n · x, ξ = a · x and η′ = n′ · x as
coordinates (note that η, ξ, η′ are non Cartesian coordinates) and taking the
dot product of the equations of motion (11) with n, a,n′, we obtain

0 =
∂T

ηη

∂η
+
∂T

ηη′

∂η′
=

∂T
ηη

∂η
+
∂T

ηη′

∂η′
, (32)

ρ(
∂2g

∂t2
+
∂2g′

∂t2
) =

∂T
ξη

∂η
+
∂T

ξη′

∂η′
=

∂T
ξη

∂η
+
∂T

ξη′

∂η′
, (33)

0 =
∂T

η′η

∂η
+
∂T

η′η′

∂η′
=

∂T
η′η

∂η
+
∂T

η′η′

∂η′
. (34)

We now compute the contravariant components of T entering these equa-
tions. Using the expression (29) of T, we obtain, for the component T

ηη
,

T
ηη

= n ·Tn = −p∗ + Cn ·Bn−Dn ·B
−1

n , (35)

and using the expressions (24) of B, and (25) of B
−1

, we have

T
ηη

= T ηη − q(η, η′, t) +Dg
′2

η′ a ·B−1a−Dg
′2

η′ a ·B−1a (n · n′)2 . (36)

Similarly, for the component T
ξη

, we have

T
ξη

= a ·Tn = Ca ·Bn−Da ·B
−1

n , (37)

and hence

T
ξη

= C(gη n ·Bn+ g′η′ n′ ·Bn)+D(gη a ·B−1a+ g′η′ a ·B−1a(n ·n′)) . (38)

For the component T
η′η

, we have

T
η′η

= n′ ·Tn = −p
∗
(n · n′) + Cn′ ·Bn−Dn′ ·B

−1
n , (39)

and hence

T
η′η

= T η′η − q(η, η′, t)(n · n′) +Dgηg
′

η′ a ·B−1a((n · n′)2 − 1) . (40)

For the component T
ξη′

, we have

T
ξη′

= a ·Tn′ = Ca ·Bn′ −Da ·B
−1

n′ , (41)

7
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and hence

T
ξη′

= C(gη n ·Bn′+g′η′ n′ ·Bn′)+D(gη a ·B−1a(n ·n′)+g′η′ a ·B−1a) . (42)

For the component T
η′η′

, we have

T
η′η′

= n′ ·Tn′ = −p
∗
+ Cn′ ·Bn′ −Dn′ ·B

−1
n′ , (43)

and hence

T
η′η′

= T η′η′

− q(η, η′, t) +Dg2

η a ·B−1a−Dg2

η a ·B−1a(n · n′)2 . (44)

For the sake of completeness, we also compute the component T
ξξ

. We have

T
ξξ

= a ·Ta = −p∗ + Ca ·Ba−Da ·B
−1

a , (45)

and hence

T
ξξ

= T ξξ − q(η, η′, t) + C(g2

η n ·Bn + 2gη g
′

η′ n ·Bn′ + g
′2

η′ n′ ·Bn′)

+ Da ·B−1a(g2

η + 2gη g
′

η′ (n · n′) + g
′2

η′) . (46)

Introducing (36) and (40) into the equation of motion (32), we obtain

−qη − qη′(n · n′) +Dgη g
′

η′η′ a ·B−1a((n · n′)2 − 1) = 0 . (47)

Introducing (38) and (42) into the equation of motion (33), we obtain

(Cn ·Bn+Da ·B−1a)gηη +(Cn′ ·Bn′+Da ·B−1a)g′η′η′ = ρ(gtt + g′tt) , (48)

and introducing (40) and (44) into the equation of motion (34), we obtain

−qη′ − qη(n · n
′) +Dg′η′ gηη a ·B−1a((n · n′)2 − 1) = 0 . (49)

The equation (48) may also be written in the form

gtt + g′tt = v2

n
gηη + v2

n′g′η′η′ , (50)

where v2
n

and v2
n′ are, respectively, the squared wave speed of the wave prop-

agating in the direction n, and polarized in the principal direction a, and

8
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the squared wave speed of the wave propagating in the direction n′, and
polarized in the principal direction a, given by [2]

ρv2

n
= Cn ·Bn +Da ·B−1a , ρv2

n′ = Cn′ ·Bn′ +Da ·B−1a . (51)

Because η and η′ are independent variables, if we differentiate (50) with
respect to η, and with respect to η′, we obtain two uncoupled equations

gttη = v2

n
gηηη , g′ttη′ = v2

n′g′η′η′η′ . (52)

If we integrate (52)1 with respect to η, and integrate (52)2 with respect to
η′, we obtain

gtt − v2

n
gηη = k(t) , g′tt − v2

n′g′η′η′ = −k(t) . (53)

Here, for simplicity, we choose k(t) = 0, so that (53) reduces to two vibrating
string equations

gtt − v2

n
gηη = 0 , g′tt − v2

n′g′η′η′ = 0 . (54)

Solving the equations (47) and (49) for qη and qη′ yields

qη = Da ·B−1a(g′η′ gηη cosα− gη g
′

η′η′ ) , (55)

qη′ = Da ·B−1a(gη g
′

η′η′ cosα− g′η′ gηη ) , (56)

where α is the angle between the unit vectors n and n′. The expressions for
the first order derivatives of q(η, η′, t) must be compatible, i.e. qηη′ = qη′η,
thus,

gη g
′

η′η′η′ = g′η′ gηηη . (57)

This compatibility condition may also be written in the form

g′η′η′η′

g′η′

=
gηηη

gη

= −l(t) , (58)

or, alternatively,

gηηη = −l(t)gη , g′η′η′η′ = −l(t)g′η′ , (59)

where l(t) is an arbitrary function of time. Integrating (59)1 with respect to
η′, and (59)2 with respect to η, and taking l(t) to be constant and positive,
l(t) = κ2, we obtain

gηη + κ2g = 0 , g′η′η′ + κ2g′ = 0 . (60)

9
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The function g(η, t) is governed by (54)1 and (60)1, and is thus given by

g(η, t) = a cosκ(η − vnt+ ϕ) + b cosκ(η + vnt+ ψ) , (61)

where a, b, ϕ, ψ are arbitrary constants. The function g′(η′, t) is governed by
(54)2 and (60)2, and is thus given by

g′(η′, t) = a′ cosκ(η′ − vn′t+ ϕ′) + b′ cosκ(η′ + vn′t+ ψ′) , (62)

where a′, b′, ϕ′, ψ′ are arbitrary constants.
Note that the waves (61) and (62) have the same wave number κ, thus,

the same wavelength, and because vn and vn′ are in general different, the
frequencies ω = κvn, ω′ = κvn′ are different. Hence, the superposition is, in
general, not time-harmonic.

Using (55), (56), and (60), we obtain, for the additional pressure q(η, η′, t)
due to the wave, up to an arbitrary additive function of time,

q(η, η′, t) = Da ·B−1a(gηg
′

η′ cosα + κ2gg′) , (63)

with g(η, t) and g′(η′, t) given by (61) and (62). Note that this additional
pressure due to the wave is the result of an interaction between the two waves
g(η, t) and g′(η′, t).

Thus, in this Section, we have shown that two transverse waves propa-
gating in different directions n and n′, and polarized in the same direction
a may be superposed in deformed Mooney-Rivlin materials, provided a is
along a principal direction of the static strain. The propagation directions
n, n′ are then arbitrary in the principal plane orthogonal to a. Although the
theory is non linear and no assumptions have been made neither on the size
of the static deformation nor on the amplitude of the waves, we showed that
such a superposition is an exact solution of the equations of motion. The
functions g(η, t) and g′(η′, t) are of sinusoidal type and are given by (61) and
(62), where κ is an arbitrary constant, and the additional pressure q(η, η′, t)
due to the wave is given by (63).

Remark 1 : special case vn = vn′

When n · Bn = n′ · Bn′ the two wave speeds vn, vn′ given by (51) are
equal. Because n and n′ are in a principal plane, this occurs when n and n′

are equally inclined with respect to a principal direction of the static strain.
Take, for instance,

n = cos
α

2
i− sin

α

2
k , n′ = cos

α

2
i + sin

α

2
k , a = j , (64)

10
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where i, j,k are unit vectors along the principal directions. Then, v2
n

= v2
n′ ≡

v2
α given by

ρv2

α = C(λ2

1 cos2
α

2
+ λ2

3 sin2
α

2
) +Dλ2

1λ
2

3 , (65)

where λ1, λ2, λ3 are the principal stretches in the directions i, j,k. Note that
if v1 and v3 denote the wave speeds of the waves propagating along i and k,
respectively, and polarized along j,

ρv2

1 = Cλ2

1 +Dλ2

1λ
2

3 , ρv2

3 = Cλ2

3 +Dλ2

1λ
2

3 , (66)

then (65) may be written as

v2

α = v2

1 cos2
α

2
+ v2

3 sin2
α

2
. (67)

Choosing then forward waves with the same amplitude A for g and g′,

g(η, t) = A cosκ(η − vαt+ ϕ) , g′(η′, t) = A cosκ(η′ − vαt+ ϕ′) , (68)

we obtain, for the superposition,

g(η, t) + g′(η′, t) = 2A cosκ(sin
α

2
x3 + ϕ−) cosκ(cos

α

2
x1 − vαt+ ϕ+) , (69)

where x1 = i ·x, x3 = k ·x are Cartesian coordinates along the principal axes
i, k, and ϕ± = 1

2
(ϕ′ ± ϕ). Such a solution represents a wave propagating

along the principal axis i with speed v ≡ vα/ cos α
2

and whose amplitude
varies sinusoidally in the direction of the principal axis k.

5. Superposition of transverse plane waves propagating in different

directions and polarized in the same direction in deformed neo-

Hookean materials

For deformed neo-Hookean materials, in any direction n, a transverse
wave may propagate with polarization direction a arbitrary orthogonal to n,
the wave speed being independent of a [2].

Here, we consider the superposition of two transverse homogeneous plane
waves propagating in different directions n and n′, and linearly polarized in
the same direction a in deformed neo-Hookean materials. Thus, as in Section
4, we seek solutions of the equations of motion of the form (16) (17) with
(19).

11
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The deformation gradient tensor F and the left Cauchy-Green strain ten-
sor B associated with the motion (16) are still given by (23) and (24). The
principal invariants I1, I2, I3 of B are also still given by (26), (27), (28).

The Cauchy stress tensor T associated with the superposed motion (16)
is given by

T = −p1 + CB . (70)

Here, the contravariant components of the stress tensor T are given by

T
ηη

= T ηη − q(η, η′, t) , (71)

T
ξη

= T ξη + C(gη n ·Bn + g′η′ n′ ·Bn) , (72)

T
η′η

= T η′η − q(η, η′, t)(n · n′) , (73)

T
ξη′

= T ξη′

+ C(gη n ·Bn′ + g′η′ n′ ·Bn′) , (74)

T
η′η′

= T η′η′

− q(η, η′, t) , (75)

T
ξξ

= T ξξ − q(η, η′, t) + C(2gη a ·Bn + g2

η n ·Bn + 2g′η′ a ·Bn′ (76)

+ g
′2

η′ n′ ·Bn′ + 2gη g
′

η′ n ·Bn′) .

Introducing these components of the stress tensor T into the equations of
motion (32), (33), (34), we obtain

−qη − qη′(n · n′) = 0 , (77)

Cn ·Bn gηη + Cn′ ·Bn′ g′η′η′ = ρ(gtt + g′tt) , (78)

−qη′ − qη(n · n
′) = 0 . (79)

It follows from (77), and (79) that qη = qη′ = 0, and hence we conclude that
the additional pressure q(η, η′, t) due to the wave has to be a function of time
t alone, and thus may be taken to be zero.

The equation (78) may also be written in the form

gtt + g′tt = v2

n
gηη + v2

n′g′η′η′ , (80)

where v2
n

and v2
n′ are, respectively, the squared wave speeds of the waves

propagating in the direction n, and in the direction n′, and are given by [2]

ρv2

n
= Cn ·Bn , ρv2

n′ = Cn′ ·Bn′ . (81)

Because η and η′ are independent variables, if we differentiate (80) with
respect to η, and with respect to η′, we obtain two uncoupled equations

gttη = v2

n
gηηη , g′ttη′ = v2

n′g′η′η′η′ . (82)
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If we integrate (82)1 with respect to η, and integrate (82)2 with respect to
η′, we obtain

gtt − v2

n
gηη = k(t) , g′tt − v2

n′g′η′η′ = −k(t) . (83)

Thus, we obtain two equations similar to the vibrating string equation but
with a right-hand side depending on time t. The general solutions of (83)
are

g(η, t) = h(η − vnt) + l(η + vnt) +K(t) , (84)

g′(η′, t) = h′(η′ − vn′t) + l′(η′ + vn′t)−K(t) , (85)

with K ′′(t) = k(t). Thus, we obtain two uncoupled equations (84), (85)
for g and g′. Although the theory is non linear and no assumption has
been made on the amplitudes, the two waves do not interact. Here, the
polarization direction a is arbitrary, and the directions of propagation n and
n′ are arbitrary in the plane orthogonal to a.

If we take K(t) = 0, we may in particular, choose for g and g′ sinusoidal
solutions,

g(η, t) = a cosκ(η − vnt+ ϕ) + b cosκ(η + vnt+ ψ) , (86)

g′(η′, t) = a′ cosκ′(η′ − vn′t+ ϕ′) + b′ cosκ′(η′ + vn′t+ ψ) . (87)

Here, contrary to the case of Mooney-Rivlin materials, the waves (86) (87)
may have different wave numbers κ and κ′. In general, they also have different
frequencies ω = κvn, ω′ = κ′vn′ .

Remark 2 : special case κ′ = κ and vn = vn′

In order to compare with Remark 1 (Section 4), we choose κ′ = κ. When
n · Bn = n′ · Bn′, the two wave speeds vn, vn′ given by (81) are equal.
Introducing the unit vectors p,q along the internal and external bisectors of
n and n′, we have

n = cos
α

2
p− sin

α

2
q , n′ = cos

α

2
p + sin

α

2
q , (88)

where α is the angle between n and n′. It follows that n · Bn = n′ · Bn′

occurs if
p ·Bq = 0 . (89)
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Because, p · q = 0, this means that p and q are along the principal axes of
the elliptical section of the ellipsoid associated with B (x · Bx = 1) by the
plane of n and n′. Thus, when n and n′ are given by (88) where p and q are
along these axes, v2

n
= v2

n′ ≡ v2
α given by

ρv2

α = v2

p
cos2

α

2
+ v2

q
sin2

α

2
, (90)

where v2
p

and v2
q

are the squared wave speeds of the waves propagating along
p and q, respectively,

ρv2

p
= Cp ·Bp , ρv2

q
= Cq ·Bq . (91)

Choosing then, as in Remark 1 (Section 4), forward waves with the same
amplitude A for g and g′,

g(η, t) = A cosκ(η − vαt+ ϕ) , g′(η′, t) = A cosκ(η′ − vαt+ ϕ′) , (92)

we obtain, for the superposition,

g(η, t)+g′(η′, t) = 2A cosκ(sin
α

2
q·x+ϕ−) cosκ(cos

α

2
p·x−vαt+ϕ+) , (93)

where ϕ± = 1

2
(ϕ′ ± ϕ). Such a solution represents a wave propagating along

p with speed v ≡ vα/ cos α
2

and whose amplitude varies sinusoidally in the
direction of q. Here, p and q are two arbitrary unit vectors such that p ·q =
p · Bq = 0. In the slightly different context of special Blatz-Ko materials
(a compressible counterpart of the neo-Hookean model), such a solution has
been used [8] for the construction of a finite-amplitude Love wave.

6. Superposition of transverse homogeneous plane waves propa-

gating and polarized in different directions in deformed neo-

Hookean materials

Here we show that, in deformed neo-Hookean materials, two transverse
homogeneous plane waves propagating and polarized in different directions
may be superposed when the direction of propagation of one of the wave is
orthogonal to the polarization direction of the other. So, we seek solutions
of the equations of motion in the form

x = x + g(η, t)a + g′(η′, t)a′ , (94)

p = p+ q(η, η′, t) , (95)
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where g, g′, and q are functions to be determined, and n, n′, a, a′ are unit
vectors such that

n · a = 0 , n′ · a′ = 0 , n · a′ = 0 . (96)

The functions g and g′ are associated with transverse waves propagating
along n and n′, respectively, and polarized along a and a′, respectively. The
direction of propagation of one of these waves (n) is orthogonal to the polar-
ization direction of the other (a′). Thus, n and n′ are arbitrary, a is arbitrary
orthogonal to n, while a′ is orthogonal to n and n′.

For the motion (94), using the notations η = n ·x and η′ = n′ ·x, we have
for the deformation gradient tensor F and for the left Cauchy-Green strain

tensor B = FF
T

F = (1 + gηa⊗ n + g′η′a
′ ⊗ n′)F , (97)

B = (1 + gηa⊗ n + g′η′a
′ ⊗ n′)B(1 + gηn⊗ a + g′η′n

′ ⊗ a′) . (98)

Here, contrary to Sections 4 and 5, we found more convenient to use the
Piola-Kirchhoff stress tensor P instead of the Cauchy stress tensor T.

The Piola-Kirchhoff stress tensor defined by (12) may here be written as

P = −(p+ q(η, η′, t))(1−gηn⊗ a−g′η′n
′ ⊗ a′+gηg

′

η′(n′ · a)n⊗ a′) (99)

+C(B + gηa⊗Bn + g′η′a
′ ⊗Bn′) .

Introducing P into the equations of motion (13), we obtain

ρ(gtta+g′tta
′) = −qηn−qη′(n′− (n′ ·a)gη n)+Cn ·Bngηηa+Cn′ ·Bn′g′η′η′a

′ .
(100)

Using (a, a′,n) as a basis, the reciprocal basis is (a∗, a′∗,n), given by

sin2 γ a∗ = a− cos γ a′ , sin2 γ a′∗ = a′ − cos γ a , (101)

where γ is the angle between a and a′. Taking the dot product of the equa-
tions of motion (100) with the reciprocal basis (a∗, a

′∗,n), the equations of
motion read

ρgtt = −qη′n′ · a∗ + Cn ·Bn gηη , (102)

ρg′tt = −qη′n′ · a′∗ + Cn′ ·Bn′ g′η′η′ , (103)

0 = −qη − qη′(n · n′ − (n′ · a)gη) . (104)

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Taking the derivative of (102) with respect to η′, and of (103) with respect
to η, we obtain

qη′η′ = 0 , qη′η = 0 . (105)

Thus, qη′ is a function of time only,

qη′ = A(t) . (106)

Hence, using (104), we conclude that q(η, η′, t) is given, up to an arbitrary
additive function of time, by

q(η, η′, t) = −A(t)(n · n′)η + A(t)(n′ · a)g + A(t)η′ . (107)

Using

n′ · a∗ =
sinα

sin γ
, n′ · a′∗ = −

sinα

sin γ
cos γ , (108)

where α is the angle between n and n′, and recalling (106), the equations of
motion (102) and (103) may now be written as

gtt − v2

n
gηη = K(t) sinα , (109)

g′tt − v2

n′g′η′η′ = −K(t) sinα cos γ . (110)

Here,

K(t) =
−A(t)

ρ sin γ
, (111)

and v2
n

and v2
n′ are the squared wave speeds of the waves propagating in the

directions n and n′, respectively, and are given by (81). Using

n′ · a = sinα sin γ , (112)

and (111), the additional pressure (107) due to the wave may now be written
as

q(η, η′, t) = ρK(t) sin γ{(cosα)η − (sinα sin γ)g − η′} . (113)

Because K(t) is arbitrary, we may choose K(t) = 0, then the additional
pressure q = 0, and the equations (109) and (110) for g and g′ reduce to two
vibrating string equations

gtt − v2

n
gηη = 0 , g′tt − v2

n′g′η′η′ = 0 . (114)
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Considering, for instance, sinusoidal wave solutions of (114)1 and (114)2,
propagating with speeds +vn and +vn′ , respectively, the displacement field
reads

u = λa cosκ(η − vnt+ ϕ) + λ′a′ cosκ′(η′ − vn′t+ ϕ′) . (115)

In (115), the two terms have, in general, different wave numbers κ, κ′ and
different frequencies ω = κvn, ω′ = κ′vn′. If κ and κ′ are chosen such that
κvn = κ′vn′, then the motion is time-harmonic and at each point x the
extremity of the displacement field vector u describes an ellipse.
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