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Abstract

Generalisations of classical bending and extension are established for pre-stressed compress-

ible elastic plates. In respect of the analogue of extension, the associated quasi-front is shown

to be either advancing or receding, contrasting with the classical case. For the generalisation

of bending, the long wave limit of the fundamental mode is non-zero; thus, unlike its classical

counterpart, an associated quasi-front can therefore exist and is again noted to be either advanc-

ing or receding. In both cases appropriate leading order and higher order corrected governing

equations are obtained. The ideas are illustrated through investigation of a model problem

involving impact edge loading. For the generalised theory of bending, the leading order govern-

ing equation for the mid-surface deflection is used to establish the classical equation for wave

propagation along an infinite string, with its second order refinement providing a second order

correction. Motion within the vicinity of the thickness shear and thickness stretch resonance

frequencies is also investigated. Special cases, in which either a stretch resonance and shear

resonance frequency are very close, or the speeds of longitudinal and shear waves are very close,

are also discussed.

1 Introduction

Lower dimensional plate theories have helped elucidate qualitative features of static and dynamic

structural response for many years. For the most part, certainly until relatively recently, these

theories were only established within the framework of linear isotropic elasticity. The first attempts

to extend these theories to include the influence of pre-stress were in [1], to which the reader is

referred for some historical background. In [1] generalisations of classical bending and extension

are established for a pre-stressed, incompressible elastic structures. Later, in [2], models for motion

close to the cut-off frequencies were derived within the same constitutive framework. These models,

to help elucidate two-dimensional motion, were later extended to models for three dimensional
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motion in incompressible pre-stressed layers, see [3] and [4] and also to problems involving slightly

compressible elastic plates, see [5] and [6]. All of the above studies use the method of long wave

asymptotic integration first developed in [7]. Our intention is to extend such studies and investigate

the compressible pre-stressed problem. Within this context it is far easier to make direct comparison

with the classical theories of bending and extension. Additionally, an interesting case arises in

connection with motion near the shear and stretch resonance frequencies when the speeds of the

shear and longitudinal waves are close. This is a phenomenon not possible within the classical linear

isotropic context without strong convexity being violated, the bulk modulus being negative and

Poisson’s ratio tending to minus infinity in the limit of the speeds being equal.

This paper is organised as follows. In Section 2 the governing equations are reviewed and the

dispersion relation associated with harmonic waves propagating in a layer with zero incremental

traction on its faces is established. In Section 3, this relation is first very briefly investigated

numerically and then long wave approximations are presented. In contrast to the classical linear

isotropic case, the long wave limit of the anti-symmetric fundamental mode, the so-called long wave

low frequency limit, is non-zero. The implication is that an associated quasi-front exists. The long

wave high frequency region is also investigated, this being within the vicinity of the thickness shear

and stretch resonance frequencies.

In Section 4, asymptotic integration is carried out in respect of low frequency long wave motion,

providing theories which are analogous to classical bending and extension. In the anti-symmetric

motion case, the counterpart of classical bending, the leading order equation for the mid-plane

deflection is shown to take the form of the classical wave equation. This second order equation is

refined and an associated fourth order equation established. It is essential to use this higher order

correction within the vicinity of the quasi-front. These ideas are illustrated through the setting up

and solving of a model problem involving impact edge loading. In addition, it is demonstrated that

if the normal pre-stress is zero, and the in-plane pre-stress a pure tension, the leading order equation

then reduces to that of the classical equation for wave propagation along an infinite string. Within

this context, the refined equation for the mid-surface deflection provides a higher order correction

for the classical string equation. Asymptotic integration for symmetric motion is also carried out.

In Section 5, asymptotic integration is carried out for motion within the vicinity of either the

thickness stretch or thickness shear resonance frequencies. In all cases, governing equations are

derived for the long wave amplitudes. In Section 6, the first of two special cases is considered,

namely the case in which one of the shear and one of the stretch resonance frequencies are very

close. Modifications of the asymptotic integration procedure are made, with series expansions for

the displacement components now in powers of the scaled wave number, rather than squares. The

second special case, namely that for which the speeds of shear and longitudinal wave propagation

coincide, is discussed in Section 7.
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2 Governing equations and the dispersion relation

In this section we briefly review the appropriate governing equations and establish the dispersion re-

lations; for further details the reader is referred to [8] and [9]. We consider a homogeneous, isotropic,

compressible elastic layer of thickness 2h and infinite lateral extent. The layer possesses an initial

unstressed configuration Bu and is subject to a homogeneous static deformation, resulting in the

equilibrium pre-stressed state Be. A small time-dependent motion u = u(x, t) is then superimposed

on Be, resulting in the current configuration Bt. A Cartesian coordinate system Ox1x2x3, coincident

with the principal axes of deformation in Be, is chosen, with Ox2 normal to the layer’s upper surface

and origin O located in the mid-plane. The three principal stretches associated with the primary

static deformation Bu → Be are denoted by λ1, λ2 and λ3. We utilize a plane-strain assumption,

with u3 ≡ 0 and u1, u2 independent of x3. The governing equations of motion may be derived, see

for example [9], in the form

α11u1,11 + γ2u1,22 + βu2,12 = ρeü1, γ1u2,11 + α22u2,22 + βu1,12 = ρeü2, (2.1)

within which

αij = Aiijj , i ∈ {1, 2}, γ1 = A1212, γ2 = A2121, β = α12 + γ2 − σ2, (2.2)

with σi, i ∈ {1, 2} the principal Cauchy stresses in Be, ρe the material density in Be and Aijkl

components of the fourth-order elasticity tensor. A comma and a dot indicate differentiation with

respect to x1, x2 and time t, respectively. Linearised measures of incremental traction, with outward

unit normals along Ox1 and Ox2 in Be, have components

τ1(1) = α11u1,1 + α12u2,2 τ2(1) = (γ2 − σ2)u1,2 + γ1u2,1,

τ1(2) = γ2u1,2 + (γ2 − σ2)u2,1 τ2(2) = α12u1,1 + α22u2,2.
(2.3)

Our initial concern is a layer with incrementally traction-free upper and lower boundaries, indicating

that τ1(2)(±h) = τ2(2)(±h) = 0. Solutions of the equations of motion are sought in the form of the

travelling harmonic wave

(u1, u2) = (A, B)ekqx2eik(x1−vt), (2.4)

where k is the wave number, v is the phase speed and q is to be determined.

Substituting the solutions (2.4) into the equations of motion (2.1), a system of linear homogeneous

equations is obtained. This system possesses a non-trivial solution provided

α22γ2q
4 + {β2 − α22(α11 − v̄2)− γ2(γ1 − v̄2)}q2 + (α11 − v̄2)(γ1 − v̄2) = 0, v̄2 = ρev

2. (2.5)

Solutions for the displacement components u1 and u2 may be represented as linear combinations

of the four linearly independent functions exp(kqix2) and exp(−kqix2), i ∈ {1, 2}, where ±q1, ±q2
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are the four generally distinct and non-zero roots of (2.5). Substituting these solutions into the

traction free boundary conditions, a system of four linear equations is obtainable. This system may

be decomposed into two independent systems of two linear equations, corresponding to so-called

anti-symmetric and symmetric motion. These two systems provide the two dispersion relations,

which are expressible in the forms

q1(ζ1 − ζ2q
2
2)tanh(q1η) = q2(ζ1 − ζ2q

2
1)tanh(q2η) (2.6)

and

q1(ζ1 − ζ2q
2
2)tanh(q2η) = q2(ζ1 − ζ2q

2
1)tanh(q1η), (2.7)

respectively, where η = kh and

ζ1 = (α11 − v̄2)(Ea − v̄2), ζ2 = α22(Es − v̄2), (2.8)

with

Ea = γ1 − (γ2 − σ2)
2

γ2
, Es = α11 − α2

12

α22
. (2.9)

In the case of anti-symmetric motion, u1 and u2 are expressible in terms of one arbitrary constant

Ã, yielding

u1 = {H(q2) sinh(q2η) sinh(kq1x2)−H(q1) sinh(q1η) sinh(kq2x2)} Ã,

u2 = {F (q1)H(q2) sinh(q2η) cosh(kq1x2)− F (q2)H(q1) sinh(q1η) cosh(kq2x2)} Ã,
(2.10)

with the exponential factor eik(x1−vt) incorporated into Ã and F (q), H(q) defined by

F (q) =
α11 − v̄2 − γ2q

2

βiq
, H(q) = β(α22iqF (q)− α12). (2.11)

In the symmetric case, analogous solutions for u1 and u2 may be obtained by replacing sinh with

cosh and cosh with sinh in (2.10). Finally in this section, necessary and sufficient conditions for

strong ellipticity can be expressed in the form [9]

αii > 0, γi > 0, (α11α22)
1/2 + (γ1γ2)

1/2 ± β > 0, i ∈ {1, 2}. (2.12)

3 Analysis of the dispersion relations

The dispersion relations (2.6) and (2.7) were first derived in [10], with a long wave asymptotic

analysis later carried out in [11]. This section contains only the essential asymptotic results required

in this paper. Our attention is focussed on long wave motion, implying that η → 0. There are two

types of asymptotic approximations needed to describe long wave motion, namely low and high-

frequency. The modes associated with these types of motion are usually referred to as fundamental

modes and harmonics, respectively.
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Figure 1: Dispersion relation for a Blatz-ko material; showing (a) Scaled phase speed and (b) scaled

frequency against wave number, λ1 = 2.0, λ2 = 0.9, λ3 = 0.7, μ = 1.0, σ2 = 0.02.

For numerical illustrations we make use of either a compressible neo-Hookean or Blatz-Ko mate-

rial. The compressible neo-Hookean material has a strain energy function given by

W =
μ

2

(
λ2

1 + λ2
2 + λ3

3 − 2ln(λ1λ2λ3)
)

+
κ

2
(λ1λ2λ3 − 1)2 , (3.1)

within which μ and κ are material parameters. The strain energy function associated with a Blatz-Ko

material is assumed in the form

W =
μ

2

(
λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3

λ2
1λ

2
2λ

2
3

+ 2λ1λ2λ3 − 5

)
, (3.2)

with μ a material constant.

In Figure 1, plots of the scaled phase velocity and scaled frequency against η are presented for a

Blatz-Ko material. Within Figure 1(a) we observe that there are two finite (non-zero) phase speed

limits as η → 0. One of these modes is associated with anti-symmetric motion, the other with

symmetric motion. In the classical isotropic case, the analogues of these two modes are associated

with classical bending (anti-symmetric) and extension (symmetric). However, in the classical case

only the limit of extensional motion is non-zero. This will be shown to have interesting implications.

For the harmonics, we observe that v̄ → ∞ as η → 0. In terms of the scaled frequency, we note

that as η → 0, for the two fundamental modes ω̄ → 0, with all other modes (the harmonics) tending

to finite non-zero cut-off frequencies; some of these relate to thickness shear resonance, others to

thickness stretch.

3.1 Low-frequency motion

Low-frequency motion, associated with the fundamental modes, is characterised by the fact that v̄

remains finite as η → 0 but may become zero. Accordingly, within the long wave low frequency

regime we may assume that tanh(qnη) ∼ qnη, n ∈ {1, 2}, with q1, q2 either both real or complex
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conjugates. The anti-symmetric dispersion relation (2.6) may be used to establish the approximation

v̄2 = F (0)
a + F (2)

a η2 + O(η4), where F (0)
a = Ea, F (2)

a =
(γ2 − σ2)

2

3γ2
2

(Es − Ea), (3.3)

with its symmetric counterpart given by

v̄2 = F (0)
s + F (2)

s η2 + O(η4), where F (0)
s = Es, F (2)

s =
α2

12

3α2
22

(Ea − Es). (3.4)

3.2 High-frequency motion

For long wave high-frequency motion, i.e. motion within the vicinity of the non-zero cut-off fre-

quencies, v̄2 ∼ O(η−2) as η → 0. It may be deduced, from equation (2.5), that both q2
1 and q2

2

are negative as η → 0, indicating that q1 = iq̂1 and q2 = iq̂2, where q̂1 � 0 and q̂2 � 0 are real.

In view of the fact that there is significant overlap between the analysis of the anti-symmetric and

symmetric cases, we only give a detailed discussion in respect of the former. Using equation (2.5),

we obtain expansions for q̂2
1 and q̂2

2 in the form

q̂2
1η

2 =
ω̄2

α22
+

β2 − γ1(γ2 − α22)

α22(γ2 − α22)
η2 + O(η4), q̂2

2η2 =
ω̄2

γ2
− β2 + α11(γ2 − α22)

γ2(γ2 − α22)
η2 + O(η4), (3.5)

where ω̄ = ηv̄ is a scaled frequency and at this stage we assume γ2 �= α22. The anti-symmetric dis-

persion relation indicates two possible asymptotic situations: either tan(q̂1η) ∼ O(1) and tan(q̂2η) ∼
O(η−2); or tan(q̂1η) ∼ O(η2) and tan(q̂2η) ∼ O(1). These requirements are known to correspond to

motion in the vicinity of the thickness shear and stretch resonance frequencies, respectively. Further

details may be found in [11].

3.2.1 Thickness shear resonance frequencies.

For motion within the vicinity of the thickness shear resonance frequencies, the appropriate asymp-

totic expansion for the scaled frequency is given by

ω̄2 = L(0)
sh + L(2)

sh η2 + O(η4), (3.6)

where

L(0)
sh = γ2(Λ

a
sh)2, L(2)

sh =
β2 + α11(γ2 − α22)

γ2 − α22
+

2χ{α22(γ2 − σ2) + γ2α12}2
γ2(γ2 − α22)2Λa

sh tan(χΛa
sh)

, (3.7)

and

Λa
sh =

(
n− 1

2

)
π, n = 1, 2, ..., χ =

√
γ2

α22
. (3.8)

3.2.2 The thickness stretch resonance frequencies

For thickness stretch resonance, the analogue of (3.6) takes the form

ω̄2 = L(0)
st + L(2)

st η2 + O(η4), (3.9)

6



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

where

L(0)
st = γ2(Λ

a
st)

2, L(2)
st =

γ1(γ2 − α22)− β2

γ2 − α22
− 2{α22(γ2 − σ2) + γ2α12}2

γ2(γ2 − α22)2Λa
st cot(Λa

st)
, Λa

st =
nπ

χ
. (3.10)

3.2.3 Special cases

Consider now the situation when one of the thickness stretch resonance frequencies is close to one

of the thickness shear resonance frequencies. We denote these appropriate resonance frequencies by

Λ1 and Λ2 and therefore suppose that |Λ1 − Λ2| � 1. It is now the case that tan(χΛa
sh) → 0 and

tan(Λa
st) →∞ and the asymptotic approximations (3.6) and (3.9) are therefore not applicable. We

can obtain appropriate asymptotic expansions for q̂1 and q̂2 in the forms

q̂1 =
χΛ1

η
+ χξ1 + O(η), q̂2 =

Λ2

η
+ ξ2 + O(η), (3.11)

where the O(1) constants ξ1 and ξ2 are to be determined. Substituting these expansions into (2.6),

and neglecting higher order terms, it is established that

ξ1ξ2 =
(α22(γ2 − σ2) + γ2α12)

2

α2
22(γ2 − α22)2Λ1Λ2

, (3.12)

with expansions (3.11) and (3.5) then enabling us to conclude that

(
ω̄2 − γ2Λ

2
1

) (
ω̄2 − γ2Λ

2
2

)
=

4(α22(γ2 − σ2) + γ2α12)
2

(γ2 − α22)2
η2. (3.13)

The asymptotic approximations (3.6) and (3.9) are also not applicable when the coefficients L(2)
sh

and L(2)
st become very large, this occurring when α22 is close to γ2. In passing we note from (2.5)

that when q = 0 the two associated body waves have speeds given v̄2 = α22 and v̄2 = γ2. These

are the speeds of the shear and longitudinal waves that can propagate along Ox1. The situation

in which |α22 − γ2| � 1 therefore occurs when the speeds of these two waves are very close. As

previously mentioned, this situation cannot occur in the classical linear isotropic case. Considering

the limit α22 = γ2, expansions for q̂2
1 and q̂2

2 can be derived in the form

q̂2
i η2 =

ω̄2

γ2
± βω̄

γ
3/2
2

η +
β2 − γ2(α11 + γ1)

2γ2
2

η2 + O(η3), i = 1, 2. (3.14)

Appropriate approximations for ω̄2 in the vicinities of the thickness shear and thickness stretch

resonance frequencies are now readily found in forms similar to (3.6) and (3.9). In this case, (3.7)-

(3.10) require some appropriate modifications; with Λa
sh and Λa

st unchanged, but with L(2)
sh = Psh

and L(2)
st = Pst, where

Psh = Es − Ea + γ1 − β2

4γ2
, Pst = Ea − Es + α11 − β2

4γ2
. (3.15)

In the case of symmetric motion, approximations within the vicinities of the thickness shear and

stretch resonance frequencies may be obtained in a similar way; for details see [11].
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4 Low frequency asymptotic integration

4.1 Anti-symmetric motion

In order to examine long wave, low frequency, anti-symmetric motion, appropriate non-dimensional

space and time variables ξ, ζ and τ are introduced in the form

x1 = lξ, x2 = lηζ, t = l

√
ρ

Ea
τ, Ea �= 0, (4.1)

where l is a typical wavelength. We remark that the time scale is that associated with the time

taken for a wave with speed v̄ =
√Ea to travel the distance l. The relative orders of displacements

may be obtained from (2.10), indicating that

u1 ∼ ηÃ, u2 ∼ Ã,

motivating introduction of non-dimensional displacement components u∗1 and u∗2, defined by

u1 = lηu∗1, u2 = lu∗2,

with ∗ indicating quantities of the same asymptotic order. The equations of motion (2.1) may now

be re-cast in the form

γ2u
∗

1,ζζ + βu∗2,ξζ + η2(α11u
∗

1,ξξ − Eau∗1,ττ) = 0,

α22u
∗

2,ζζ + η2(γ1u
∗

2,ξξ + βu∗1,ξζ − Eau∗2,ττ) = 0,
(4.2)

with the boundary conditions given by

γ2u
∗

1,ζ + (γ2 − σ2)u
∗

2,ξ = 0 at ζ = ±1,

α22u
∗

2,ζ + η2α12u
∗

1,ξ = 0 at ζ = ±1.
(4.3)

Solutions of equations (4.2), subject to (4.3), are now sought in the series form

(u∗1, u
∗

2) =

m∑
l=0

η2l(u
(2l)
1 , u

(2l)
2 ) + O(η2m+2). (4.4)

Substituting the solutions (4.4) into (4.2)-(4.3) yields a hierarchy of governing equations at various

orders.

4.1.1 Leading order problem

The leading-order governing equations are readily established in the form

γ2u
(0)
1,ζζ + βu

(0)
2,ξζ = 0, (4.5)

α22u
(0)
2,ζζ = 0, (4.6)

γ2u
(0)
1,ζ + (γ2 − σ2)u

(0)
2,ξ = 0 at ζ = ±1, (4.7)

8



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

α22u
(0)
2,ζ = 0 at ζ = ±1. (4.8)

Using equations (4.6) and (4.8), a leading order solution for the normal displacement u2 is obtainable

in the form u
(0)
2 = U

(0,0)
2 , where U

(0,0)
2 is a function of ξ and τ only and therefore does not depend

on the thickness variable ζ. Henceforth, a function with a double superscript of the form (k, l) is

associated with a function of ξ and τ only. Finally, at leading order, from (4.5) and (4.7) we obtain

a solution for u
(0)
1 , given by

u
(0)
1 = ζU

(0,1)
1 (ξ, τ), U

(0,1)
1 (ξ, τ) = − (γ2 − σ2)

γ2
U

(0,0)
2,ξ (ξ, τ).

Solutions of the leading order problem are now defined in terms of one function U
(0,0)
2 . A governing

equation for U
(0,0)
2 will be found by considering the next order problem.

4.1.2 Second order problem

The second order problem is given by

γ2u
(2)
1,ζζ + βu

(2)
2,ξζ = −α11u

(0)
1,ξξ + Eau

(0)
1,ττ , (4.9)

α22u
(2)
2,ζζ = −γ1u

(0)
2,ξξ − βu

(0)
1,ξζ + Eau

(0)
2,ττ , (4.10)

γ2u
(2)
1,ζ + (γ2 − σ2)u

(2)
2,ξ = 0, (4.11)

α22u
(2)
2,ζ = −α12u

(0)
1,ξ. (4.12)

Using (4.10) it is possible to establish that

u
(2)
2 = U

(2,0)
2 + ζ2U

(2,2)
2 , where U

(2,2)
2 =

α12(γ2 − σ2)

2α22γ2
U

(0,0)
2,ξξ .

If use is now made of equation (4.12), a governing equation for U
(0,0)
2 is obtained, given by

U
(0,0)
2,ξξ − U

(0,0)
2,ττ = 0. (4.13)

Finally, utilizing equations (4.9) and (4.11) we arrive at

u
(2)
1 = ζU

(2,1)
1 + ζ3U

(2,3)
1 ,

within which

U
(2,1)
1 =

(γ2 − σ2)

2γ2
2

(Ea − Es)U
(0,0)
2,ξξξ −

(γ2 − σ2)

γ2
U

(2,0)
2,ξ ,

U
(2,3)
1 =

(γ2 − σ2)

6γ2
2

(α11 − Ea)U
(0,0)
2,ξξξ.

Solutions of the second order problem are now defined in terms of U
(0,0)
2 and U

(2,0)
2 . A governing

equation for U
(2,0)
2 can not be derived without resorting to the next order problem.

9
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4.1.3 Third order problem

Our purpose at third order is to derive an equation for U
(2,0)
2 , thus completing the second-order

solution. To accomplish this it is only necessary to consider the second equation of motion

α22u
(4)
2,ζζ = −γ1u

(2)
2,ξξ − βu

(2)
1,ξζ + Eau

(2)
2,ττ , (4.14)

subject to the boundary condition

α22u
(4)
2,ζ = −α12u

(2)
1,ξ at ζ = ±1. (4.15)

Employing equation (4.14), it is possible to obtain a solution for u
(4)
2 in the form

u
(4)
2 = U

(4,0)
2 + ζ2U

(4,2)
2 + ζ4U

(4,4)
2 ,

where

U
(4,2)
2 =

β(γ2 − σ2)

4α22γ2
2

(Es − Ea)U
(0,0)
2,ξξξξ +

1

2α22

({
α12(γ2 − σ2)

γ2
− Ea

}
U

(2,0)
2,ξξ + EaU

(2,0)
2,ττ

)
,

U
(4,4)
2 =

(γ2 − σ2)

24α2
22γ

2
2

{
α22β(α11 − Ea)− α12(γ2 − σ2)

2
}

U
(0,0)
2,ξξξξ,

with an equation for the higher order correction U
(4,0)
2 only obtainable at even higher order. The

boundary condition (4.15), together with (4.13), may now be used to establish a governing equation

for U
(2,0)
2 , yielding

F (0)
a (U

(2,0)
2,ξξ − U

(2,0)
2,ττ )−F (2)

a U
(0,0)
2,ξξξξ = 0. (4.16)

At ζ = 0 the only non-zero displacement is u∗2, the mid-plane deflection. We now introduce a

function u[2m], defined as

u[2m] = u∗2|ζ=0 =

m∑
l=0

U
(2l,0)
2 η2l + O(η2m+2), (4.17)

allowing equations (4.13) and (4.16) to be combined into a single equation for u[2]

F (0)
a (u

[2]
,ξξ − u[2]

,ττ)− η2F (2)
a u

[2]
,ξξξξ = 0. (4.18)

In terms of the original variables, equation (4.18) takes the form

F (0)
a

∂2u[2]

∂x2
1

− ρ
∂2u[2]

∂t2
− h2F (2)

a

∂4u[2]

∂x4
1

= 0. (4.19)

We remark that the asymptotic expansion (3.3) may be obtained by substituting the travelling wave

solution u[2] = ũeik(x1−vt) into the equation (4.19). This indicates that this governing equation is

consistent with the asymptotic analysis of the anti-symmetric dispersion relation.

10
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4.1.4 Analogy with waves on a string

We now consider the scenario when the normal pre-stress σ2 is zero and its in-plane counterpart is σ1

is a pure tension T . In this case, using the fact that γ2− σ2 = γ1− σ1, equation (4.13), expressed in

terms of x1 and t, takes the form of the classical wave equation for an infinite elastic string, namely

T

ρe

∂2u[0]

∂x2
1

− ∂2u[0]

∂t2
= 0. (4.20)

In this case, (4.19) may be interpreted as a refined string equation, expressible in the form

T

ρe

∂2u[2]

∂x2
1

− ∂2u[2]

∂t2
+ h2

(
T − Es

3ρe

)
∂4u[2]

∂x4
1

= 0. (4.21)

4.1.5 Model problem

The governing equation (4.18) is a singularly perturbed equation, with the fourth order derivative

smoothing the solution associated with the second-order equation (4.13). This phenomenon is known

as a quasi-front. To illustrate this phenomenon, within the framework of the above theory, we

consider a problem of a semi-infinite plate subject to impact edge loading. To construct the boundary

condition for the governing equation we should estimate the relative orders of incremental surface

traction on a plane parallel to the edge, defined in (2.3)1,2. Substituting the leading order solutions

u
(0)
1 and u

(0)
2 into (2.3)1,2, we establish that τ∗1(1) ∼ O(η), τ∗2(1) ∼ O(1). Using the asymptotically

leading traction, we may construct the boundary condition for the governing equation (4.18) in the

form

T (ξ, τ) = τ∗2(1) = F (0)
a u

[0]
,ξ . (4.22)

The impact edge loading for our model problem is taken in the form

T (0, τ) = MH(τ), at ξ = 0. (4.23)

In passing we remark that recently a systematic theory for initial value problems in linear isotropic

structures has been established, see [12].

Let us introduce new coordinates, defined by

ξf = τ − ξ, ξs = τ + ξ, (4.24)

these being the characteristics coordinates associated with (4.13). In the vicinity of the quasi-front,

the traction variation with respect to ξs is very slow, but fast with respect to ξf . We remark

that characteristic coordinates were used to construct self similar solutions for quasi-fronts in [13].

Therefore, after the coordinate transformation (4.24) we need only retain the fourth order derivative

with respect to ξf in the governing equation, which after integration with respect to ξf is given by

∂3T

∂ξ3
f

+
4F (0)

a

F (2)
a

η−2 ∂T

∂ξs
= 0. (4.25)
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Introducing d as the width of the region of quasi-front smoothing, and comparing orders of terms in

equation (4.25), we deduce that d ∼ η2/3ξ1/3. Using the variable

μ̂ = −
(

4F (0)
a

3F (2)
a

)1/3

η−2/3ξ−1/3
s ξf , (4.26)

the governing equation for T may be expressed in the form of the Airy equation

∂3T

∂μ̂3
+ μ̂

∂T

∂μ̂
= 0. (4.27)

The appropriate bounded solution of equation (4.27) may now be obtained in the following form

∂T

∂μ̂
= C1Ai(−μ̂) and T (μ̂) = C2 − C1

∫ μ̂

0

Ai(−z)dz, (4.28)

with Ai denoting the Airy function. The constants C1 and C2 may be found from the boundary

conditions T (0,−∞) = 0 and T (0,∞) = M , resulting in the solution

T̂ (μ̂) =
M

3
+ M

∫ μ̂

0

Ai(−z)dz, (4.29)

or in terms of the variables ξ and τ , defined in (4.1), as

T (ξ, τ) =
M

3
+ M

∫ z0

0

Ai(−z)dz, z0 = −
(

4F (0)
a

3F (2)
a

)1/3

η−2/3(τ − ξ)(τ + ξ)−1/3. (4.30)

In Figure 2, plots of the scaled traction T/M against ξ are presented for two cases in which F (2)
a

is either positive or negative. In the case when F (2)
a > 0 the wavefront is receding, with the

front advancing if F (2)
a < 0. We remark that in the classical isotropic case there is no quasi-

front associated with anti-symmetric motion, with that associated with extensional motion always

necessarily receding.

4.2 Symmetric motion

In this section, using methods similar to those for anti-symmetric motion, a model for long-wave

low-frequency symmetric motion is derived. Appropriate scaled variables are given by

x1 = lξ, x2 = lηζ, t = l

√
ρ

Es
τ, Es �= 0, (4.31)

with the relative orders of displacements indicating that u1 ∼ u2/η and motivating the re-scalings

u1 = lu∗1, u2 = lηu∗2. (4.32)

The governing equations associated with long-wave low-frequency symmetric motion are given by

γ2u
(2m)
1,ζζ + α11u

(2m−2)
1,ξξ − Esu

(2m−2)
1,ττ + βu

(2m−2)
2,ξζ = 0,

βu
(2m)
1,ξζ + α22u

(2m)
2,ζζ + γ1u

(2m−2)
2,ξξ − Esu

(2m−2)
2,ττ = 0,

(4.33)
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(a)

τ2(1)/M
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(b)

τ2(1)/M
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ξ

Figure 2: Quasi-fronts for antisymmetric motion with τ = 1.5, η = 0.1 for (a) the compressible neo-

Hookean material λ1 = 1.7, λ2 = 2.0, λ3 = 1.6, μ = 1.0, κ = 0.1, indicating F (2)
a > 0; (b) Blatz-Ko

material λ1 = 1.2, λ2 = 1.7, λ3 = 0.72, μ = 1.0, indicating F (2)
a < 0.
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subject to the boundary conditions

γ2u
(2m)
1,ζ + (γ2 − σ2)u

(2m−2)
2,ξ = 0 at ζ = ±1,

α12u
(2m)
1,ξ + α22u

(2m)
2,ζ = 0 at ζ = ±1.

(4.34)

4.2.1 Leading order problem

The leading order problem is governed by the following equations and boundary conditions:

γ2u
(0)
1,ζζ = 0, α22u

(0)
2,ζζ + βu

(0)
1,ξζ = 0, (4.35)

γ2u
(0)
1,ζ = 0 and α12u

(0)
1,ξ + α22u

(0)
2,ζ = 0 at ζ = ±1. (4.36)

This problem has solution

u
(0)
1 = U

(0,0)
1 , u

(0)
2 = ζU

(0,1)
2 , U

(0,1)
2 = −α12

α22
U

(0,0)
1,ξ , (4.37)

with an equation for U
(0,0)
1 not obtainable without resorting to the second order problem.

4.2.2 Second order problem

The second order problem is given by

γ2u
(2)
1,ζζ = −α11u

(0)
1,ξξ + Esu

(0)
1,ττ − βu

(0)
2,ξζ , (4.38)

α22u
(2)
2,ζζ + βu

(2)
1,ξζ = −γ1u

(0)
2,ξξ + Esu

(0)
2,ττ , (4.39)

γ2u
(2)
1,ζ = −(γ2 − σ2)u

(0)
2,ξ at ζ = ±1, (4.40)

α12u
(2)
1,ξ + α22u

(2)
2,ζ = 0 at ζ = ±1, (4.41)

with solution

u
(2)
1 = U

(2,0)
1 + ζ2U

(2,2)
1 , u

(2)
2 = ζU

(2,1)
2 + ζ3U

(2,3)
2 , (4.42)

where

U
(2,2)
1 =

(γ2 − σ2)α12

2α22γ2
U

(0,0)
1,ξξ , U

(2,3)
2 =

α12

6α2
22

(
Ea − Es − α12(γ2 − σ2)

γ2

)
U

(0,0)
1,ξξξ,

U
(2,1)
2 =

α12

2α2
22

(Es − Ea)U
(0,0)
1,ξξξ −

α12

α22
U

(2,0)
1,ξ ,

and a governing equation for U
(0,0)
1 given by

U
(0,0)
1,ξξ − U

(0,0)
1,ττ = 0. (4.43)

To complete the second order problem, we need to derive an equation for the function U
(2,0)
1 ; this

will be done from the third order problem.
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4.2.3 Third order problem

The governing equation for U
(2,0)
1 can be derived using first the equation of motion

γ2u
(4)
1,ζζ = −α11u

(2)
1,ξξ + Esu

(2)
1,ττ − βu

(2)
2,ξζ , (4.44)

together with the appropriate boundary condition, namely

γ2u
(4)
1,ζ = −(γ2 − σ2)u

(2)
2,ξ at ζ = ±1. (4.45)

After some similar manipulations to those carried out in the anti-symmetric case, we arrive at the

following equation connecting U (2,0) and U (0,0)

F (0)
s (U

(2,0)
1,ξξ − U

(2,0)
1,ττ )−F (2)

s U
(0,0)
1,ξξξξ = 0, (4.46)

which, on introduction of

v[2m] = u∗1|ζ=0 =

m∑
l=0

U
(2l,0)
1 η2l + O(η2m+2), (4.47)

results in an analogue of (4.18), namely

F (0)
s (v

[2]
,ξξ − v[2]

,ττ )− η2F (2)
s v

[2]
,ξξξξ = 0. (4.48)

If we now re-cast the above equation in terms of original variables x1 and t, it may be expressed as

F (0)
s

∂2v[2]

∂x2
1

− ρ
∂2v[2]

∂t2
− h2F (2)

s

∂4v[2]

∂x4
1

= 0. (4.49)

The asymptotic expansion (3.4) of the symmetric dispersion relation (2.7) may be obtained from

the equation (4.49), again confirming asymptotic consistency.

5 High-frequency asymptotic integration

We will now consider high-frequency, anti-symmetric motion in the vicinity of the thickness shear

and thickness stretch resonance frequencies. In view of the great similarity between both the anti-

symmetric and symmetric cases, we only consider anti-symmetric motion.

5.1 Shear resonance

Using the approximation (3.4), it is possible to establish that the appropriate relative orders of

displacement components are indicated by

u1 ∼ η−1Ã, u2 ∼ Ã. (5.1)

Thus, non-dimensional displacement components are introduced in the form

u1 = lu∗1, u2 = lηu∗2, (5.2)

15



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

with appropriate scaled spatial and time variables given by

x1 = lξ, x2 = lηζ, t = lη

√
ρe

γ2
τ. (5.3)

We note the different time-scale to that employed in the low frequency case; this is motivated by

the typical wave speed being given by v̄ =
√

γ2/η. For motion within the vicinity of the thickness

shear resonance frequencies, we also assume that

u1,ττ + (Λa
sh)2u1 ∼ η2u1, u2,ττ + (Λa

sh)2u2 ∼ η2u2. (5.4)

In terms of the new variables, the boundary value problem may be written as

α11η
2u∗1,ξξ + βη2u∗2,ζξ + γ2u

∗

1,ζζ + γ2(Λ
a
sh)2u∗1 − γ2((Λ

a
sh)2u∗1 + u∗1,ττ) = 0,

γ1η
2u∗2,ξξ + βu1,ζξ + α22u

∗

2,ζζ + γ2(Λ
a
sh)2u∗2 − γ2((Λ

a
sh)2u∗2 + u∗2,ττ ) = 0,

γ2u
∗

1,ζ + (γ2 − σ2)η
2u∗2,ξ = 0 at ζ = ±1,

α12u
∗

1,ξ + α22u
∗

2,ζ = 0 at ζ = ±1,

with solutions of these equations again sought in the series form (4.4).

5.1.1 Leading order problem

The leading order problem may be expressed as

γ2u
(0)
1,ζζ + γ2(Λ

a
sh)2u

(0)
1 = 0, (5.5)

α22u
(0)
2,ζζ + βu

(0)
1,ζξ + γ2(Λ

a
sh)2u

(0)
2 = 0, (5.6)

γ2u
(0)
1,ζ = 0 and α12u

(0)
1,ξ + α22u

(0)
2,ζ = 0 at ζ = ±1, (5.7)

the solution of which is given by

u
(0)
1 = U

(0,0)
1 sin(Λa

shζ), u
(0)
2 = v

(0,0)
2 cos(χΛa

shζ) + V
(0,0)
2 cos(Λa

shζ), (5.8)

where

V
(0,0)
2 =

βU
(0,0)
1,ξ

(α22 − γ2)Λa
sh

, v
(0,0)
2 =

U
(0,0)
1,ξ (α12γ2 + α22(γ2 − σ2)) sin(Λa

sh)

α22(γ2 − α22)χΛa
sh sin(χΛa

sh)
, (5.9)

with an equation for U
(0,0)
1 obtainable from the next order problem.

5.1.2 Second order problem

The governing equation for U
(0,0)
1 may be found from the following equation of motion and boundary

conditions

γ2u
(2)
1,ζζ + γ2(Λ

a
sh)2u

(2)
1 = γ2η

−2((Λa
sh)2u

(0)
1 + u

(0)
1,ττ)− α11u

(0)
1,ξξ − βu

(0)
2,ζξ, (5.10)
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γ2u
(2)
1,ζ + (γ2 − σ2)u

(0)
2,ξ = 0 at ζ = ±1. (5.11)

To begin, a solution for u
(2)
1 is readily obtainable and may be written in the form

u
(2)
1 = U

(2,0)
1 sin(Λa

shζ) + u
(2,0)
1 sin(χΛa

shζ) + V
(2,1)
1 ζ cos(Λa

shζ), (5.12)

where

u
(2,0)
1 =

−U
(0,0)
1,ξξ β(α12γ2 + α22(γ2 − σ2)) sin(Λa

sh)

α22(γ2 − α22)2χ2(Λa
sh)2 sin(χΛa

sh)
,

V
(2,1)
1 = − 1

2γ2Λa
sh

(
η−2γ2{(Λa

sh)2U
(0,0)
1 + U

(0,0)
1,ττ }+

β2 − α11(α22 − γ2)

α22 − γ2
U

(0,0)
1,ξξ

)
.

The governing equation for U
(2,0)
1 may only be derived from the next order problem; however, an

equation for U
(0,0)
1 is now obtainable in the form

γ2η
−2{(Λa

sh)2U
(0,0)
1 + U

(0,0)
1,ττ } − L(2)

sh U
(0,0)
1,ξξ = 0. (5.13)

Equation (5.13) may be re-cast in terms of x1 and t, yielding

1

h2
L(0)

sh U
(0,0)
1 + ρe

∂2U
(0,0)
1

∂t2
− L(2)

sh

∂2U
(0,0)
1

∂x2
1

= 0. (5.14)

5.2 Stretch resonance

The relative orders of displacement components are in this case given by

u1 ∼ ηÃ, u2 ∼ Ã, (5.15)

the analogues of (5.2), (5.3) and (5.4) then being

u1 = ηlu∗1, u2 = lu∗2, (5.16)

x1 = lξ, x2 = lηζ, t = lη

√
ρe

α22
τ. (5.17)

u1,ττ + (χΛa
st)

2u1 ∼ η2u1, u2,ττ + (χΛa
st)

2u2 ∼ η2u2. (5.18)

5.2.1 Leading order problem

The leading order governing equations take the form

γ2u
(0)
1,ζζ + βu

(0)
2,ζξ + γ2(Λ

a
st)

2u
(0)
1 = 0, α22u

(0)
2,ζζ + γ2(Λ

s
st)

2u
(0)
2 = 0, (5.19)

γ2u
(0)
1,ζ + (γ2 − σ2)u

(0)
2,ξ = 0, α22u

(0)
2,ζ = 0 at ζ = ±1, (5.20)

with solution

u
(0)
1 = U

(0,0)
1 sin(Λa

stζ) + u
(0,0)
1 sin(χΛa

stζ), u
(0)
2 = v

(0,0)
2 cos(χΛa

stζ), (5.21)
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where

u
(0,0)
1 =

βv
(0,0)
2,ξ

χΛa
st(α22 − γ2)

, U
(0,0)
1 =

v
(0,0)
2,ξ (α12γ2 + α22(γ2 − σ2)) cos(χΛa

st)

γ2(γ2 − α22)Λa
st cos(Λa

st)
. (5.22)

The leading order solution has been obtained in term of v
(0,0)
2 , for which an equation can be obtained

by considering the next order problem.

5.2.2 Second order problem

At second order, our intention is merely to derive an equation for v
(0,0)
2 ,; accordingly, we need only

consider the equation of motion

α22u
(2)
2,ζζ + γ2(Λ

s
st)

2u
(2)
2 = η−2α22(χ

2(Λs
st)

2u
(0)
2 + u

(0)
2,ττ )− γ1u

(0)
2,ξξ − βu

(0)
1,ζξ, (5.23)

subject to

α22u
(2)
2,ζ + α12u

(0)
1,ξ = 0 at ζ = ±1. (5.24)

It is now possible to establish that

u
(2)
2 = v

(2,0)
2 cos(χΛa

stζ) + V
(2,0)
2 cos(Λa

stζ) + u
(2,1)
2 ζ sin(χΛa

stζ), (5.25)

where

V
(2,0)
2 =

−v
(0,0)
2,ξξ β(α12γ2 + α22(γ2 − σ2)) cos(χΛa

st)

γ2(γ2 − α22)2(Λa
st)

2 cos(Λa
st)

,

u
(2,1)
2 =

1

2α22χΛa
st

(
η−2α22{χ2(Λa

st)
2v

(0,0)
2 + v

(0,0)
2,ττ }+

β2 + γ1(α22 − γ2)

γ2 − α22
v
(0,0)
2,ξξ

)
,

with the governing equation for v
(0,0)
2 taking the form

α22η
−2{χ2(Λa

st)
2v

(0,0)
2 + v

(0,0)
2,ττ } − L(2)

st v
(0,0)
2,ξξ = 0. (5.26)

Equation (5.26) may be expressed in terms of x1 and t as

1

h2
L(0)

st v
(0,0)
2 + ρe

∂2v
(0,0)
2

∂t2
− L(2)

st

∂2v
(0,0)
2

∂x2
1

= 0. (5.27)

6 Special case |Λ1 − Λ2| � 1

Consider now the special case for which one of the stretch resonance frequencies is close to one of

the shear resonance frequencies. Previously established results of the asymptotic analysis of the

dispersion relation, together with equations (2.10), enable us to deduce that in this case u1 ∼ u2.

Thus, introducing non-dimensional variables

x1 = lξ, x2 = lηζ, t = lη

√
ρe

γ2
τ (6.1)
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and

u1 = lηu∗1, u2 = lηu∗2, (6.2)

we note that

up,ττ + Λ2
pup ∼ ηup, p = 1, 2. (6.3)

The equations of motion (2.1), subject to traction free boundary conditions, are now expressible as

γ2u
∗

1,ζζ + γ2Λ
2
1u
∗

1 + βηu∗2,ξζ − γ2(u
∗

1,ττ + Λ2
1u
∗

1) + α11η
2u∗1,ξξ = 0,

α22u
∗

2,ζζ + γ2Λ
2
2u
∗

2 + βηu∗1,ξζ − γ2(u
∗

2,ττ + Λ2
2u
∗

2) + γ1η
2u∗2,ξξ = 0,

γ2u
∗

1,ζ + (γ2 − σ2)ηu∗2,ξ = 0 at ζ = ±1,

α22u
∗

2,ζ + α12ηu∗1,ξ = 0 at ζ = ±1.

(6.4)

The solution of the above system may be presented in the series form

(u∗1, u
∗

2) =

m∑
l=0

ηl(u
(l)
1 , u

(l)
2 ) + O(ηm+1). (6.5)

Substituting (6.5) into the system (6.4), the following hierarchial system of governing equations, and

associated boundary conditions, is obtained

γ2u
(m)
1,ζζ + γ2Λ

2
1u

(m)
1 + βu

(m−1)
2,ξζ − γ2η

−1(u
(m−1)
1,ττ + Λ2

1u
(m−1)
1 ) + α11u

(m−2)
1,ξξ = 0,

α22u
(m)
2,ζζ + γ2Λ

2
2u

(m)
2 + βu

(m−1)
1,ξζ − γ2η

−1(u
(m−1)
2,ττ + Λ2

2u
(m−1)
2 ) + γ1u

(m−2)
2,ξξ = 0,

γ2u
(m)
1,ζ + (γ2 − σ2)u

(m−1)
2,ξ = 0 at ζ = ±1,

α22u
(m)
2,ζ + α12u

(m−1)
1,ξ = 0 at ζ = ±1.

(6.6)

6.1 Leading order problem

The leading order problem yields

u
(0)
1,ζζ + Λ2

1u
(0)
1 = 0, u

(0)
2,ζζ + (χΛ2)

2u
(0)
2 = 0,

u
(0)
1,ζ = u

(0)
2,ζ = 0 at ζ = ±1,

(6.7)

with solution

u
(0)
1 = u

(0,0)
1 sin(Λ1ζ), u

(0)
2 = V

(0,0)
2 cos(χΛ2ζ), (6.8)

where the two functions u
(0,0)
1 and V

(0,0)
2 may be found from the next order problem.

6.2 Second order problem

The second order problem is given by

γ2u
(1)
1,ζζ + γ2Λ

2
1u

(1)
1 = γ2η

−1(u
(0)
1,ττ + Λ2

1u
(0)
1 )− βu

(0)
2,ξζ (6.9)

α22u
(1)
2,ζζ + γ2Λ

2
2u

(1)
2 = γ2η

−1(u
(0)
2,ττ + Λ2

2u
(0)
2 )− βu

(0)
1,ξζ , (6.10)
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γ2u
(1)
1,ζ + (γ2 − σ2)u

(0)
2,ξ = 0, α22u

(1)
2,ζ + α12u

(0)
1,ξ = 0 at ζ = ±1. (6.11)

Solving equation (6.9) we arrive at a solution for u
(1)
1 , given by

u
(1)
1 = u

(1,0)
1 sin(Λ1ζ) + U

(1,0)
1 sin(χΛ2ζ) + v

(1,1)
1 ζ cos(Λ1ζ), (6.12)

for which

U
(1,0)
1 =

βΛ2V
(0,0)
2,ξ

χ(α22Λ2
1 − γ2Λ2

2)
, v

(1,1)
1 = − 1

2Λ1
η−1(u

(0,0)
1,ττ + Λ2

1u
(0,0)
1 ). (6.13)

From equation (6.10) a solution for u
(1)
2 may be obtained, indicating that

u
(1)
2 = V

(1,0)
2 cos(χΛ2ζ) + v

(1,0)
2 cos(Λ1ζ) + +U

(1,1)
2 ζ sin(χΛ2ζ), (6.14)

where

v
(1,0)
2 =

βΛ1u
(0,0)
1,ξ

α22Λ2
1 − γ2Λ2

2

, U
(1,1)
2 =

χ

2Λ2
η−1(V

(0,0)
2,ττ + Λ2

2V
(0,0)
2 ). (6.15)

Using the boundary conditions (6.11), a system of two equations for the two unknowns u
(0,0)
1 and

V
(0,0)
2 is obtained. From this system an equation for either u

(0,0)
1 or V

(0,0)
2 may be derived in the

form

γ2
2η−2{u(0,0)

1,ττττ + u
(0,0)
1,ττ (Λ2

1 + Λ2
2) + Λ2

1Λ
2
2u

(0,0)
1 }+ 4

{γ2α12Λ
2
2 + α22(γ2 − σ2)Λ

2
1}2

(α22Λ2
1 − γ2Λ2

2)
2

u
(0,0)
1,ξξ = 0. (6.16)

7 Special case α22 = γ2

Asymptotic models for this case may be obtained after substituting α22 = γ2 into the previously

derived models for shear and stretch resonances.

7.1 Shear resonance

7.1.1 Leading order

The leading order solutions in this case are given

u
(0)
1 = U

(0,0)
1 sin(Λa

shζ), u
(0)
2 = V

(0,0)
2 cos(Λa

shζ) + U
(0,1)
2 ζ sin(Λa

shζ),

where

V
(0,0)
2 =

U
(0,0)
1,ξ (2α12 − β)

2γ2Λa
sh

, U
(0,1)
2 = −βU

(0,0)
1,ξ

2γ2
,

with an equation for the long wave amplitude U
(0,0)
1 only obtainable from the next order.
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7.1.2 Second order

The solution for u
(2)
1 is given by

u
(2)
1 = U

(2,0)
1 sin(Λa

shζ) + V
(2,1)
1 ζ cos(Λa

shζ) + U
(2,2)
1 ζ2 sin(Λa

shζ),

where

V
(2,1)
1 =

1

2γ2Λa
sh

({
β2

4γ2
+ Es − α12(γ2 − σ2)

γ2

}
U

(0,0)
1,ξξ − η−2γ2{(Λa

sh)2U
(0,0)
1 + U

(0,0)
1,ττ }

)
,

U
(2,2)
1 =

β2U
(0,0)
1,ξξ

8γ2
2

.

An equation for U
(0,0)
1 may also be found in the form

γ2η
−2{(Λa

sh)2U
(0,0)
1 + U

(0,0)
1,ττ } − Pa

shU
(0,0)
1,ξξ = 0.

7.2 Stretch resonance

7.2.1 Leading order

The solution of the leading order problem is provided by

u
(0)
1 = U

(0,0)
1 sin(Λa

stζ) + V
(0,1)
1 ζ cos(Λa

stζ), u
(0)
2 = V

(0,0)
2 cos(Λa

stζ),

where

U
(0,0)
1 =

V
(0,0)
2,ξ (β − 2(γ2 − σ2))

2γ2Λa
st

, V
(0,1)
1 = −βV

(0,0)
2,ξ

2γ2
.

7.2.2 Second order

In order to find a governing equation for V
(0,0)
2 , a solution for u

(2)
2 must first be found. This is

readily obtainable and takes the form

u
(2)
2 = V

(2,0)
2 cos(Λa

stζ) + U
(2,1)
2 ζ sin(Λa

stζ) + V
(2,2)
2 ζ2 cos(Λa

stζ),

where

U
(2,1)
2 =

1

2γ2Λa
st

({
− β2

4γ2
− Ea +

α12(γ2 − σ2)

γ2

}
V

(0,0)
2,ξξ + η−2γ2{(Λa

st)
2V

(0,0)
2 + V

(0,0)
2,ττ }

)
,

V
(2,2)
2 =

β2V
(0,0)
2,ξξ

8γ2
2

,

with an equation for V
(0,0)
2 given by

γ2η
−2{(Λa

st)
2V

(0,0)
2 + V

(0,0)
2,ττ } − Pa

stV
(0,0)
2,ξξ = 0.

In the case of symmetric motions, the relative orders of the displacement components are identical

to those for anti-symmetric motion. The same scaled variables can therefore again be utilised. The
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appropriate symmetric long wave high frequency models may be obtained from their anti-symmetric

counterparts by replacing Λa
sh and Λa

st with Λs
sh and Λs

st, respectively, where

Λs
sh = nπ, Λs

st =

(
n− 1

2

)
π

χ
.

8 Some concluding remarks

In this paper we have established models for long wave motion in a pre-stressed layer composed of

compressible elastic material. These models relate to both low and high frequency motion. In respect

of low frequency motion the models are a generalisation of the classical theories of plate bending and

plate extension. In the analogue of plate extension, the theory is similar to its classical counterpart,

apart from the fact that, dependent on material parameters and pre-stress, the associated quasi-front

may now be either receding or advancing, the classical quasi-front being necessarily receding. In

the anti-symmetric case, the counterpart of bending, in contrast to the classical case a quasi-front is

shown to exist. This front may again be receding or advancing but must necessarily be of differing

type to the extensional front. Models for high frequency motion are also obtained, these being for

motion within the vicinity of the thickness stretch and thickness shear resonance frequencies. The

paper concludes with discussion of some special cases. The first of these is when one of the thickness

stretch and thickness shear resonance frequencies coincide, or are very close. The second, concerns

the case in which the speed of propagation of the shear and longitudinal waves is the same or very

close. This latter case is not possible within the linear isotropic context.
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