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Degenerate weakly nonlinear elastic plane waves

W�lodzimierz Domański∗ and Andrew N. Norris†

December 17, 2008

Dedicated to Philippe Boulanger on the occasion of his sixtieth birthday.

Abstract

Weakly nonlinear plane waves are considered in hyperelastic crystals. Evolu-
tion equations are derived at a quadratically nonlinear level for the amplitudes of
quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic
media. The form of the equations obtained depends upon the direction of propa-
gation relative to the crystal axes. A single equation is found for all propagation
directions for quasi-longitudinal waves, but a pair of coupled equations occurs for
quasi-transverse waves propagating along directions of degeneracy, or acoustic axes.
The coupled equations involve four material parameters but they simplify if the
wave propagates along an axis of material symmetry. Thus, only two parameters
arise for propagation along an axis of two-fold symmetry, and one for a three-fold
axis. The transverse wave equations decouple if the axis is four-fold or higher. In
the absence of a symmetry axis it is possible that the evolution equations of the
quasi-transverse waves decouple if the third order elastic moduli satisfy a certain
identity. The theoretical results are illustrated with explicit examples.

1 Introduction

We characterize and analyze degenerate weakly nonlinear elastic waves in crystals. The
degeneracy considered here arises from the existence of acoustic axes in elastic materials.
Acoustic axes are directions for which the phase velocities of at least two waves coincide.
For classical elasticity this phenomenon typically occurs for transverse or quasi-transverse
waves. In the mathematical literature the coincidence of wave speeds is called a loss of
strict hyperbolicity. Conditions for the existence of acoustic axes were first derived by
Khatkevich (1962), and a useful review of the topic is given by Fedorov (1968). Recent
developments can be found in e.g. Boulanger and Hayes (1998); Mozhaev et al. (2001);
Norris (2004). Analysis and properties of nonlinear elastic waves propagating along acous-
tic axes were discussed in Shuvalov and Radowicz (2001), see also the book of Lyamov
(1983).

The existence of acoustic axes, i.e. the loss of strict hyperbolicity, is typically accom-
panied by the local loss of genuine nonlinearity, that is, vanishing of the scalar product
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Degenerate nonlinear elastic waves December 17, 2008 2

of the gradient of the phase velocity with the corresponding polarization vector, all eval-
uated at the origin. The local loss of genuine nonlinearity implies the presence of weaker
than quadratic (e.g. cubic) nonlinearities in the decoupled evolution equations for de-
generate weakly nonlinear (quasi-)transverse waves. This happens e.g. for shear elastic
plane waves in an isotropic material as well as in a cubic crystal e.g. for [1 0 0] or [1 1 0]
directions (see Domanski (2000a)). However, coupled quadratically nonlinear evolution
equations do occur for transverse elastic waves. Although this is not possible in isotropic
materials (Goldberg, 1960), such couplings can manifest themselves for special directions
in crystals, for instance, for propagation in the [1 1 1] direction in a cubic crystal (see
Domanski (2000a)). These special directions are the acoustic axes.

In this paper we clarify what kind of coupling is possible according to the type of
a symmetry axis and we demonstrate how many constants are needed to describe the
coupling of pairs of (quasi-)transverse waves in a particular case. It turns out that we need
two constants for 2-fold symmetry axis, and only one constant for 3-fold axis. Moreover we
also prove that there cannot be a quadratically nonlinear coupling for shear wave equations
if the symmetry axis is 4-fold or 6-fold. In the absence of symmetry, the propagation of
shear waves along an acoustic axis depends upon four constants governing the nonlinear
terms in the coupled equations. It is possible that a pair of evolution equations decouples
if the four constants satisfy certain special relations, which are derived here. We illustrate
these general statements with some examples of particular elastic materials. Some of
these results appeared previously in an abbreviated form (Domanski and Norris, 2008).

The paper is organized as follows. In Section 2 we present the model of nonlinear
elastodynamics and its constitutive assumptions and we demonstrate the reduction of the
governing equations to a quasilinear plane wave system. Section 3 contains a presentation
of the method of Weakly Nonlinear Geometric Optics (WNGO) and its applications to
quasi-longitudinal and quasi-transverse waves. Special attention is devoted to the degen-
erate case of pairs of quasi-transverse waves propagating along acoustic axes. Coupled
evolution equations are derived for two-fold and three-fold symmetry axes. The analysis
of the coupled evolution equations is discussed in Section 4 under conditions of symme-
try about the propagation direction. Explicit examples which illustrate some of these
theoretical results are provided for cubic crystals. Section 5 considers the special case of
quasi-transverse waves propagating along an acoustic axis in the absence of material sym-
metry, and derives a condition both necessary and sufficient that the evolution equations
decouple. Some concluding remarks are offered at the end of the paper.

2 Preliminaries

2.1 Basic equations

The equation of motion of a continuum written in material (Lagrangian) coordinates is,
in the absence of body forces,

ρ0
∂2u

∂t2
= DivT. (1)

Here ρ0 is the mass density in the reference configuration, u is the particle displacement,
T is the first Piola-Kirchhoff stress tensor, and Div denotes the divergence operator with
respect to the material coordinates X. In the hyperelastic medium there exists a stored
energy density per unit volume in the reference configuration, denoted by W (F), such
that

T =
∂W

∂F
, (2)
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Degenerate nonlinear elastic waves December 17, 2008 3

where the deformation gradient is

F = I+∇u (3)

with I the identity tensor.

2.2 First order system

It is convenient for our purposes to write the equation of motion as a first order system
of partial differential equations. To this aim we introduce the particle velocity

v =
∂u

∂t
, (4)

and instead of (1) we write the system of equations

ρ0
∂v

∂t
= DivT, (5a)

∂F

∂t
= ∇v. (5b)

Equation (5b) follows from the comparison of the time derivative of (3) with the space
gradient of (4), assuming that the displacement vector u is at least twice continuously
differentiable. We introduce the following notation for the displacement gradient

M ≡ ∇u. (6)

Then, using (2) and (3) in the form F = I+M we can express the system (5) as

ρ0
∂v

∂t
= Div

∂W

∂M
, (7a)

∂M

∂t
= ∇v. (7b)

2.3 Constitutive relations

Components of vectors and other quantities will be referred to an orthonormal basis
{e1, e2, e3}. The strain energy in an arbitrary material is assumed to have the following
expansion for small strains:

W =
1

2!
cabcd Eab Ecd +

1

3!
cabcdef Eab Ecd Eef + · · · , (8)

where Eab are the components of the left Cauchy-Green strain tensor

E =
1

2
(FtF− I) =

1

2
(M+Mt +MtM), (9)

and the summation convention on repeated subscripts a, b, · · · , g, h is assumed. The
symmetry of the strain implies the relations

cabcd = ccdab = cbacd, cabcdef = ccdabef = ccdefab = cbacdef , (10)
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Degenerate nonlinear elastic waves December 17, 2008 4

which imply that there are no more than 21 and 56 independent second and third order
moduli, respectively. The second order moduli are assumed to be positive definite in the
sense that cabcdsabscd > 0 for all non-zero s = st.

Hearmon (1953) provides a complete enumeration of the third-order constants for all
crystal classes. Equations (2), (3), (8) and (9) together imply that the Piola-Kirchhoff
stress is

Tab = cabcd Mcd +
1

2
Nabcdef McdMef +

1

6
Nabcdefgh McdMefMgh + · · · , (11)

where
Nabcdef = cabcdef + cabdf δce + cbfcd δae + cbdef δac . (12)

Thurston (1984, eq. (38.5)) gives an expression for the higher order coefficients Nabcdefgh.
Note that Nabcdef �= Nbacdef , which implies that the non-symmetry of T is a second-order
effect.

For the remainder of the paper we take ρ0 = 1 for simplicity.

2.4 Plane waves

Plane wave solutions are described by displacement u that depends upon a single com-
ponent of X, say x = X · n, where n is the direction of propagation. The displacement
gradient of (6) reduces to

M = m⊗ n, (13)

where

m =
∂u

∂x
, (14)

is a displacement gradient vector. Defining the energy function for plane deformation by

V (m) ≡W (m⊗ n), (15)

we can write the system of elastodynamic equations (7) for plane waves as

∂v

∂t
=

∂2V

∂m2
· ∂m

∂x
, (16a)

∂m

∂t
=

∂v

∂x
. (16b)

The above system can be expressed in a quasilinear form as

∂w

∂t
+A(w)

∂w

∂x
= 0, (17)

where

w =

(
v
m

)
, A(w) = −

[
0 B
I 0

]
. (18)

The 3× 3 matrix B is

B = Λ+Ψm+
1

2
Πmm+ · · · , (19)
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Degenerate nonlinear elastic waves December 17, 2008 5

where Λ(n), Ψ(n) and Π(n) are, in components,

Λac = cabcdnbnd, (20a)

Ψace = Nabcdefnbndnf , (20b)

Πaceg = Nabcdefghnbndnfnh, (20c)

or, in short,

Bac = cabcdnbnd + Nabcdefnbndnf me +
1

2
Nabcdefghnbndnfnh memg + · · · . (21)

The positive definite property of the second order moduli implies that Λ, also known
as the Christoffel or acoustical tensor, has spectral form

Λ = α1k1 ⊗ k1 + α2k2 ⊗ k2 + α3k3 ⊗ k3, (22)

where αj > 0 and {k1,k2,k3} is an orthonormal triad of vectors. The six eigenvalues of
A(0) therefore split into three pairs with opposite signs:

λ1 = −√α1 = −λ2, (23a)

λ3 = −√α2 = −λ4, (23b)

λ5 = −√α3 = −λ6. (23c)

The corresponding right and left eigenvectors of A(0) are, respectively,

r2j−1 =

(−λ2j−1kj

kj

)
, r2j =

(−λ2jkj

kj

)
,

j = 1, 2, 3. (24)

l2j−1 =
1

2

(−λ−1
2j−1kj

kj

)
, l2j =

1

2

(−λ−1
2j kj

kj

)
,

Note that li · rj = δij.

Remark 1. The property αj > 0 implies that all six eigenvalues λk, k = 1, 2, . . . , 6 of A(0)
are real. We assume that all the right and left eigenvectors of A(0) form a full set of
linearly independent eigenvectors. The system is therefore hyperbolic at the origin. This
assumption can be expressed in terms of restrictions on the strain energy (e.g. rank-one
convexity), but we will not discuss this issue here. We would like to emphasize, however,
that we do admit the possibility of coincident eigenvalues, i.e. non-strict hyperbolicity.
Moreover, the main objective of this paper is the analysis of the case when pairs of
coincident eigenvalues correspond to (quasi-)shear waves. We call such waves degenerate.

3 WNGO asymptotics

In this section we are interested in deriving the simplest nonlinear evolution equations
for the amplitudes of weakly nonlinear elastic plane waves. Using the method of weakly
nonlinear geometric optics (WNGO) we will first derive equations for single waves and
then for coupled pairs of waves. No attempt is made here to review WNGO, which
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Degenerate nonlinear elastic waves December 17, 2008 6

has been widely developed and applied in many areas of mechanics and physics since the
seminal work by Lax (1957). We refer the interested read to the review of Hunter (1995).

For single waves two cases will be discussed. In considering the system (17) we first
choose an eigenvalue λs(w) of the matrix A(w) in (17) such that

∇wλs(w) · rs|w=0 �= 0, (25)

where rs is the eigenvector corresponding to λs. This assumption, called genuine nonlin-
earity, at the zero constant state is typically satisfied for longitudinal or quasi-longitudinal
waves. Using the perturbation method we will derive a nonlinear evolution for such waves
in Sec. 3.1. Next, in Sec. 3.2 we also present the simplified evolution equations for single
waves which do not satisfy the assumption (25). This is typical for shear or quasi-shear
elastic waves. Finally, in Sec. 3.3 we will also derive the evolution equations for the
amplitudes of coupled waves that have coincident speeds.

3.1 Evolution equations for single (quasi-)longitudinal waves

Let us consider an initial-value problem for a quasilinear hyperbolic system (17):

⎧⎨
⎩

∂wε

∂t
+A(wε)

∂wε

∂x
= 0,

wε(0, x) = εw1(0, x, x/ε),

(26)

where ε is a small parameter. Note that the high frequency (’fast’) variable x
ε

appears in
the initial condition. The initial data are presumed to have compact support.

We consider the single wave weakly nonlinear geometrical optics solution to (26)

wε(t, x) = εσs(t, x, η)rs + O(ε2), (27)

with an unknown amplitude σs and a new independent variable

η = ε−1(x− λst). (28)

It is assumed that the eigenvalue λs is distinct from the others, and its eigenvector is rs.

Remark 2. Instead of using a ‘fast’ variable, we may equally well use a ‘slow’ variable εx
and work with a solution of the form w = w̄(x−λt; εx), which represents a traveling wave
modified by nonlinear effects over a large length scale. Using this alternative starting
point we could obtain the same results as WNGO.

Introducing the ansatz (27) into (26), using a Taylor expansion of A(wε) around 0,
we then apply the method of multiple-scale asymptotics. This relies on treating η as a
new independent variable. We sequentially collect terms of like powers in ε and equating
these terms to zero one finds that the solvability condition applied at the O(ε) level yields
a nonlinear evolution equation for the unknown amplitude σs (see (Domanski, 2000a) for
the details):

∂σs

∂t
+ λs

∂σs

∂x
+

1

2
Γs

∂σ2
s

∂η
= 0, (29)

where the coefficient of nonlinearity is

Γs = ls ·
(∇wA(w)rsrs

)∣∣
w=0. (30)
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Degenerate nonlinear elastic waves December 17, 2008 7

One can show that Γs is equal to the left hand side of (25), and hence Γs �= 0. An explicit
equation for the nonlinearity coefficient follows from eqs. (12) and (17) as

Γs =
1

2
λ−1

s k�s+1
2
� ·Ψk�s+1

2
�k�s+1

2
�

=
1

2
λ−1

s cabcdefnbndnfk
�s+1

2
�

a k
�s+1

2
�

c k
�s+1

2
�

e +
3

2
λsn · k�s+1

2
� , (31)

where � 	 denotes the floor function, that is, the largest integer less than or equal to a
given number. We also use the notation kj ≡ kj

1e1 + kj
2e2 + kj

3e3 in the Cartesian basis.
The parameter Γs is well known in nonlinear elastodynamics - for instance, it governs the
growth of elastic acceleration waves (Norris, 1991).

Example 1. Consider an isotropic elastic medium for which the strain energy is given by

W =
1

2
(λL + 2μL)I2

E − 2μLIIE +
1

3
(lM + 2mM)I3

E − 2mMIEIIE + nMIIIE, (32)

where λL, μL are second order Lamé constants, lM , mM and nM are third order Murnaghan
constants1, and the strain invariants are

IE = trE, IIE =
1

2

[
(trE)2 − trE2

]
, IIIE = detE. (33)

In this case the two coefficients appearing in the evolution equation (29) are

λs = −
√

λL + 2μL and Γs =
3(λL + 2μL) + 2(lM + 2mM)

2
√

λL + 2μL

. (34)

Hence, we see that in the isotropic elastic medium the coefficients in the evolution equation
for longitudinal waves are determined by the two second order and the two third order
constants, λL, μL and lM , mM , respectively.

3.2 Evolution equations for single (quasi-)shear waves

We now present the simplest nonlinear evolution equation for the amplitude σs of a single
weakly nonlinear (quasi-)shear elastic wave for which Γs = 0. The case when Γs = 0
requires a different scaling from that of (28), one appropriate to cubic nonlinearity as the
leading term. The procedure is described in detail by Domanski (2000a). The WNGO
solution for the single wave has the same formal expansion as in eq. (27), but now,
crucially, η = ε−2(x − λst). The modified asymptotics leads to the following governing
equation for σs:

∂σs

∂t
+ λs

∂σs

∂x
+

1

3
Gs

∂σ3
s

∂η
= 0, (35)

with nonlinearity coefficient

Gs =
1

2
λ−1

s k�s+1
2
� ·

(
3Ψk�s+1

2
�q+Πk�s+1

2
�k�s+1

2
�k�s+1

2
�
)
, (36)

where the vector q is orthogonal to ks and satisfies

(Λ− λ2
sI)q+Ψk�s+1

2
�k�s+1

2
� = 0. (37)

1Relations between the three Murnaghan constants and alternative triads of third order constants for
isotropic solids are listed by Kostek et al. (1993).
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Degenerate nonlinear elastic waves December 17, 2008 8

Example 2. For an isotropic elastic medium with strain energy given by (32) the two
coefficients in the evolution equation (35) are

λs = −√μL and Gs =
3

4λs

[
λL μL + (μL + mM)2

λL + μL

]
. (38)

Hence, in the isotropic case, the coefficients in the evolution equation for shear waves are
determined by the two second order and only one of the third order constants, λL, μL,
and mM , respectively.

Remark 3. By applying the method of characteristics we reduce the differentiation ∂
∂t

+λ ∂
∂x

to the differentiation ∂
∂τ

where τ = t − λx is a characteristic variable. In this way the
partial differential equation

∂σ

∂t
+ λ

∂σ

∂x
+

1

j
Γ

∂σj

∂η
= 0, (39)

for the function of three independent variables σ = σ(t, x, η) transforms to the partial
differential equation

∂σ̃

∂τ
+

1

j
Γ

∂σ̃j

∂η
= 0, (40)

for the function of two independent variables σ̃ = σ̃(τ, η). Here j = 1, 2, 3, ... is a natural
number. When j = 2, as occurs for the longitudinal wave evolution equation (29), we
call the equation (40) the inviscid Burgers equation. Similarly, j = 3 for the (quasi-) shear
wave in (35), the equation (40) is called the modified inviscid Burgers equation.

3.3 Degenerate plane waves: acoustic axes

In this section we derive the simplest nonlinear evolution equations for the amplitudes
of a pair of weakly nonlinear elastic waves in the case when these waves have coincident
wave speeds.

Consider the Christoffel tensor Λ from (22).
Definition: We say that the eigenvalues of Λ are degenerate, if

Λ = α1(I− k3 ⊗ k3) + α3k3 ⊗ k3, (41)

that is, if α1 = α2 in (22). In such a situation we say that n is an acoustic axis (see
Khatkevich (1962) or Norris (2004)).

Let {k1, k2, k3} be an orthonormal triad of vectors and define the left and right
eigenvectors of A(0) as before, see eq. (24). Then A(0) has two pairs of coincident
eigenvalues: λs = λs+2 for s = 1 and s = 2. We now consider the following ansatz for the
initial value problem (26):

w(t, x) = ε

(
σs(t, x, η)rs + σs+2(t, x, η)rs+2

)
+ O(ε2), s = 1, 2, (42)

with η = ε−1(x − λst), and where σs and σs+2 are the unknown amplitudes. Inserting
(42) into (26) and applying the multiple scale asymptotic methods described in Section
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Degenerate nonlinear elastic waves December 17, 2008 9

3.1 (see Domanski (2000a)) we obtain the following pair of coupled evolution equations
for the amplitudes σs and σs+2:

∂σs

∂t
+ λs

∂σs

∂x
+

1

2

(
Γs

s,s

∂σ2
s

∂η
+ 2Γs

s,s+2

∂(σsσs+2)

∂η
+ Γs

s+2,s+2

∂σ2
s+2

∂η

)
= 0, (43a)

∂σs+2

∂t
+ λs

∂σs+2

∂x
+

1

2

(
Γs+2

s,s

∂σ2
s

∂η
+ 2Γs+2

s,s+2

∂(σsσs+2)

∂η
+ Γs+2

s+2,s+2

∂σ2
s+2

∂η

)
= 0, (43b)

where the interaction coefficients are, in general,

Γj
p,q = lj ·

(∇wA(w)rprq

)|w=0. (44)

The assumption of hyperelasticity (2) implies that these coefficients have the following
symmetry property

Γj
p,q = Γj

q,p. (45)

Moreover the formulas (24) imply that Γj
p,q = −Γj+1

p,q for j = 1,3,5. In our case we have

Γj
p,q =

1

2
λ−1

j k�j+1
2
� ·Ψk�p+1

2
�k�q+1

2
� . (46)

Using Cartesian components we can express the interaction coefficients as follows

Γj
p,q =

1

2
λ−1

j

[
cabcdefnbndnfk

�j+1
2
�

a k
�p+1

2
�

c k
�q+1

2
�

e

+ cabcdnbncnd

(
k
�j+1

2
�

a δpq + k
�p+1

2
�

a δjq + k
�q+1

2
�

a δjp

)]
=

1

2
λj
−1cabcdefnbndnfk

�j+1
2
�

a k
�p+1

2
�

c k
�q+1

2
�

e

+
1

2
λjn ·

(
k�j+1

2
�δpq + k�p+1

2
�δjq + k�q+1

2
�δjp

)
. (47)

Therefore the coefficients have in our case, in addition to the general property (45), the
following indicial symmetries:

Γj
p,q = Γp

j,q. (48)

This makes them totally symmetric under the interchange of indices. In particular, note
that

Γs+2
s,s = Γs

s,s+2 =
1

2
λs
−1cabcdefnbndnfk

�s+1
2
�

a k
�s+1

2
�

c k
�s+3

2
�

e +
1

2
λsn · k�s+3

2
� ≡ Γs+2

s , (49a)

Γs
s+2,s+2 = Γs+2

s,s+2 =
1

2
λs
−1cabcdefnbndnfk

�s+1
2
�

a k
�s+3

2
�

c k
�s+3

2
�

e +
1

2
λsn · k�s+1

2
� ≡ Γs

s+2. (49b)

In summary:

Lemma 1. The evolution equations for the amplitudes of shear waves propagating along
an acoustic axis are

∂σs

∂t
+ λs

∂σs

∂x
+

1

2

(
Γs

∂σ2
s

∂η
+ 2Γs+2

s

∂(σsσs+2)

∂η
+ Γs

s+2

∂σ2
s+2

∂η

)
= 0, (50a)

∂σs+2

∂t
+ λs

∂σs+2

∂x
+

1

2

(
Γs+2

s

∂σ2
s

∂η
+ 2Γs

s+2

∂(σsσs+2)

∂η
+ Γs+2

∂σ2
s+2

∂η

)
= 0. (50b)

The nonlinear terms in the equations involve four coefficients: Γs and Γs+2 from eq. (31),
Γs+2

s and Γs
s+2 from eqs. (49), the latter two of which determine the coupling between the

equations.
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4 Simplification along symmetry axes

The previous analysis shows that there are at most four independent coefficients appearing
in the nonlinear terms of the shear elastic wave’s coupled system (50). We will demonstrate
the following:

Lemma 2. The number r of coefficients in the nonlinear terms in the coupled equations
(50) for a pair of shear waves is always reduced if the direction of propagation n is a
symmetry acoustic axis. Specifically,

r = 2 for propagation along a 2-fold symmetry acoustic axis: Γs = Γs
s+2 = 0;

r = 1 for a 3-fold symmetry acoustic axis: Γs = Γs
s+2 = 0 and Γs+2 +Γs+2

s = 0;
r = 0 for an acoustic axis of 4-fold or higher symmetry: Γs = Γs

s+2 = Γs+2 =
Γs+2

s = 0.

4.1 Two-fold axis

We say that the propagation direction is a two-fold axis of symmetry if it lies in a plane of
symmetry of a monoclinic solid. Let e be the normal to the plane of monoclinic symmetry,
then e also belongs to the plane of degenerate wave vectors. Let e coincide with e1, and
be parallel to k�s+1

2
�. It then follows that n · k�s+1

2
� = 0, and from eqs. (31) and (49b), we

have

Γs
s ≡ Γs

s,s =
1

2
λs
−1cabcdefnbndnfk

�s+1
2
�

a k
�s+1

2
�

c k
�s+1

2
�

e , (51a)

Γs
s+2 ≡ Γs

s+2,s+2 =
1

2
λs
−1cabcdefnbndnfkckek

�s+1
2
�

a k
�s+3

2
�

c k
�s+3

2
�

e . (51b)

Each term in these expressions involves an element of cabcdef with the index 1 occurring
either once or thrice. But by definition of a plane of symmetry these elements vanish, and
hence the two elements Γs and Γs

s+2 vanish. The canonical form of the evolution equations
is

∂σs

∂t
+ λs

∂σs

∂x
+ Γs+2

s

∂(σsσs+2)

∂η
= 0, (52a)

∂σs+2

∂t
+ λs

∂σs+2

∂x
+

1

2

(
Γs+2

s

∂σ2
s

∂η
+ Γs+2

∂σ2
s+2

∂η

)
= 0. (52b)

4.2 Three-fold axis

The generic configuration in this case is propagation along the axis of a trigonal material.
This possesses three planes of symmetry each containing the axis of symmetry, and mu-
tually at 120◦ to one another. Reasoning similarly to the case of the two-fold symmetry
axis, we get that Γs = Γs

s+2 = 0, but here we have moreover that

Γs+2 + Γs+2
s = 0, (53)

see below for details. Therefore the canonical form of the evolution equations for a three-
fold symmetry axis is

∂σs

∂t
+ λs

∂σs

∂x
− Γs+2

∂(σsσs+2)

∂η
= 0, (54a)

∂σs+2

∂t
+ λs

∂σs+2

∂x
− 1

2
Γs+2

(
∂σ2

s

∂η
− ∂σ2

s+2

∂η

)
= 0. (54b)
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Degenerate nonlinear elastic waves December 17, 2008 11

Hence only one coefficient Γs+2 characterizes the nonlinear terms in the evolution
equations for a pair of degenerate plane waves in the case when the propagation direction
is a three-fold symmetry axis.

Remark 4. The system (54) can be transformed into the single complex Burgers equation.
This equation was studied in the Noelle’s Ph.D. thesis (Noelle, 1990). It was shown there
that the solutions of the complex Burgers equation become singular in finite time for a
large class of initial data. The shocks which develop are of nonclassical type, that is, they
do not satisfy Lax’s conditions. This is due to the fact that too few characteristics enter
the shock front in comparison to compressive shocks which satisfy Lax’s condition.

4.2.1 Proof of equation (53)

The basis for the proof rests on the property (48) combined with the three-fold symmetry.
Using the same arguments as for the two-fold axis, the three-fold symmetry is associated
with three planes of monoclinic symmetry with normals all perpendicular to n and since
each normal lies in the plane of degenerate wave vectors, it follows that the degenerate
wave vectors are orthogonal to the axis and are therefore pure transverse waves.

In order to simplify matters, recall that for propagation along an acoustic axis s = 1
or s = 2 (see eq. (42)), and therefore the coefficients Γj

p,q may be identified with the
elements of a totally symmetric third order tensor of dimension 2. Thus,

g = gαβγkα ⊗ kβ ⊗ kγ, (55)

where lower case Greek subscripts take values 1 and 2, and, for instance,

gαβγ = cabcdefnbndnfk
α
a kβ

c kγ
e + cabcdnbncnd

(
kα

a δβγ + kβ
a δγα + kγ

aδαβ

)
(56)

In this case the relationship with the nonlinearity coefficients Γj
p,q is defined by

Γj
p,q ≡

1

2λj

g�j+1
2
��p+1

2
��q+1

2
�, (57)

where j,p,q take values 1,2,3,4. The totally symmetric property means that gαβγ is un-
changed under any permutation of the three indices, and hence there are at most four
independent elements. Consider the change of basis

k′1 = cos θk1 + sin θk2, k′2 = − sin θk1 + cos θk2, (58)

and define
gαβγ(θ) = gk′αk

′
βk
′
γ, (59)

then ⎛
⎜⎜⎝

g111(θ)
g222(θ)
g112(θ)
g122(θ)

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

c3 s3 3c2s 3cs2

−s3 c3 3cs2 −3c2s
−c2s cs2 c3 − 2cs2 2c2s− s3

cs2 c2s s3 − 2c2s c3 − 2cs2

⎤
⎥⎥⎦
⎛
⎜⎜⎝

g111(0)
g222(0)
g112(0)
g122(0)

⎞
⎟⎟⎠ , (60)

where c = cos θ, s = sin θ. We note the property gαβγ(θ) = −gαβγ(θ + π) for each element
gαβγ(θ).

Let e1 be the normal to one of the three planes, then the coefficients g111(0) and
g122(0) vanish. Similarly, g111(±2

3
π) and g122(±2

3
π) must vanish. Using (60) with g111(0) =

g122(0) = 0, we find that

g111(±2
3
π) = 3g122(±2

3
π) = ±3

√
3

8

(
g112(0) + g222(0)

)
, (61)
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and hence the 3-fold symmetry requires that

g112(0) + g222(0) = 0. (62)

This is precisely eq. (53). In summary, the evolution equations remain coupled, but are
characterized by a single nonlinearity parameter and take the form (54).

4.3 Four-fold axis

If the axis is one of 4-fold symmetry, then the same arguments as above imply that the
degenerate wave-vectors are orthogonal to the axis, and are thus pure transverse waves.
The same arguments also imply that the elements of Γ associated with the second plane
of symmetry must also vanish, and hence all four are zero. Thus, Γ = 0 and there is no
coupling.

The same reasoning applies to axes of higher symmetry, since all such axes are equiv-
alent to an axis of transverse isotropy. Therefore the canonical form of the evolution
equations for a symmetry axis with four-fold or higher symmetry is

∂σs

∂t
+ λs

∂σs

∂x
= 0, (63a)

∂σs+2

∂t
+ λs

∂σs+2

∂x
= 0. (63b)

4.4 Applications to cubic crystals

Let us consider a cubic crystal of class m3m in which the strain energy W is defined by
three second order and six third order elastic constants (Domanski, 2000a,b, 2008), (see
also the Appendix):

W = W (c11, c12, c44, c111, c112, c144, c123, c166, c456). (64)

We focus on three particular directions of plane waves’ propagation: [1 0 0], [1 1 0] and
[1 1 1].

Example 3. Consider first the case of propagation direction n = [1 0 0]. This direction is
along a four-fold symmetry acoustic axis. The shear wave speeds are given by

λ1 = λ3 = −√c44 = −λ2 = −λ4. (65)

Hence, the eigenvalues λ1, λ2, λ3 and λ4 are coupled but the second order nonlinearity
coefficient Γs vanishes for s = 1, 2, 3, 4. Therefore there is no quadratically nonlinear
coupling in the evolution equations for shear waves. One can show that propagation of
the shear plane waves is described by the evolution equation with cubic nonlinearity, eq.
(35) (Domanski, 2000a). The coefficients at cubic nonlinearity in this equation are as
follows:

Gs = − 3

4λs

[
2(c11 + c166)

2 + c44(c11 + c166) + c166(c44 + c166)

c11 − c44

]
, s = 1, 2, 3, 4. (66)

Example 4. Consider now the case of propagation direction n = 1√
2
[1 1 0]. This direction

is along a two-fold symmetry axis and is not an acoustic axis. The shear wave speeds are
given by

λ1 = −
√

c11 − c12

2
= −λ2, λ3 = −√c44 = −λ4. (67)
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Hence, the eigenvalues λ1, λ2, λ3 and λ4 are distinct and the second order nonlinearity
coefficient Γs vanishes for s = 1, 2, 3, 4. There is no quadratic coupling between the
shear waves, and furthermore one can show that propagation of the shear plane waves is
described by the evolution equation with cubic nonlinearity, eq. (35) (Domanski, 2000a).
The coefficients in this equation are:

Gs = − 3

16λs

[
[c11 − c12 + 1

2
(c111 − c112)]

2 + 2(c11 − c12)(c12 + c44)

c12 + c44

]
, s = 1, 2; (68)

Gs = − 3

16λs

[
(c11 − c12 + c144 + c166 + 2c456)

2 + 2(c11 − c12)(c12 + c44)

c12 + c44

]
, s = 3, 4.

(69)

Example 5. Finally let us consider the case of propagation along an axis of three-fold
symmetry, n = 1√

3
[1 1 1], which is also an acoustic axis. In this case the shear wave

amplitudes are coupled and are described by the coupled evolution equations (54) with
(see the Appendix)

λ1 = λ3 = −
√

c11 − c12 + c44

3
= −λ2 = −λ4, (70a)

Γs = Γ1 = 0 = Γ2, (70b)

Γs+2 = Γ3 =
1

18
√

2λ1

[
c111 + 2c123 − 2c456 − 3(c112 − c144 + c166)

]
= −Γ4. (70c)

5 Degenerate transverse waves in the absence of sym-

metry

5.1 The principal result

In this Section we consider the general case of quasi-transverse degenerate wave vectors.
No symmetry is assumed. We examine the possibility that the coupled nonlinear wave
equations for the two amplitudes decouple, and derive a general condition that is both
necessary and sufficient for this to occur.

The main result is the following:

Lemma 3. A pair of quasi-transverse waves propagating along an acoustic axis are de-
coupled if and only if the nonlinearity coefficients satisfy the identity

ΓsΓ
s
s+2 + Γs+2Γ

s+2
s − (Γs

s+2)
2 − (Γs+2

s )2 = 0. (71)

If this condition is met then there is a coordinate transformation for which the coupling
terms disappear and the degenerate transverse waves satisfy separate but different evolution
equations:

∂σs

∂t
+ λs

∂σs

∂x
+

1

2
Γ′s

∂σ2
s

∂η
= 0, (72a)

∂σs+2

∂t
+ λs

∂σs+2

∂x
+

1

2
Γ′s+2

∂σ2
s+2

∂η
= 0. (72b)
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Remark 5. The condition (71) can be expressed in terms of the 2-dimensional third order
symmetric tensor g as (see eq. (84))

gαβγgαβγ − gαββgαγγ = 0. (73)

Based upon eq. (56) this may be interpreted as a specific constraint on the third order
moduli involving the direction n of the acoustic axis. It also depends upon the second
order moduli through the common eigenvalue, but this dependence disappears when the
degenerate waves are purely transverse, in which case (71) is strictly a relation between
the third order moduli.

5.2 Derivation of Lemma 3

We use the property seen previously in Section (4) that the coefficients Γj
p,q are the ele-

ments of a third order totally symmetric tensor in two dimensions, g of eq. (55). Let
λ1 = λ2 = λ. The coupled wave equations can be expressed in terms of a 2-vector for the
displacement gradient vector of eq. (14): m = σsks + σs+2ks+2, or m = m1e1 + m2e2,
where e1, e2 are orthonormal in the plane of ks, ks+2:

∂m1

∂t
+ λ1

∂m1

∂x
+

1

2

∂

∂η

(
g111m

2
1 + 2g112m1m2 + g122m

2
2

)
= 0,

∂m2

∂t
+ λ2

∂m2

∂x
+

1

2

∂

∂η

(
g112m

2
1 + 2g122m1m2 + g222m

2
2

)
= 0,

or
∂m

∂t
+ λ

∂m

∂x
+

1

2

∂

∂η

(
gmm

)
= 0. (74)

The coupling between m1 and m2 vanishes iff the two elements g112 and g122 are simulta-
neously zero. Even if these are non-zero there might exist a coordinate transformation in
which the transformed quantities vanish. It is this possibility that we seek.

Thus, we consider the possibility that there is some angle of rotation θ such that
g112(θ) = 0 and g122(θ) = 0 where gαβγ(θ) are defined by (59). These two conditions are
simultaneously satisfied if the 2-vector ge′1e

′
2 vanishes. Under the rotation (58) we have

ge′1e
′
2 = a cos 2θ + b sin 2θ, (75)

where

a = ge1e2, b =
1

2
(ge2e2 − ge1e1). (76)

The form of (75) indicates that the vector ge′1e
′
2 can be zero if and only if a and b are

parallel. Thus, the general condition for no coupling is

no coupling ⇔ a× b = 0, (77)

which is equivalent to

no coupling ⇔ μ ≡ g2
112 + g2

122 − g112g222 − g122g111 = 0. (78)

This is precisely the result of eq. (71) in Lemma 3. We will show next that the quantity
μ of eq. (78) is an invariant, independent of the coordinates used.
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5.3 Tensor properties of the nonlinearity coefficients

The third order tensor g is 2-dimensional and totally symmetric, that is, the Cartesian
components are unchanged under permutation of the indices. Jerphagnon (1970) consid-
ered the general form of third order tensors in 3-dimensions, and based on these results
we may partition g as follows2

g = g(1) + g(3), (79)

where

g
(1)
αβγ =

1

4

(
tαδβγ + tβδγα + tγδαβ

)
, tα = gαββ. (80)

g(1) is pseudovector (Jerphagnon, 1970) with two independent components, (g122 + g111)
and (g112 + g222). g(3), which also has two independent elements, (3g122 − g111) and

(3g112 − g222), may be called a dimer. More importantly, it is harmonic, i.e. g
(3)
αββ = 0.

Hence, the quadratic invariant gαβγgαβγ can be expressed

gαβγgαβγ = γ1 + γ3, (81)

where γ1 and γ2 are the quadratic invariants of the constituent tensors:

γ1 = g
(1)
αβγg

(1)
αβγ =

3

4

(
g111 + g122

)2
+

3

4

(
g112 + g222

)2
, (82)

γ3 = g
(3)
αβγg

(3)
αβγ =

1

4

(
3g122 − g111

)2
+

1

4

(
3g112 − g222

)2
. (83)

Comparing these with eq. (78) indicates that μ = 1
2
γ3 − 1

6
γ1, and hence the no coupling

condition can be expressed in terms of invariants as γ1 = 3γ3. Alternatively, noting that
γ1 = 3

4
gαββgαγγ , we deduce μ = 1

2
gαβγgαβγ − 1

2
gαββgαγγ , and hence

no coupling ⇔ gαβγgαβγ = gαββgαγγ . (84)

Example 6. We check the condition eq. (71) in two cases of acoustic axes: [1 0 0] and
[1 1 1] for the cubic crystal considered earlier. It is easy to see that the condition (71) is
satisfied and the evolution equations for shear waves are decoupled for the [1 0 0] acoustic
axis. However, for the [1 1 1] axis, the left hand side of eq. (71) is equal to −2Γs+2 �= 0,
so the condition (71) is not satisfied. Therefore there is quadratically nonlinear coupling
in the evolution equations for shear waves in this case (see eqs. (54) and (70)).

6 Concluding remarks

Starting from a formulation of the governing equations as a first order system of quasi-
linear equations, we have derived the general form of the amplitude evolution equations
for weakly nonlinear plane wave propagation. The major new results concern the form of
the evolution equations for the degenerate conditions associated with propagation along
acoustic axes, summarized in Lemma 1 and eqs. (50). The quasi-transverse wave am-
plitudes are coupled at the quadratically nonlinear level, with at most four interaction
coefficients. The number of coefficients reduces in the presence of symmetry, with the

2General third order tensors include additional terms g(0) and g(2) which vanish for a symmetric
tensor (Jerphagnon, 1970).
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precise number determined by Lemma 2. For instance, the coupling in the presence of
three-fold symmetry about the propagation direction depends on a single interaction coef-
ficient, with the canonical form of the coupled equations given by eqs. (54). The nonlinear
coupling disappears if the acoustic axis has four-fold or higher symmetry. The isotropic
solid is of course the most obvious example, but the results presented here show that
similar decoupling can be expected in the presence of anisotropy. We have also shown
that it is possible for the coupling to vanish even when the acoustic axis is not a symmetry
axis. The condition, defined by Lemma 3, requires that the interaction coefficients satisfy
a unique relation. Taken together, the variety of results presented here shed light on the
nature of the equations governing nonlinear wave propagation in elastic crystals.
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A Appendix: Cubic crystals

In a cubic crystal with cube axes ej, j = 1, 2, 3, we have (see Domanski (2008))

cabcdEabEcd = c11(I
2
1 − 2I2) + 2c12I2 + 4c44I3,

cabcdefEabEcdEef = c111(I
3
1 − 3I1I2 + 3I4) + 3c112(I1I2 − 3I4)

+ 12c144(I1I3 − I6) + 6c123I4 + 48c456I5 + 12c166I6,

where Et = E and

I1 = E11 + E22 + E33,

I2 = E11E22 + E22E33 + E33E11,

I3 = E2
12 + E2

23 + E2
31,

I4 = E11E22E33,

I5 = E12E23E31,

I6 = (E11 + E22)E
2
12 + (E22 + E33)E

2
23 + (E33 + E11)E

2
31.

The four cube diagonals are axes of trigonal or 3-fold symmetry, and are acoustic
axes. Consider propagation along the cube diagonal acoustic axis n = [1, 1, 1]/

√
3, and

assume s = 1. The parameters Γs and Γs+2 follow by taking k1 orthogonal to one of the
3 symmetry planes, e.g. k1 = [1,−1, 0]/

√
2 and k2 = [−1,−1, 2]/

√
6. The coefficient Γ1

is then obtained by using

E =
1

2
(n⊗ k1 + k1 ⊗ n) =

1

2
√

6

⎡
⎣2 0 1

0 −2 −1
1 −1 0

⎤
⎦ .

Therefore, I1 = I4 = I5 = I6 = 0 implying cabcdefEabEcdEef = 0 and hence Γs = 0, as
expected for a two-fold symmetry axis. The coefficient Γ3 = Γs+2 follows from eq. (31)
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with

E =
1

2
(n⊗ k2 + k2 ⊗ n) =

1

6
√

2

⎡
⎣−2 −2 1
−2 −2 1
1 1 4

⎤
⎦ ,

leading to

cabcdefEabEcdEef =
1

9
√

2

[
c111 + 2c123 − 2c456 − 3(c112 − c144 + c166)

]
.
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