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Complex surface rays associated with inhomogeneous 
skimming and Rayleigh waves 

 

M. DESCHAMPS AND G. HUET 

Laboratoire de Mécanique Physique, Université Bordeaux 1,  
UMR CNRS 5469 

351, Cours de la Libération, 33405 TALENCE CEDEX, FRANCE 

 
 
 
Abstract  

 

The Rayleigh wave, that propagates at the free surface of semi-infinite anisotropic 
medium, is composed of three inhomogeneous partial waves, each propagating along 
the surface with a different attenuation along the depth. Since this wave does not exhibit 
an attenuation on the surface, let us call it the homogeneous Rayleigh wave. The 
associated slowness corresponds to the real solution of the Rayleigh dispersion 
equation. Besides this classical solution, an infinite number of complex solutions of the 
Rayleigh dispersion equation exits. For such particular Rayleigh waves, the slowness 
vector, i.e. the identical component on the surface of the slowness of each partial waves, 
is taken to be complex. Thus, these Rayleigh waves are attenuated on the surface and as 
shown here, their attenuation is normal to the ray direction (or the energy velocity 
direction). Similarly to the infinite inhomogeneous plane waves which can be associated 
with complex rays, we call these waves, inhomogeneous Rayleigh waves. We use the 
inhomogeneous skimming waves, which are inhomogeneous plane waves, and the 
inhomogeneous Rayleigh waves to explain differently the usual diffraction phenomena 
on the free surface which cannot be explained by the real ray theory. For example, the 
arrival time of the wave packet observed beyond the cusp is in perfect accordance with 
the arrival time of some specific inhomogeneous Rayleigh waves. We show that these 
results are in agreement with the computation of the Green function. They apply to the 
theory of surface waves in linear elastodynamics with intrinsic anisotropy as well as to 
the theory of surface waves in linearized (incremental) elastodynamics with strain-
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induced anisotropy (also known as small-amplitude waves superimposed on the large 
static homogeneous deformation of a nonlinear solid).  

1. Introduction  

On the extension beyond the cuspidal edge of the acoustic wave surface of an elastically 
anisotropic solid is a sharp but non-singular feature in the dynamic response functions. 
The arrival times of such features coincide with maxima of the energy flux. These 
quasi-singular features are shown in many measurements of the point source/point 
receiver mentioned in numerous publications. This behaviour in the geometric shadow 
has been predicted by Maris in 1983 [1], by applying to phonons analysis the pioneerly 
work performed by Pearcey in electromagnetism [2]. It has been experimentally 
observed at ultrasonic frequencies by making use of quasi-monochromatic sources [3-
5]. This phenomenom of diffraction at an edge, which is observed although no actual 
screen spatially limits the radiation, is called internal diffraction or diffraction at the 
cusp edge. It cannot be explained by the theory of real rays. 

By extending the slowness vector of plane waves to complex values, the propagation of 
the acoustic energy along a prescribed direction does not correspond to a finite number 
of arrivals (i.e. the geometrical arrivals) but has a continuum of solutions given by the 
full set of inhomogeneous plane waves whose energy flux is oriented in the direction of 
observation. This generalized plane wave is represented by a bivector [9, 11, 13]. Their 
propagation has been studied theoretically by Ph. Boulanger and M. Hayes [12, 14] and 
a general study of their reflection and transmission through the plane interfaces can be 
found in [16, 15]. This inhomogeneous plane waves obviously do not necessarily refer 
to wave packet arrivals (in the strict sense of wave propagation they, for instance, do not 
satisfy Fermat’s principle). However specific inhomogeneous plane waves have 
interesting properties with regards to the acoustic rays since they are close to satisfy the 
criterion of stationary phase. For these particular complex plane waves, the arrival time 
corresponding to a complex ray can be associated. This study has been done for a 
radiating source in an infinite anisotropic medium [6]. 

These results can immediately be applied to the skimming waves that propagate on the 
free surface of a semi-infinite anisotropic solid. In addition, a generalisation to the 
Rayleigh waves is possible which is the purpose of this paper.  

In Section 3 we introduce the method of skimming waves and extend the results to the 
Rayleigh equation. Finally in Section 4, the waves arrival times of all the rays, complex 
or not, are compared with the Green function giving the dynamic response to a point 
source located on the free surface. 
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2. Problem statement 

Let us consider a semi-infinite anisotropic elastic medium, which occupies a region 

  x3 > 0 , with its surface   x3 = 0  in cartesian coordinates (x1, x2 , x3) . Let us assume that this 
surface is subjected to the action of a point like source and a point like receiver. This 
Lamb’s problem can be solved by different methods presented in various papers, see for 
example [7, 8]. The components of the displacement field in the x3 -direction is plotted 
in Fig. 1. 

 

Figure 1 Waveform for the copper crystal at the distance of 5 mm between the source and the observation
point when the observation direction is oriented at 60° from the principal direction   x1 .  

The normal of the surface coincide with the crystallographic axis [0 0 1]. 

More details concerning the calculations will be given later on. From the typical 
waveform chosen, it can be clearly shown the complexity of the waveform due to 
numerous wavefront arrivals. The associated discontinuities in the temporal shape are in 
agreement with the arrival times of the wavefront that propagate at the group velocity 
(see [7] for this calculation). All types of wave arrivals are observed. These different 
points are marked as follows: (R) for the Rayleigh wave, (Ps) for the pseudo Rayleigh 
wave, (i) for the surface skimming waves which have wave vectors on the surface, (o) 
for the surface skimming waves which have wave vectors out of the surface, (Rc) and 
(Sc) for the particular contributions associated with the waves that come from the 
diffraction by the cusps of the Rayleigh and the surface skimming waves, respectively. 
The folding wavefronts for both the Rayleigh wave and the surface skimming wave are 
made clear.  

In fact, in what follows, we focus our interest only on the wave arrival times which can 
be observed by the waveform, and in particular on those associated with (Rc) and (Sc) 
waves. To this end, let us study the inhomogeneous plane wave solutions of both the 
Christoffel equation and the Rayleigh equation. In the next two chapters, we show how 
to use such solutions to interpret the arrival time associated with (Rc) and (Sc) times.  

3. The skimming waves 

3.1. The Christoffel equation 

The skimming waves are the plane bulk waves satisfying the wave equation, whose the 
energy flux is located in the plane (x1, x2 ) . Thus, they are solution of the Christoffel 
equation without any other conditions. Let us write down this problem with our 
notations. The wave equation is given by  
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  σ ij , j  =  ρ ∂tvi ,         (1) 

where ρ  is the mass density and the stress tensor σ ij  , for a lossless anisotropic medium 
is given by the Hooke law 

  ij ijkl klCσ = ε ,          (2) 

with the elastic stiffness constants ijklC   and the strain tensor εkl . Although some 
numerical results will be presented in Fig. 5 for skimming waves for which the slowness 
vector is not in the free surface, this case is not treated in this paper for the simplicity. 
Let us then restrict the analysis to inhomogeneous plane waves that propagate along the 
surface. At any point  X  and time t  the acoustic velocity field acquires the form [12]: 

   V = aoP exp iω(t − S/ / ⋅ X ) ,       (3) 

where  ao  is the complex amplitude, P  represents the polarisation vector and the 
variable ω  is the angular frequency. The complex vector S/ /  denotes the slowness 
vector (the so-called slowness bi-vector). The subsript // indicates that the associated 
vector belong to the surface. The quantities P  and S/ /  are given by the Christoffel 
eigenproblem following from the equation of motion 

  Γ ij  v j =  ρ δ ij  v j ,        (4) 

where Γ  represent the Christoffel matrix with components Γ ij = Cikljsksl    (i, j,k, l = 1...3)  
and  δ ij  is the Kronecker delta. The variables si  denote the slowness components in the 

  xi -axis   (i = 1...3) . The condition of vanishing the determinant  

|   | 0ij ijΓ − ρδ =          (5) 

yields the implicit Christoffel characteristic equation.  

Our study is restricted to a monoclinic anisotropic semi-infinite medium with a plane of 
symmetry parallel to the boundary. By virtue of these restrictions, the left hand side of 
Eq. (5) is reduced to a product of two polynomial functions of variables   s1

2  and   s2
2 . One 

function, corresponding to the plane waves polarized in the (x1, x2 )  plane (noted P and 
SV), is of the second order. The other, associated with the plane waves polarized 
orthogonaly to the   (x1, x2 )  plane (noted SH), is of the first order. 
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3.2. The energy equation 

The energy equations provide important relations between the complex slowness bi-
vector and the energy flux. In [10], the following relations between the energy velocity 

  cn , the real part   ′S//  and the imaginary part ′′S/ /  of the slowness bi-vector are obtained 

    ′S// ⋅ cn = 1,  (6) 

    ′′S// ⋅cn = 0 , (7)  
 

where the energy velocity, the time-averaged Poynting vector < ′J / / >  and the time-
averaged kinetic and potential energy densities < Ec >  and < Ep >  are respectively:  

   
cn =

< ′J / / >
< Ec + Ep >

, (8) 

   
< ′J / / >= −

1
2

Re σ ⋅V( ), (9) 

   
< Ec >=

1
4

ρV ⋅V , (10) 

  
< Ep >=

1
4

εijCijkl εkl ,  (11) 

here the bar superscript means the complex conjugation and < >  implies the averaging 
by time period. Note that all these new quantities are real. Two other important remarks 
may be drawn from Eqs. (6) and (7), which will be used extensively in the next section. 
First, the damping vector given by ′S//  is always normal to the energy flux direction. 
Second, the energy velocity   cn  equals the phase velocity in the direction of the Poynting 
vector   < ′J / / > .  

3.3. Energy velocity calculation 

In this section, the energy velocity of the skimming waves that propagate along the 
surface in the fixed direction of the unit vector n  is obtained. As it follows from Eq. (7) 
that the component of the slowness vector of the inhomogeneous plane waves is real in 
the flux direction. Hence, the following relation can be written  

   S// ⋅ n = ′sn  (12) 

where   ′sn = ′cn

−1  is the slowness component in n -direction, which is real in virtue of Eq. 
(7). Noting by  θn  the angle between the vectors n  and x1 , the relation (12) can be 
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rewritten as follows 

  ′sn = s1 cosŹθn + s2 sinŹθn ,        (13) 

where   s1 = ′s1 + i ′′s1  and   s2 = ′s2 + i ′′s2  are the complex slowness component in   x1 -direction 
and   x2 -direction, respectively. Let us study in detail the restrictive case of wave 
polarised in the surface. Expressing the variable s2  from Eq. (13) and substituting it in 
the characteristic polynomial we obtain a new polynomial equation in the form  

 
4

1
0

( ) 0k
k n

k
b s s

=

′ =∑ .         (14) 

The symmetry is broken since this polynomial is of the fourth order of   s1 . The 
coefficients  bk  depend on  ′sn . Solving Eq. (14) for a fixed value of ′sn  and for a given 
direction of the observation, i. e. a given value of θn , is equivalent to find the 
intersection of the slowness curves and the line, normal to n  (see Fig.  2). This 
parameter has been introduced to calculate the various Green functions using the 
Cagniard method [18].  

For the illustration, the surface with the normal [0 0 1] of a Copper crystal is selected. 
The non zero stiffness constants of this cubic crystal are: C11 = 170 ,   C11 = 12.3 and 

  C44 = 75.5  (GPa). The mass density is 8.9 (g / cm3) . The real part of the slowness vector 

  ′S//  is plotted in Fig. 2. 

 

Figure 2. Polar curves ′s
1
, ′s

2( ) of the real part of the bi-vector slowness   ′S
/ /

. 

The black and grey lines correspond to the homogeneous and inhomogeneous plane 
waves, respectively. The dashed line represents the normal to the direction of the 
observation. As the parameter ′sn  increases from zero (line A) to a large value (line D), 
different observation can be made graphically. From the line A to the line B two 
solutions are real. The line B corresponds to the wave arrival since this line is exactly 
tangent to the slowness curve and the direction n  coincide with the direction of the 
energy flux. At this point two real solutions become identical and beyond this point they 
become complex conjugated. Other solutions are real until the last arrival time (line C). 
Finally both solutions are complex. At the arrival time, the additional relation  

 
  

d ′s1

d ′sn

→ ∞           (15) 
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is satisfied. 

 

Figure 3. Absolute value of the derivative d ′s
1

/ d ′s
n
 versus the phase slowness ′s

n
for   θn

= 60° . 
 

These results are classical and they provide the group velocities of homogeneous plane 
wave by solving the following system of equations 

 

  

bk ( ′sn ) s1
k

k=0

4

∑ = 0

d ′sn

d ′s1

= 0 .

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (16) 

Solving this system with respect to ′sn  we obtain the energy velocity for the 
homogeneous plane waves as follows 

   ′cn = 1/ ′sn . (17) 

Singularities of the displacements at the wave arrival times can be observed in the 
Green function [18]. These arrival times classically defines the wave surfaces by the ray 
theory (or real rays) [17, 25].  

For these rays, it is necessarily to satisfy the system (16) to have an energy flux along 
the direction  n , but for all complex solutions presented in Fig. 2 the energy flux is 
along direction in virtue of Eq. (7). As shown in [6], for a specific value of  ′sn , among 
this continuum of solutions, the derivative in Eq. (15) exhibits a finite maximum instead 
of infinite value. In Fig. 3 the function d ′s1 / d ′sn  is plotted versus ′sn  for the solutions 
shown by the dashed black line and the dashed grey line in Fig. 2. The discontinuity and 
the maximum are marked by black and grey squares, respectively. The wave arrival 
times can be found from the following system of equations: 

 

  

bk ( ′sn ) s1
k

k=0

4

∑ = 0

d 2 ′s1

d ′sn
2

= 0 .

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (18) 

If the solution exists, then, a concentration of energy is observed for this wave arrival 
time. In our case, this will define the complex rays since they are associated with 
specific inhomogeneous plane waves. These inhomogeneous plane waves quasi satisfy 
the criterion of stationary phase. In other words, they quasi satisfy the Fermat’s 
principle.  
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Let us now use this result to inspect the skimming waves of the problem described in 
section 2. To highlight the physical phenomena arising close to the cusps existing on the 
polar curves of the energy velocity, consider the copper crystal again. Both solutions of 
Eqs. (6) and (18) are calculated for various angles of observation and presented by polar 
plot of  ′cn  in Fig. 4. The homogeneous and inhomogeneous plane waves are identified 
by the black and grey solid lines, respectively. Clearly, the ends of the cusp are 
extended and connected two by two by the complex solutions. These complex rays 
generalize the real rays and give us a new explanation to the diffraction phenomena near 
the cusp denoted by (Sc) in Fig. 1, whose description can be found in the literature [19]. 

 

Figure 4. Polar curves   
′c
n
,θ

n( ) of the energy velocity in the interface plane. Black and grey lines are the 

homogeneous and inhomogeneous in-plane skimming waves, respectively.  
Black and grey squares correspond to θ

n
= 60° . 

 

 

Figure 5. Polar curves   
′c
n
,θ

n( ) of the energy velocity in the interface plane for the homogeneous out of-

plane skimming waves.  

To make this point clear, the arrival time and the energy velocity associated the black 
and grey points in Fig. 3 are shown in Figs. 1 and 4, respectively. Finally, the important 
point to note is that the skimming wavefronts start at the ends of the cusp and connect 
two by two these extreme points. The polar curves of the energy velocity of the surface 
skimming wave whose wave vector is out of the surface plane are plotted in Fig. 5. For 
such rays, the theoretical calculations are not presented because the generalisation to 
complex rays is not performed at the moment and remain to be inspected, only the real 
wavefront are plotted for the comparison with the Green function, which will be 
presented in section 5.  

The successful use of such complex rays to study the phenomena close and beyond the 
cusp edge is made clear. Naturally, this study can be generalized for the case of 
Rayleigh waves.  

3.4. The dispersion equation 

The displacement field associated with the Rayleigh wave is given by  

   V = P(x3)expŹiω(t - S/ / . X ) , (19) 
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where the slowness vector of this surface wave in the plane (x1, x2 )  is denoted by 

   S/ / = (s1,s2 ) . The function  

 
   
P(x3) = Pk exp(−i ω s3k x3)

k=1

3

∑ , (20) 

consists of three partial mode contributions with the component of the slowness vector 

  s3k  in   x3 -axis. The variables are given by solving the Christoffel equation. Skipping 
detailed calculations of the Christoffel equation, it can be reduced to the following form 
[21]: 

   Y
2 (s3k ) + B1 Y (s3k ) + B0 = 0 , (21) 

where 

   Y (s3k ) = s31s32 + s33s32 + s31s33 , (22) 

is a combination of three unknown slownesses. Two others, s1  and s2 , are assumed to 
be known. In the above expression, the coefficients B1  and B0  are polynomial functions 
of   s1  and   s2 . To complete the description of the surface waves, the boundary condition 
must be taken into account. In this case the free traction conditions acquires the 
following implicit form: 

   Y
2 (s3k ) + A1 Y (s3k ) + A0 = 0 , (23) 

where the coefficients   A1  and A0  are also polynomial functions of s1  and   s2 . For more 
details see [21]. The polynomial dispersion equation of the Rayleigh wave is obtained 
by eliminating the variable   Y (s3k )  from the polynomial functions (in Eqs. (21) and (23)). 
This is done by calculating the resultant. After simplification, a polynomial equation in 
the implicit form is obtained 

 
12

2
2 2 1

0
( ) 0k

k
k

s sα
=

=∑ , (24) 

where the coefficients   α2k (s2 )  depend on s2 . The degree of the Rayleigh polynomial 
depends on the anisotropy and on the surface orientation. In the case under 
consideration, i. e., when the surface coincides with the plane of symmetry, the degree 
with respect to   s1

2  is 12, for the more general case of triclinic materials the degree of 
Rayleigh polynomial is 27 [20, 22, 23]. This degree is reduced to 4, when considering 
the propagation in a symmetry axis direction [24]. Finally, for the isotropic case this 
degree is 3. 
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For a fixed value of the direction of propagation, the real solutions of Eq. (24), i.e., for a 
real couple   (s1,s2 ) , which also satisfy the condition of free surface, correspond to the 
Rayleigh wave. This real solution is unique, however an infinite number of complex 
solutions exists for a complex slowness vector on the surface S// . This generalization 
introduces the Rayleigh inhomogeneous waves in the sense that waves are not only 
attenuated normal to this interface due to the attenuation of three partial modes but also 
in the surface in the direction given by the imaginary part ′′S/ /  of the slowness vector.  

3.5. Energy relation 

As for the skimming waves, the energy equation provides relations between the 
slowness vector and the Pointing vector of Rayleigh waves. To get these relations, let us 
multiply Eq. (4) by the velocity conjugation and take the time-averaging introduced in 
section 3.2. This yields the relation  

 
   
S/ / ⋅ < J / / >= 2 < Ec > +

i
2ω

v j∂3σ j3 , with  j = 1...3  (25) 

between the complex Poynting vector < J / / >= −
1
2

σ ⋅V  on the surface, the time-averaged 

kinetic density  < Ec >  and the slowness vector S// . The additional term on the right 
hand side results from the interaction of three partial waves in x3 -axis. In the similar 
way, multiplying Eq. (2) by the complex conjugation of the strain, the vector   J / /  can be 
married with the time-averaged potential energy density < Ep > , 

 
   
S/ / ⋅ < J / / >= 2 < Ep > −

i
2ω

σ j3∂3v j , with  j = 1...3  (26) 

The densities  < Ec >  and  < Ep >  are defined by Eqs. (10) and (11), respectively, while 
the field is given by Eq. (19). Finally, the sum of Eq. (25) and the complex conjugation 
of Eq. (26) yield  

   S// ⋅ < ′J // >Ź=Ź< Ec + Ep > − < Eω > −i < El > , (27) 

with  

  
< Eω >=

1
2ω

Im(v j∂3σ j3) , (28) 

  
< El >=

−1
2ω

∂3J3 , (29) 
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where   J3 = −σ3 jv j . The relation given by Eq. (27) depends on x3 . To obtain an invariant 
energy relation, let us integrate this relation along the depth. So, noting  

 
  
<< (.) >>= < (.) > dx3

0

+∞

∫ , (30) 

we obtain the following equation:  

 
   
( ′S// + i ′′S/ / ) ⋅ ′cn = 1−

<< Eω >>
<< Ec + Ep >>

− i
<< El >>

<< Ec + Ep >>
, (31) 

with   << El >>= (2ω)−1(J3(x3 = +∞) − J3(x3 = 0))  which represents the energy leakage out 
of and in the material and the quantity  

 
   

′cn =
<< ′J / / >>

<< Ec + Ep >>
 (32) 

defines the energy velocity of the surface wave. The condition of free surface yields 
zero normal component of the Poynting vector at the surface, i.e.   J3(x3 = 0) = 0 . 
Moreover, the amplitudes of the physical solutions are exponentially decreasing in the 
depth and then   J3(x3 = +∞) = 0 . In addition, the term << Eω >>  can be neglected for 
small values of inhomogeneities, i.e., under small value of the slowness damping vector 

  ′′S/ / , which is our case under consideration. Taking into account all these comments 
from Eq. (27), we obtain 

    ′S/ / ⋅ ′cn → 1, (33) 

    ′′S/ / ⋅ ′cn → 0 .  (34) 

 

Figure 6. Representation of the phase, damping and energy velocity vectors of a partial mode of the 
inhomogeneous Rayleigh wave. 

As seen the results (33) and (34) are similar to those for complex skimming 
inhomogeneous plane waves, cf. Eqs. (6) and (7). For one partial mode these vector 
relations are illustrated in Representation of the phase, damping and energy velocity 
vectors of a partial mode of the in where the surface is Π/ /  and planes  ′Π/ /  and  ′′Π/ /   
(orthogonal to  n ) contain the phase and the damping vectors, respectively. Of course, 
three partial modes differ by the bi-vector component in the x3 -axis only. So, these 
planes remain identical.  

To conclude this part, it is of interest to underline that the notion of Rayleigh wave is 
generalized due to the presence of attenuation on the surface orthogonal to the direction 
of the energy flux. Indeed, this last point remains in force for usual Rayleigh wave, for 
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which   ′′S/ / = 0  and for which the direction of attenuation coincides with the   x3 -axis. In 
addition, in this case the term  < Eω >  is rigorously zero. 

3.6. Energy velocity calculation 

In this section let us use the relations (33) and (34). Since their forms are identical to 
Eqs. (6) and (7) for skimming wave, the energy velocity for real and complex Rayleigh 
waves can be obtained in a similar way. Introduce new slowness variable defined by Eq. 
(13) and express new relation form Eq. (24) as follows 

 
  

Ck ( ′sn )s1
k

k=0

24

∑ = 0  (35) 

Here the coefficients  Ck  depend on ′sn . For a fixed direction of θn = 80° , the real parts 
of the 24 solutions for copper are plotted in the plane ( ′s1, ′s2 ) . The pure real solution, 
corresponding to the usual Rayleigh wave, is shown by black, the complex solutions, 
close to the so-called Pseudo-Rayleigh waves, are shown by dashed lines. This is a well 
known special surface wave (see, for example [28]). 

 

Figure 7. Polar curves   ( ′s
1
, ′s

2
)  of the real part of the bi-vector slowness S

/ /
 of the Rayleigh 

inhomogeneous wave. Solution of Eq. (35) for θ
n

= 80° . Black line corresponds to the homogeneous 
Rayleigh wave, dashed line to the Pseudo-Rayleigh wave and grey line to all other solutions. 

All other solutions are plotted by grey lines. The geometric connection between the line 
of normal  n  and the solutions, commented in Fig. 2, is still available for the slowness 
curves associated with the Rayleigh equation. As an example, let us note that when the 
line is tangent to the Rayleigh slowness curve, the corresponding flux is oriented in the 
direction  n . Consequently, all what has been developed in section 3. The skimming 
waves can be applied to the Rayleigh equation. In particular, for large enough values of 

 ′sn , the complex solutions of the Rayleigh wave equation exist and correspond to the 
inhomogeneous surface waves. We will come back to their physical meaning further. 
For small values of  ′s

n
, the solutions have no physical meaning and they correspond to 

the fictitious solutions introduced to get the polynomial form of the Rayleigh equation.  

 

Figure 8. Function   d ′s
1

/ d ′s
n
 versus the phase angle between ′S

/ /
 and x1 -axis for the homogeneous 

Rayleigh wave and θ
n

= 80° . 
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As illustrated in Fig. 8, the same behaviour of the derivative d ′s1 / d ′sn  is observed. This 
function is plotted for the Rayleigh solution and for positive value of  ′sn  versus the 
phase angle θ  (angle between ′S

/ /
 and the x1 -axis). At the arrival time the derivative 

function is infinite and  

 
  

d ′sn

d ′s1

= 0 . (36) 

Consequently, for a fixed direction of the observation, the energy velocity of the 
homogeneous Rayleigh waves can be obtained by solving the system given by the 
polynomial Eq. (35) and those deduced from Eq. (36). The numerical results are 
presented in Fig. 9, where the black lines correspond to energy velocity associated with  

 

Figure 9. Polar curves   ( ′cn ,θ
n
)  of the energy velocity of the Rayleigh waves. Black and grey lines 

correspond to the homogeneous and inhomogeneous Rayleigh waves, respectively, black squares to 

  θn
= 80°  and grey squares to θ

n
= 75°  and θ

n
= 64° . 

the Rayleigh wave in polar coordinate and the angle is the angle of observation  θn . The 
black points are those associated with the discontinuities presented in Fig. 8. Of course, 
near the cusp and beyond it the value d ′s1 / d ′sn  is large but finite. This is made clear in 
Fig. 10, where this behaviour can be observed at the angles of observation   θn = 75°  and 

  θn = 64° . As for the skimming waves, this suggests to interpret these phenomena in 
terms of complex rays. The combination of the dispersion relation, Eq. (35), and the 
polynomial function given by 

   d
2 ′s1 / d ′sn

2 = 0 , (37) 

provides us the solution in terms of ′s1 . Referring to Eq. (17), we may immediately 
calculate the energy velocity  ′cn  of these complex rays. As pointed out in Fig. 9, the 
wavefronts (grey line) associated with these inhomogeneous Rayleigh waves shown in 
Fig. 6, extend the cusp. The grey square and dot indicate two maxima of the curves 
presented in Fig. 10. The same calculations can be done for the pseudo-Rayleigh wave 
represented in Fig. 7. The results are shown in Fig. 11. 

 

Figure 10. Function   d ′s
1

/ d ′s
n
 versus the phase slowness ′s

n
 for two inhomogeneous Rayleigh wave 

solutions. On the left θ
n

= 75°  and on the right θ
n

= 64° . 
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Figure 11. Polar curves   ( ′cn ,θ
n
)  of the energy velocity of the inhomogeneous Pseudo-Rayleigh wave. 

Dashed grey lines correspond to usual Pseudo-Rayleigh wave. 

In order to compare our results with the usual solution, the part of curve corresponding 
to the solution, which is close to the usual pseudo-Rayleigh wave, is plotted by dashed 
line. This part corresponds exactly to the energy velocity associated with the solution 
plotted in dashed black in Fig. 7. When the usual pseudo Rayleigh wave exists, i. e., for 
some specific angles of observation, the energy velocity of the inhomogeneous 
Rayleigh wave is very close to that of the pseudo Rayleigh wave, but they are different. 
As a matter of fact, the attenuation vector associated with this new solution lies on the 
surface plane (cf. Fig. 6), while for the usual pseudo Rayleigh wave this vector is in the 
phase plane ′Π . It is so because the solutions are sought in terms of complex wave 
number such that the two vectors ′S//  and ′′S/ /  are colinear for the usual wave. Besides a 
different description of the usual Pseudo-Rayleigh wave, when the cusp appears due to 
the anisotropy, the complex rays, first, take place in the continuity of the small cusp, 
and second, they still exist even when the classical solution stops. This last point is just 
noted here without any more explanations. 

Finally, it is of great interest to note that two cusps of the Rayleigh wavefront are 
extended as well as the small cusp of the pseudo-Rayleigh wave.  

It is important to repeat that all the plotted complex solutions agree with the energy 
conditions at infinity which imply Eqs. (33) and (34). 

4. Comparison with the Green function calculation 

The results obtained in the previous chapters are compared with those obtained by 
calculation of the Green function. This Green function is the response to a source 

  δ (t)δ (x1)δ (x2 )  located on the free surface Π/ / . The solution is explained in terms of 3D 
integral. By using the Cagniard-de Hoop method, two of them can be calculated and one 
integral remains to be evaluated numerically. For more detail, see [7].  

The Green function gives the evolution of the vertical displacement of a point  M  with 
polar coordinates   (r,ϕ)  on the surface of the medium. For the distance  r , the 
displacement is calculated for the direction of observation ϕ  and time  t . For an 
immediate comparison with the wave fronts, the evolution of this displacement is 
expressed as function of the speed v = r / t  rather than the time t . The discontinuities of 
the vertical displacement which is observed at the wavefront arrival times correspond 
now to the energy velocities of each waves. Figure 12-A is a 3D representation of these 
displacements calculated for the parameter ϕ  from 0° to 360°. The plane of the figure 
corresponds to the surface and the amplitude of the displacement is shown by grey 
scale; black corresponds to a minimum of amplitude and white to a maximum.  
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Figure 12. A : Polar curve   (r / t,θ
n
) of the Green function corresponding to the normal displacement at 

the distance r=5mm from the source. 
B: Comparison with the energy velocities of the homogeneous (blue) and inhomogeneous (red) skimming 

waves. 
C: Comparison with the energy velocities of the homogeneous (blue) and inhomogeneous (red) Rayleigh 

waves. 
D: Comparison with all the wavefronts. 

First of all, let us examine what is well known. On Fig. 12-B and Fig. 12-C, this field 
calculation is compared with the real rays of skimming, Rayleigh and pseudo-Rayleigh 
waves, respectively. In all the figures, these contributions are plotted by blue lines. For 
the pseudo-Rayleigh wave the blue part corresponds to the usual solution, compare Fig. 
11 with Fig. 12-C. By analysing these curves, a perfect synchronisation between the 
arrivals of wavefronts and the discontonuities of the Green function can be seen. 
Secondly, let us inspect the complex ray arrival times. On Fig. 12-B, the curvature of 
the complex wavefronts, which connect the cusp two by two, is visible on the Green 
function. However, the shape of the front is wide and not precisely identified. Since the 
complex rays are not the true wavefronts and Eq. (15) is not satisfied, they do not 
corresponds to the propagation of discontinuities. The amplitude of the damping vector 

  ′′S/ /  on the interface indicates the difference between this complex wavefront and the 
true wavefront. From this point of view at the edge of the cusp its amplitude is zero and 
it is very small near the cusp. The wavefront is then well defined. In contrast, the 
damping vector is, for the present example, larger for ϕ = 45�, as well as the front 
broadening. For the complex Rayleigh wave, the same good agreement between the 
extension of the small cusp and the field is observed in Fig. 12-C.  

Finally, Fig. 12-D reports all the complex and real wavefronts and the field calculation. 
It is made clear that all the feature of the Green function can be explained by the 
homogeneous skimming and Rayleigh waves, as is well known, completed by the 
inhomogeneous skimming and Rayleigh waves introduced in this study.  

5. Conclusion  

This paper suggests a method to describe extension of the cuspidal edges of wave 
surfaces. This wave surface is deduced, without acoustic field calculation, by searching 
the solution of the Christoffel equation in terms of the inhomogeneous plane waves, 
which almost satisfy the Fermat’s principle. For the homogeneous plane waves, it is 
necessarily to satisfy the Fermat principle exactly in order to have the Poynting vector 
oriented in the direction of the observation. But for the inhomogeneous plane wave, this 
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is not necessarily since this condition of energy orientation is taken into account by the 
fact that the damping vector is chosen normally to observation point. 
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Fig:1 
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Fig:2 
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Fig:3 
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Fig:5 
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Fig:6 
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Fig:7 
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