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Stroh formulation for a generally

constrained and pre-stressed elastic material

R. T. Edmondson and Y. B. Fu

Department of Mathematics, Keele University, Staffordshire ST5 5BG, UK

Abstract

The Stroh formalism is essentially a spatial Hamiltonian formulation and has
been recognized to be a powerful tool for solving elasticity problems involving gen-
erally anisotropic elastic materials for which conventional methods developed for
isotropic materials become intractable. In this paper we develop the Stroh/Hamiltonian
formulation for a generally constrained and prestressed elastic material. We derive
the corresponding integral representation for the surface-impedance tensor and ex-
plain how it can be used, together with a matrix Riccati equation, to calculate the
surface-wave speed. The proposed algorithm can deal with any form of constraint,
pre-stress, and direction of wave propagation. As an illustration, previously known
results are reproduced for surface waves in a pre-stressed incompressible elastic ma-
terial and an unstressed inextensible fibre-reinforced composite, and an additional
example is included analyzing the effects of pre-stress upon surface waves in an
inextensible material.

1 Introduction

The Stroh formalism [1, 2] is now well-known in the elasticity community as a powerful

tool for dealing with problems associated with general anisotropy. A major application of

this formalism is in the study of surface waves in a generally anisotropic elastic material,

where it had its first success in establishing the fact that the secular equation for the

surface-wave speed is always real irrespective of the constitution of the material [2]. There

now exists an elegant surface-wave theory that says that whenever a surface wave exists

it is unique and that a surface wave should normally exist except in some very special

circumstances; see Barnett and Lothe [3, 4, 5] and Chadwick and Smith [6]. This surface-

wave theory also contains many results that are directly applicable to static problems [7].
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For instance, the surface-impedance tensor, which plays a pivotal role in the surface-wave

theory, also features in many other applications [8]. This tensor has an explicit integral

representation [3, 9] and also satisfies a matrix Riccati equation [10, 11, 12]. These

results, originally developed for unconstrained elastic materials, have been extended to

incompressible elastic materials [8] and edge waves in an anisotropic plate described by

the Kirchhoff plate theory [13, 14]. More recently, Fu [15] elaborated on the Hamiltonian

interpretation of the Stroh formulation, and paved the way for application of the Stroh

formulation to other elasticity problems. As one such application, we derive in this paper

the Stroh formulation for a generally constrained, prestressed, elastic material, and use it

to investigate the associated surface-wave propagation problem.

In nonlinear elasticity, constrained material models are often used to simplify analysis

and highlight specific material properties. Incompressibility, λ1λ2λ3 = 1 where the λ’s

are the three principal stretches, is the most familiar example. Other forms of kinematic

constraints include inextensibility, restricted shear, Bell constraint (λ1 + λ2 + λ3 = 3),

Ericksen constraint (λ2
1 +λ2

2 +λ2
3 = 3), and the areal constraint (λ1λ2 +λ2λ3 +λ1λ3 = 3).

We refer to Destrade and Scott [16] for a discussion of the physical interpretation of these

constraints and other related references. Over the past five decades, such constrained ma-

terial models have frequently been used in the study of acceleration waves, shock waves,

and body waves [17-25]. They have also been used in the study of surface waves [26-37]. In

this paper, we shall consider a generally constrained and prestressed elastic material. We

do not impose any restrictions on the form of the constraint, the prestress or the strain-

energy function, and in considering surface waves we do not impose any restriction on the

direction of propagation. Our aim is to derive results for the surface-impedance tensor and

surface waves that are comparable with those for unconstrained elastic materials. This

is achieved using the Stroh formulation and the theoretical framework of Fu [15]. Our

strategy is to first derive a Stroh formulation and then obtain an integral representation

and a Riccati equation for the surface-impedance tensor. To determine the surface-wave

speed, we increase the speed from zero in small steps and at each speed value we use the

integral representation to evaluate the surface-impedance tensor and hence its determi-

nant. As soon as the determinant changes sign, we use the associated solution as an initial

guess and solve the Riccati equation to find the surface-wave speed precisely. This robust

algorithm is underpinned by the same generic properties of the surface-impedance tensor

as in the unconstrained case. Also, the existence is built into our search: if a speed is

found before the surface-impedance matrix becomes non-Hermitian it must be the unique

speed and we may stop the search; otherwise (if a speed still has not been found when

the surface-impedance matrix has become non-Hermitian) a subsonic surface wave cannot
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exist.

The rest of this paper is divided into four sections as follows. After writing down the

governing equations in Section 2, we derive in Section 3 the Stroh formulation for the

problem under consideration, and in Section 4 an integral representation and a Riccati

equation for the surface-impedance tensor. The integral representation is possible due to

the fact that our Stroh formulation is written entirely in terms of tensors, unlike those of

Chadwick [31] and Destrade et al [36] when the material is incompressible. All degenerate

cases are also considered separately. In Section 5 we carry out some example calculations

for the surface-wave speed. We first validate our method by reproducing previously known

results for surface waves in an incompressible elastic material and a strongly anisotropic

fibre-reinforced composite. We then present some new results for surface waves in a

strongly anisotropic fibre-reinforced composite that is also pre-stressed.

2 Governing equations

We consider a homogeneous body made of a non-heat-conducting elastic material which is

subjected to a single scalar constraint, C(F ) = 0, acting on the deformation gradient F .

The elastic body is first subjected to a static homogeneous finite deformation and then a

further small-amplitude time-dependent deformation. We denote the natural undeformed

configuration, the finitely deformed configuration, and the final configuration by Br, Be,

and Bt, respectively, and choose a common rectangular coordinate system relative to

which the coordinates of a representative material particle in Br, Be, and Bt are given by

XA, xi, x̃i, respectively. We shall denote, for instance, the position vector with coordinates

XA by X. We write

x̃(X, t) = x(X) + u(x, t), (2.1)

where u(x, t) is the small-amplitude displacement fromBe toBt. From the above equation

we obtain

FiA ≡ x̃i,A = F̄iA + ui,jF̄jA, (2.2)

and so F̄ and F are the deformation gradients from Br to Be and Bt, respectively.

Throughout this paper, xi,A = ∂xi/∂XA and ui,j = ∂ui/∂xj (differentiation with respect

to x̃j will never arise and so there will be no ambiguity in ui,j).

By expanding C(F ) = 0 in the neighborhood of F̄ and using the fact that C(F̄ ) = 0,

we obtain
∂C(F̄ )

∂F̄iA
F̄jAui,j = 0, (2.3)
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where here and throughout this paper we discard terms which are quadratic or of higher

order in u.

The nominal stress tensor S is given by [38]

SAi =
∂Ŵ

∂FiA
, Ŵ = W (F ) + pC(F ), (2.4)

where W is the strain-energy function and p is a Lagrangian multiplier which is a function

of x and t but is independent of F . We denote by S̄Ai and p̄ the nominal stress and the

value of p associated with the deformation from Br to Be, and following Fu and Ogden

[39] define an incremental stress tensor χij through

χij = J̄−1F̄jA(SAi − S̄Ai), (2.5)

where J̄ = det F̄ . On substituting (2.4) into (2.5) and then expanding the resulting

expression around F̄ and p̄, we obtain

χij = (Ajilk + C(2)
jilk)uk,l + p∗C(1)

ji , (2.6)

where p∗ = p− p̄, and we have defined

Ajilk = J̄−1F̄jAF̄lB
∂2W (F̄ )

∂F̄iA∂F̄kB
, (2.7)

C(1)
ji = J̄−1F̄jA

∂C(F̄ )

∂F̄iA
, (2.8)

C(2)
jilk = p̄J̄−1F̄jAF̄lB

∂2C(F̄ )

∂F̄iA∂F̄kB
. (2.9)

Using the above notation the incremental constraint (2.3) may be written

C(1)
ji ui,j = 0. (2.10)

We recall that the equation of motion can be written as

SAi,A = ρrüi, (2.11)

where a superimposed dot on ui indicates differentiation by t and ρr is the density in Br.

In terms of χij this becomes

χij,j = ρüi, (2.12)

where ρ = ρr/J̄ . On substituting (2.6) into (2.12), we obtain

(Ajilk + C(2)
jilk)uk,lj + p∗,jC(1)

ji = ρüi. (2.13)

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

We assume that the prestressed material under consideration satisfies the strong ellipticity

condition. This condition can be derived by considering propagation of body waves of the

form

uk = αke
i(ψ−vt), p∗ = γei(ψ−vt), (2.14)

where ψ = β · x and v is the wave velocity, and requiring that the wave speed is real for

all permissible vectors α, β and scalar γ. We also note that we may substitute (2.14)

into the general incremental constraint (2.10) to obtain a constraint for the choice of α

and β,

C(1)
ji αiβj = 0. (2.15)

Now we use the incremental equation of motion (2.13) together with (2.14) to obtain

(Ajilk + C(2)
jilk)αkβjβl − iγβjC(1)

ji = ραiv
2. (2.16)

Multiplication throughout by αi and use of (2.15) results in our final expression

(Ajilk + C(2)
jilk)αiαkβjβl = ρ|α|2v2.

Thus, the strong ellipticity condition takes the form

(Ajilk + C(2)
jilk)αiαkβjβl > 0 ∀ non-zero α, β such that β · C(1)α = 0. (2.17)

We make a quick note of the expressions for C(1)
ji and C(2)

jilk for some common constraints.

The constraint of incompressibility yields

C(1)
ji = δij , C(2)

jilk = p̄(δijδkl − δilδjk), (2.18)

while the constraint of inextensible fibres in the initial direction A, deforming to ā = F̄A

results in

C(1)
ji = 2J̄−1āiāj , C(2)

jilk = 2p̄J̄−1δikājāl, (2.19)

and the Ericksen constraint, (C(F ) = trB − 3 = 0) gives

C(1)
ji = 2J̄−1B̄ij , C(2)

jilk = 2p̄J̄−1δikB̄jl, (2.20)

where B̄ = F̄ F̄
T
. Finally for the case of restricted shear, (C(F ) = â · b̂ −A ·B = 0),

where shear is restricted between the initial directions A and B which deform respectively

to ā (= F̄A) and b̄ (= F̄B) with â = ā/|ā| and b̂ = b̄/|b̄|, we obtain

C(1)
ji = J̄−1|ā||b̄|(âib̂j + b̂iâj − (A ·B)(âiâj + b̂ib̂j)) (2.21)
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and

C(2)
jilk = p̄J̄−1|ā||b̄|(δik(âj b̂l + b̂j âl − (A ·B)(âj âl + b̂j b̂l))

+(A ·B)(âiâj − b̂ib̂j)(âkâl − b̂k b̂l)). (2.22)

It may be seen that for the case of incompressibility the expression C(2)
jilkαiαkβjβl, which

occurs in the strong ellipticity condition, is 0.

3 Stroh formulation

We now look for a traveling-wave solution of the form

u(x, t) = z(iy2)e
i(y1−vt), p∗ = ig(iy2)e

i(y1−vt), (3.1)

where y1 = m · x, y2 = n · x, z and g are functions to be determined, and m and n are

unit vectors such that m · n = 0. On substituting these expressions into the incremental

equation of motion (2.12), we obtain

Tz′′ + (R + RT )z′ + Qz + g′θ + gφ = ρv2z, (3.2)

where a prime denotes differentiation with respect to the argument iy2, and the various

vectors and matrices are defined by their components

Tik = (Ajilk + C(2)
jilk)njnl, Rik = (Ajilk + C(2)

jilk)mjnl, Qik = (Ajilk + C(2)
jilk)mjml, (3.3)

θi = C(1)
ji nj , φi = C(1)

ji mj . (3.4)

We note that T and Q are symmetric. The corresponding traction on a surface with

normal n is given by

t = χn = il(iy2)e
i(y1−vt), (3.5)

where

l = Tz′ + RTz + gθ. (3.6)

Our next step requires solving (3.6) for z′. For the unconstrained case, strong ellipticity

ensures that T has an inverse so that an expression for z′ can be obtained immediately.

However when there is a constraint this is no longer guaranteed. To resolve this problem,

we first rewrite our constraint (2.10) as

z′ · θ + z · φ = 0. (3.7)

It then follows that

(θ ⊗ θ)z′ + (θ ⊗ φ)z = 0, (3.8)
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(θ ⊗ θ)z′′ + (θ ⊗ φ)z′ = 0, (3.9)

(φ⊗ θ)z′ + (φ⊗ φ)z = 0. (3.10)

Now if we multiply all of the above three equations by an arbitrary positive constant λ

and add (3.9) and (3.10) to (3.2) and (3.8) to (3.6) we obtain

T̂ z′′ + (R̂ + R̂
T
)z′ + Q̂z + g′θ + gφ = ρv2z, (3.11)

and

l = T̂ z′ + R̂
T
z + gθ, (3.12)

where

T̂ = T + λ(θ ⊗ θ), R̂ = R + λ(φ⊗ θ), Q̂ = Q + λ(φ⊗ φ). (3.13)

We now show that we may always choose λ so as to obtain a positive definite T̂ and hence

T̂
−1

will exist. To this end, we consider

αiαkT̂ik = (Ajilk + C(2)
jilk)njnlαiαk + λ(C(1)

ji αinj)
2, (3.14)

where α is an arbitrary real vector. If C(1)
ji αinj = 0 then the constraint (2.15) is satisfied

and we may use the strong ellipticity condition (2.17) to deduce that the expression in

(3.14) is always greater than 0 for any choice of α. For the other case when C(1)
ji αinj �= 0

then it can be easily seen that for a sufficiently large choice of λ, T̂ will be positive definite.

Hence, upon the addition of the arbitrary λ term we may always choose a λ such that T̂

will have an inverse as required.

We now obtain our expression for z′ from (3.12)

z′ = T̂
−1

(l − R̂
T
z − gθ), (3.15)

which after differentiation by iy2 gives

z′′ = T̂
−1

(l′ − R̂
T
z′ − g′θ). (3.16)

On substituting these two expressions into (3.11) we obtain the following equation for l′

in terms of l and z:

l′ = −R̂T̂
−1

l + (R̂T̂
−1

R̂
T − Q̂ + ρv2I)z + gR̂T̂

−1
θ − gφ. (3.17)

The Stroh formulation is complete if we can eliminate the incremental Lagrangian mul-

tiplier p∗ which is now represented by its amplitude g. This can be done using (3.7)

together with (3.15) so we may obtain

g = ζ(z · φ + l · T̂ −1
θ − z · R̂T̂

−1
θ), (3.18)
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where

ζ = 1/(θ · T̂ −1
θ). (3.19)

We note that due to the positive definiteness of T̂ , ζ is well defined for all θ �= 0. The

case when θ = 0 is an exceptional case and will be dealt with later in this paper. Finally

with the aid of (3.15) and (3.17) we obtain

z′ = (ζ(T̂
−1

θ ⊗ (R̂T̂
−1

θ − φ))− T̂
−1

R̂
T
)z + (T̂

−1 − ζ(T̂
−1

θ ⊗ T̂
−1

θ))l, (3.20)

l′ = (R̂T̂
−1

R̂
T − Q̂ + ρv2I − ζ(φ− R̂T̂

−1
θ)⊗ (φ− R̂T̂

−1
θ))z

+(ζ(R̂T̂
−1

θ − φ)⊗ T̂
−1

θ − R̂T̂
−1

)l. (3.21)

Juxtaposing these two expressions, we obtain the Stroh formulation

η′ = Nη, (3.22)

where

η =

[
z

l

]
N =

[
N 1 N 2

N 3 NT
1

]
, (3.23)

and

N 1 = ζ(T̂
−1

θ ⊗ (R̂T̂
−1

θ − φ))− T̂
−1

R̂
T
, (3.24)

N 2 = T̂
−1 − ζ(T̂

−1
θ ⊗ T̂

−1
θ) = NT

2 , (3.25)

N 3 = R̂T̂
−1

R̂
T − Q̂ + ρv2I − ζ(φ− R̂T̂

−1
θ)⊗ (φ− R̂T̂

−1
θ) = NT

3 . (3.26)

Due to the arbitrary nature of our choice of λ we expect that the above components of

N should be independent of λ. This can be easily seen by showing that differentiation of

each of the above expressions by λ gives an answer of 0. For more details, see Fu [15].

On specializing the above results to the case of incompressibility, we recover the ex-

pressions given by Fu [15]. A Stroh formulation for a prestressed incompressible elastic

material has previously been derived by Chadwick [31] using a different procedure, but his

expressions for N 1,N 2,N 3 are not in terms of tensors. Expressions in terms of tensors

are necessary when we derive the integral expression for the surface-impedance tensor.

4 An integral representation for the surface-impedance

matrix

4.1 General case

We first make the following assumptions

θ �= 0, φ �= 0 and φ �= kθ, (4.1)
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for any constant k. Constraints that do not satisfy these conditions are special cases and

will be dealt with in the next two subsections. We note, however, that the important

constraint of inextensibility along a direction e has C(1) = e ⊗ e so that θ = (n · e)e,

φ = (m · e)e, which violates the last condition above.

To fix ideas we now consider our material to occupy the half-space

H = {x |n · x ≥ 0,−∞ < m · x <∞}, (4.2)

where the unit vectors n and m have the same meaning as in the previous section. We

also impose the following decay condition on z:

z(iy2) → 0 as y2 →∞. (4.3)

The surface-impedance matrix M(v) is defined such that [40]

l(0) = iM(v)z(0), (4.4)

and for the case of constant F̄ and p̄ which we are considering here this implies, as we

shall demonstrate shortly, that

l(iy2) = iM(v)z(iy2). (4.5)

We observe that for a constrained elastic material, the stress tensor can only be determined

to within an arbitrary multiple of the reaction stress, and one may then think that the

traction l(iy2) cannot be determined uniquely. However, the seemingly non-uniqueness is

eliminated, for most constraints, by the requirement that l(iy2) decays to zero as y2 →∞.

In the next subsection, we shall show how to deal with other constraints, typified by that

of inextensibility, for which the non-uniqueness does exist.

On substituting (4.5) into the Stroh formulation (3.22) and eliminating z′, we obtain

(MN 2M − iMN 1 + iNT
1 M + N 3)z = 0.

Assuming that z(0), and hence z(iy), can be arbitrarily specified, we then obtain

MN 2M − iMN 1 + iNT
1 M + N 3 = 0, (4.6)

which is a well known Riccati equation and is the identity which needs to be solved to

calculate M .

Solutions of (4.6) for M are not unique. In order to select the desired solution, we

define another matrix E through

z(iy2) = e−Ey2z(0). (4.7)

9
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This matrix E can be expressed in terms of the eigenpairs (pα, ζα) (α = 1, 2, ..., 6) of the

Stroh matrix N . To show this, we assume that the eigenvalues are all complex and are

ordered such that

Im pα > 0, pα+3 = p̄α, α = 1, 2, 3.

We also write

ζ(α) =

[
a(α)

b(α)

]
, α = 1, 2, ..., 6,

and define two matrices A and B through

A = [a(1),a(2),a(3)], B = [b(1), b(2), b(3)]. (4.8)

Assuming further that A is invertible, we then have

z(iy2) =

3∑
k=1

cka
(k)eipky2 = A〈eipy2〉c

= A〈eipy2〉A−1z(0) = eiA〈p〉A−1
y2z(0),

and

l(iy2) =

3∑
k=1

ckb
(k)eipky2 = B〈eipy2〉c

= BA−1z(iy2),

where

〈eipy2〉 = diag
{
eip1y2, eip2y2 , eip3y2

}
, 〈p〉 = diag {p1, p2, p3} .

It then follows that

E = −iA〈p〉A−1, M = −iBA−1, (4.9)

and the validity of (4.7) is thus guaranteed by the invertibility of A. The above derivation

also establishes the fact that if l(0) = iM (v)z(0), then l(iy2) = iM (v)z(iy2) for all y2 > 0.

From (3.22), (4.5) and (4.7) we may obtain the following relation between E and M :

E = −iN 1 + N 2M . (4.10)

Thus, the solution of M which we are looking for must be such that all the eigenvalues

of E computed from (4.10) have positive real parts.

10
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To derive an integral representation for M , we introduce a new notation where we

define

T ω = cos2 ωT̂ − sinω cosω(R̂ + R̂
T
) + sin2 ωQ̂v, (4.11)

Rω = cos2 ωR̂− sin2 ωR̂
T

+ sinω cosω(T̂ − Q̂v), (4.12)

Qω = cos2 ωQ̂v + sinω cosω(R̂ + R̂
T
) + sin2 ωT̂ , (4.13)

θω = cosωθ − sinωφ, (4.14)

φω = cosωφ + sinωθ, (4.15)

where Q̂v = Q̂ − ρv2I. We note that these expressions reduce to their original values

upon the choice of ω = 0. We similarly define N 1ω,N 2ω,N3ω as

N 1ω = ζω(T̂
−1

ω θω ⊗ (R̂ωT̂
−1

ω θω − φω))− T̂
−1

ω R̂
T

ω ,

N 2ω = T̂
−1

ω − ζω(T̂
−1

ω θω ⊗ T̂
−1

ω θω), (4.16)

N 3ω = R̂ωT̂
−1

ω R̂
T

ω − Q̂ω − ζω(φω − R̂ωT̂
−1

ω θω)⊗ (φω − R̂ωT̂
−1

ω θω),

Eω as

Eω = −iN 1ω + N 2ωMω, (4.17)

and Mω through

MωN 2ωMω − iMωN 1ω + iNT
1ωMω + N 3ω = 0. (4.18)

By following the standard analysis as detailed in Mielke and Fu [9], we may show that

Mω is independent of ω and is Hermitian, M ′
ω(v) is negative definite, and that∫ π

0

Eωdω = πI. (4.19)

On integrating (4.17) from 0 to π, we then obtain

M =

(∫ π

0

N 2ωdω

)−1 (
i

∫ π

0

N 1ωdω + πI

)
. (4.20)

4.2 Case when φ = kθ and θ �= 0

We now consider the case when φ = kθ for a particular real constant k. If this is true

then our previous derivation fails because our θω = 0 for a certain choice of ω between

0 and π, and hence our ζω is not well defined. We note that the important constraint of

inextensibility belongs to this case. Another indicator that the analysis in the previous
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subsection is not valid for an inextensible material is provided by the fact that in this

case A is not invertible. It was shown by Whitworth and Chadwick [34] and Captain

and Chadwick [35] that for an inextensible material one of the columns of A is identically

zero. We now show that this is in fact true for all constraints having φ = kθ.

The eigenvalues pα and eigenvectors a(α) (α = 1, 2, 3) can be obtained by substituting

z = aeipy2, g = γeipy2 ,

into the equation of motion (3.2) and the constraint equation (3.7). We have

{
p2T + p(R + RT ) + Q− ρv2I

}
a + (p+ k)γθ = 0, (4.21)

(p+ k)a · θ = 0. (4.22)

It is then immediately clear that one eigen solution is given by

p = −k, a = 0, γ is indeterminate. (4.23)

This eigen solution will not produce any displacement but will produce a non-zero reaction

traction, in the direction of θ, that does not decay away from the surface. This is very

similar to the case of inextensible materials examined by Whitworth and Chadwick [34]

and Captain and Chadwick [35].

We expect the other eigenvalues to be complex. Equation (4.22) then implies that

a · θ = 0 for the other associated eigenvectors. As a result, since the general solution for

z is a linear combination of the eigen solutions, we have

z · θ = 0. (4.24)

This suggests that we only need to consider displacement and traction in the plane per-

pendicular to the vector θ.

Recalling our Stroh formulation (3.23) and breaking it up into two parts we obtain

z′ = N 1z + N 2l, l′ = N 3z + NT
1 l. (4.25)

We now introduce a projection tensor P given by

P = I − θ ⊗ θ

θ · θ . (4.26)

We note that P satisfies the usual projection tensor properties

P 2 = P , P = P T , and det P = 0.
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It can then be shown that the reduced Stroh formulation for the projected displacement

and traction vectors

ẑ = Pz, l̂ = Pl (4.27)

is given by

ẑ′ = N̂ 1ẑ + N̂ 2l̂, l̂
′
= N̂ 3ẑ + N̂

T

1 l̂, (4.28)

where

N̂ 1 = PN 1P , N̂ 2 = PN 2P , N̂ 3 = PN 3P . (4.29)

In addition we define the appropriate surface-impedance tensor M̂ through

l̂ = iM̂ẑ. (4.30)

Relative to a coordinate system in which the 3-axis is in the direction of θ, the third

components of ẑ and l̂ are zero, and M̂ then must necessarily have the partitioned form

M̂ =

[
M11 02×1

01×2 M22

]
,

where M11 is a 2×2 matrix, M22 is a scalar and 02×1 and 01×2 are two zero matrices with

the indicated order. We note that M22 is indeterminate, that is, M̂ is only determined

to within an arbitrary multiple of θ ⊗ θ. Furthermore, it can be verified that

PM̂ = M̂P =

[
M11 02×1

01×2 0

]
. (4.31)

It then follows that

M̂ = PM̂ +M22
θ ⊗ θ

θ · θ , (4.32)

and

det M̂ = M22det (M11) = M22 det

(
PM̂ +

θ ⊗ θ

θ · θ
)
. (4.33)

We now show that it is again possible to obtain a Riccati equation from the above for-

mulation. Substituting (4.281) and (4.30) into (4.282) allows us to write

(M̂N̂ 2M̂ − iM̂N̂ 1 + iN̂
T

1 M̂ + N̂ 3)ẑ = 0. (4.34)

Again assuming that ẑ may be arbitrarily specified (subject to θ · ẑ = 0) we obtain the

Riccati equation

M̂N̂ 2M̂ − iM̂N̂ 1 + iN̂
T

1 M̂ + N̂ 3 = 0, (4.35)
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which is the counterpart of (4.6) for the current case. We define Ê, the counterpart of

E, through

Ê = −iN̂ 1 + N̂ 2M̂ = PEP . (4.36)

We also define

N̂ 1ω = PN 1ωP , N̂ 2ω = PN 2ωP , N̂ 3ω = PN 3ωP , (4.37)

and

Êω = PEωP = −iN̂ 1ω + N̂ 2ωM̂ω, (4.38)

where we note that we do not apply the ω transformation to the θ terms in P . It is again

possible to show that M̂ω is Hermitian and is independent of ω, and that∫ π

0

Êωdω = πP . (4.39)

Integrating (4.38) over ω between 0 and π we obtain

πP = −i

∫ π

0

N̂ 1ωdω +

∫ π

0

N̂ 2ωdω M̂ . (4.40)

We see that due to its definition our N̂ 2ω is singular and hence (4.40) cannot be solved

straightaway to find M̂ as before. We note however that (4.40) may be rewritten(∫ π

0

N̂ 2ωdω + κ1(I − P )

)
PM̂ = i

∫ π

0

N̂ 1ωdω + πP , (4.41)

and so we may obtain an expression for PM̂

PM̂ =

(∫ π

0

N̂ 2ωdω + κ1(I −P )

)−1 (
i

∫ π

0

N̂ 1ωdω + πP

)
, (4.42)

providing κ1 is not chosen to be 0. We note here that the introduction of the projection

tensor P for this case has effectively reduced the problem from 3D to 2D, and PM̂ only

contains four unknowns; see the discussion between (4.30) and (4.31).

4.3 Case when θ = 0

For the case when θ = 0 we can no longer use the Stroh Formulation derived in Section

3 as ζ is no longer well defined. In this case equations (3.2), (3.6) and (3.7) reduce to

Tz′′ + (R + RT )z′ + Qvz + gφ = 0, (4.43)

Tz′ + RTz − l = 0, (4.44)

z · φ = 0, (4.45)
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where Qv = Q − ρv2I. We assume that φ �= 0, for otherwise the constraint becomes

impotent and the problem can be treated in the same way as for an unconstrained material.

The similarity between (4.45) and (4.24) suggests that in this case it is appropriate to

project displacement and traction to the plane perpendicular to φ. We thus introduce

the projection tensor

P = I − φ⊗ φ

φ · φ , (4.46)

and define

ẑ = Pz = z, l̂ = Pl. (4.47)

On pre-multiplying (4.44) by our projection tensor, we obtain

l̂ = P (T ẑ′ + RT ẑ) = PTP ẑ′ + PRTP ẑ. (4.48)

It is necessary to rearrange the above equation for ẑ′. Clearly PTP is a singular matrix

so no inverse exists. However, as this is pre-multiplying ẑ′ it is sufficient to find a matrix,

T̂
−1

say, such that

T̂
−1

PTP = P . (4.49)

Matrix theory says that such a matrix can be guaranteed to exist providing T is positive

definite and symmetric, which can be shown to be true if the strong ellipticity condition

holds. It is then possible to write

T̂
−1

= (PTP + I − P )−1 + P − I, (4.50)

where we note that T̂
−1

obeys

T̂
−1

= P T̂
−1

P . (4.51)

On pre-multiplying (4.48) by T̂
−1

, we obtain

ẑ′ = T̂
−1

l̂ − T̂
−1

PRTP ẑ. (4.52)

Now applying the projection tensor to (4.43) we obtain

PT ẑ′′ + P (R + RT )ẑ′ + PQvẑ = 0, (4.53)

which with the use of (4.52) gives

l̂
′
= P (RT̂

−1
RT −Qv)ẑ −PRT̂

−1
l̂. (4.54)

We can now obtain expressions in the form of the Stroh formulation

ẑ′ = N 1ẑ + N 2l̂, l̂
′
= N 3ẑ + NT

1 l̂, (4.55)
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where

N 1 = −P T̂
−1

RTP , N 2 = P T̂
−1

P , N 3 = P (RT̂
−1

RT −Qv)P . (4.56)

The surface-impedance matrix M̂ may now be defined as in the previous subsection

and the same procedure can be used to derive an integral representation and a Riccati

equation for M̂ . The relevant results can be written down by adapting the corresponding

expressions from the previous subsection, but we do not write them out here for the sake

of brevity.

5 Numerical results

5.1 Comparison with established results

A free surface wave must satisfy the traction-free boundary condition and so recalling

(4.4) we see that for a non-trivial solution our M must satisfy

det M = 0. (5.1)

The M has an integral representation given by (4.20) and satisfies the Riccati equation

(4.6).

For the case when φ and θ are linearly dependent, we project the displacement and

traction vectors onto the plane perpendicular to θ; the reaction force in the θ-direction

is indeterminate. The corresponding surface-impedance matrix M̂ is defined by (4.30)

and the surface-wave speed is determined by det M̂ = 0, which, in view of (4.33), may

be replaced by

det(PM̂ + I −P ) = 0. (5.2)

The PM̂ has an integral representation given by (4.42), and satisfies the Riccati equation

(4.35).

Only in very special cases can the Riccati equation be solved analytically and the

integral representation evaluated exactly. In the general case, we use the following strategy

to find the surface-wave speed: We increase the speed from zero in small steps and at

each speed value we use the integral representation to evaluate the surface-impedance

tensor and hence its determinant. As soon as the determinant changes sign, we use the

associated solution as an initial guess and solve the Riccati equation to find the surface-

wave speed precisely. This robust algorithm has been tested on the edge-wave problem

[14] and was found to work very well.
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As an example, we first consider surface waves in a sheared and stretched incompress-

ible isotropic Gent material. This problem has previously been considered by Destrade

and Ogden [32]. This type of constraint belongs to our general case for which (5.1) applies

and we are able to reproduce all of the numerical results presented in Destrade and Ogden

[32]. We also note that when the x3 = 0 plane is a plane of symmetry, an even easier

method for computing the surface-wave speed is available [41, 42].

We next consider a transversely isotropic elastic material which is inextensible in the

preferred direction. Such a constraint is very often used to model strongly anisotropic

fibre-reinforced composites. Surface-wave propagation in such a constrained elastic ma-

terial has previously been examined by Whitworth and Chadwick [34] and Captain and

Chadwick [35]. If we assume that the fibre direction e is given by

e = mm + nn + l l, where l = m ∧ n, (5.3)

then Captain and Chadwick’s [35] main results may be stated as follows: (i) If l �= 0

and n �= 0, a unique (normal) surface wave exists; (ii) as l → 0 with n �= 0 the surface

wave found in (i) degenerates continuously into a (one-component) shear body wave which

satisfies the traction free boundary condition (known as an exceptional body wave); (iii) if

n = 0 and m = 0 the constraint is impotent; (iv) if n = 0 and m �= 0 only the projection of

traction onto the plane perpendicular to e is required to vanish and a unique surface wave

always exists. As remarked earlier, the constraint of inextensibility belongs to our special

case φ = kθ. With the use of (5.2), we are able to reproduce all of the numerical results

in Captain and Chadwick [35] although we do not distinguish the four cases individually.

This is not surprising since although no projection was used by Captain and Chadwick

[35] for the Cases (i)-(iii) above, they used det B=0 to find the surface-wave speed, where

B, when referred to a coordinate system in which the 3-direction is aligned with the fibre

direction, takes the form

B =

⎡
⎢⎣
b11 b12 0

b21 b22 0

b31 b32 b33

⎤
⎥⎦ .

Thus, with b33 �= 0 we have det B =det B̂ where B̂ is the submatrix formed from

b11, b12, b21 and b22. It can be seen that det B̂ is simply a multiple of our det M̂ .

5.2 Surface waves in a pre-stressed inextensible material

We now demonstrate the flexibility and ease of use of the method outlined in this paper

by allowing for a pre-stress in the problem of Captain and Chadwick [35]. Thus, we shall
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be concerned with surface waves propagating in a pre-stressed transversely isotropic fibre-

reinforced composite which is inextensible in the fibre direction. We consider the simplest

case when the pre-stress takes the form of a uniaxial tension or compression in the fibre

direction, but our program can cope with any form of pre-stress. Using the same notation

as in the previous subsection, we study two separate cases, one with l = 0 and one with

l �= 0. For both examples we use the generalized Mooney-Rivlin strain-energy function

W = α(Ī1 − 3) + β(Ī2 − 3) +
1

2
κ(J − 1)2, (5.4)

where α, β, κ are material constants,

J = det F , Ī1 = J−2/3I1, Ī2 = J−4/3I2,

I1 and I2 being the first two principal invariants of FF T . This is a special case of the

more general strain-energy function W = Ŵ (Ī1, Ī2) + U(J) that has been examined by

Doll and Schweizerhof [43]. It can easily be shown that with W given by (5.4) and the

pre-stress as assumed above, the strong ellipticity condition (2.17) is satisfied if and only

if p̄ > −1, where p̄ has the same meaning as in Section 2 and in the present case is half of

the actual tension in the fibre direction. In our calculations, we take α = 1, β = 0, κ = 1,

and the surface-wave speed is determined with the use of (5.2).

In Figure 1, we have shown variation of ρv2 with respect to p̄ for the two cases

(a) m = 1/
√

3, n = 1/
√

2, l = 1/
√

6, and (b) m = 1/
√

2, n = 1/
√

2, l = 0.

For case (a) we see that a unique surface wave with a non-zero speed exists in the range

of p̄ over which strong ellipticity is satisfied. Thus, in this special case a standing surface

wave with v = 0 cannot exist when strong ellipticity is satisfied and the half space is

always stable with respect to surface-wave type perturbations.

Corresponding to case (b), the inextensible fibres lie in the plane spanned by m and

n. As in the unstressed case discussed by Captain and Chadwick [35], the surface wave

is again an exceptional body wave. Thus, it is not surprising that the speed of this wave

vanishes at p̄ = −1, the value of p̄ at which strong ellipticity is first violated.

5.3 Analysis of restricted shear

As a further demonstration that the three cases discussed in the previous section cover

all possible constraint choices we consider the constraint of restricted shear. Justification

for this choice may be given by study of the classification system introduced by Pipkin

[44]. By his analysis isotropic constraints such as incompressibility are considered to have
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Figure 1: Variation of the surface-wave speed with respect to the pre-stress for the cases
m = 1/

√
3, n = 1/

√
2, l = 1/

√
6 (solid line) and m = 1/

√
2, n = 1/

√
2, l = 0 (dashed line).

dimensions 3, whereas constraints acting only in one direction such as inextensibility are

said to have dimensions 1. In his classification restricted shear has dimensions 2 as it acts

within a plane of the body. In our analysis we have used method §4.1 for incompressibility

and §4.2 and §4.3 for inextensibility. It is therefore of interest to see which method we

need to use for restricted shear and whether the methods we have defined above are

adequate. With the use of (2.21) and (3.4), we see that θ and φ are linearly independent

for most choices of m and n and for these cases our theory above dictates that we use

the general method §4.1 to obtain a solution. There are however cases for certain specific

choices of m and n such that θ and φ are no longer linearly independent and here we

must use the methods §4.2 and §4.3. This was tested for various strain energy functions

and it is indeed possible to obtain degenerate surface wave solutions for the constraint

of restricted shear using the method outlined above although numerical results are not

included here for brevity. We note that in the current literature little work has been carried

out in studying surface waves under the constraint of restricted shear, the only notable

contribution being, to the authors’ knowledge, the work by Whitworth and Chadwick

[37]. Their work differs from that in the current article though as they did not consider

pre-stress and they also assumed that the directions within which shear was restricted

were perpendicular, A ·B = 0. Furthermore it is not possible to compare results obtained

here with [37] as the constraint of incompressibility was also assumed.

Through further analysis of known constraints it appears that all problems involving

isotropic constraints, i.e. those of dimensions 3, may be solved using the first method §4.1

only and that problems involving a non-isotropic constraint, i.e. dimensions 1 or 2, must
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be solved using §4.2 and §4.3 together with §4.1.
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