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Abstract

We show that finite amplitude shearing motions superimposed on
an unsteady simple extension are admissible in any incompressible
isotropic elastic material. We show that the determining equations
for these shearing motions admit a general reduction to a system of
ordinary differential equations (ODEs) in the remarkable case of gen-
eralized circularly polarized transverse waves. When these waves are
standing and the underlying unsteady simple extension is composed of
a harmonic perturbation of a static stretch it is possible to reduce the
determining ODEs to linear or nonlinear Mathieu equations. We use
this property for a detailed study of the phenomenon of parametric
resonance in nonlinear elastodynamics.
Keywords: Nonlinear elastodynamics, parametric resonance, shearing
motions, Mooney-Rivlin materials, Mathieu equation.

1 Introduction

The equations of elastodynamics, under the usual constitutive assumptions,
belong to the class of hyperbolic systems. It is known that if a hyperbolic
system is nonlinear then smooth solutions of initial-value or initial boundary-
value problems do not usually exist globally in time. Singularities will de-
velop, typically after a finite time, even when the initial or boundary data
are smooth (Dafermos, 2005). Existence of smooth solutions to the initial-
value problem of nonlinear elastodynamics is possible only in very special
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situations and only for bulk waves. To be more precise non-singular waves
are possible:

• in the case of bulk transverse waves in Hadamard materials (or incom-
pressible Mooney-Rivlin materials, see John, 1966);

• in the case of Carroll bulk waves (solutions valid for any material but
only for very special initial conditions, see Carroll, 1967);

• when the null condition is satisfied and we consider small initial data
(see Domanski, Ogden, 2006).

On the other hand, there is a long list of examples of blow-up of solutions
(see, for example, John, 1974).

It is not possible to know a priori if the Carroll waves form the only class
of solutions that for special initial conditions may ensure global existence.
This is because the method used by Carroll is a semi-inverse method and, as
usual, the initial conditions are enforced a posteriori. In this framework the
result in (Carroll, 1967) is quite remarkable because it shows that progressive
finite amplitude transverse circularly-polarized wave motions can propagate
in the symmetry direction of any (transversely) isotropic elastic material,
which may also be subjected to a uniform steady stretching (always in the
symmetry direction).

As usual, we let X ∈ kR (B) denote a typical particle belonging to the
reference configuration kR (B) of the body, and let x ∈ kt (B) denote the
position occupied by X at time t. By the motion of the body, we mean a
one-to-one mapping χkR

that assigns to each point X belonging to kR (B) ,
a point x ∈ kt (B) , at each instant of time:

x = χkR
(X, t). (1.1)

In (Rajagopal, 1998) the following class of motions is considered

x = µ(t)X + f(Z, t), y = µ(t)Y + g(Z, t), z = λ(t)Z, (1.2)

i.e. two shearing motions in the Z-direction plus a time dependent homoge-
neous biaxial stretch.

Rajagopal (1998) studies the class of motions (1.2) only in the case of
incompressible neo-Hookean solids, for which we have µ2(t)λ(t) = 1; here we
are able to extend the study of Rajagopal to a general hyperelastic isotropic
material. In so doing we not only provide a remarkable and general addition
to the few exact solutions for the nonlinear equations of elastodynamics (see
for example Carroll, 1967, 1974, 1976, 1978 and the survey by Saccomandi,
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2007), but we are able to show explicit examples of instability connected with
the phenomenon of (auto)-parametric resonance.

The phenomenon we encounter is similar to that pointed out in the clas-
sical experiment of Melde (1860). In such an experiment a periodic change
in the longitudinal tension of a taut string resonantly parametrically excites
transverse waves when the frequency of the change of the tension is close to
twice the natural frequency of the transverse waves. The simplicity of this
physical system has generated an enormous literature from the experimental
(e.g., Hanson et al., 1994) and theoretical side (e.g., Rowland, 1994), start-
ing from the considerations of Lord Rayleigh summarized in his book on
acoustics (Strutt, 1945).

The theoretical investigations of the Melde experiment are based on the
study of vibrating string equations, but here we are considering bulk waves in
an elastic material1. As in Melde’s experiment we find that in the simplest
model of incompressible nonlinear elasticity (the neo-Hookean material) the
first parametric resonance ( designated the 2 : 1 resonance) occurs when the
speed of the unsteady perturbation of the axial stretch is twice the speed
of propagation of the transverse bulk waves in the material. Working with a
full three-dimensional theory and for the general class of hyperlastic isotropic
incompressible solids the situation is more complex and intriguing. Now,
the 2 : 1 resonance depends on the amount of pre-stretch and the various
material properties. Here, using suitable approximations, we are able to give
a detailed discussion of the emergence of this resonance as a function of the
various parameters involved in the problem.

We recall that for the Carroll waves (Carroll, 1967) the Cartesian com-
ponents of (1.1) are specified as

x = µX + f(z, t), y = µY + g(z, t), z = λZ, (1.3)

where
f(z, t) = A cos(kz −�t), g(z, t) = A sin(kz −�t). (1.4)

This class of motions represents a homogeneous stretching in the z-direction,
with longitudinal and transverse extension ratios λ and µ, respectively, to-
gether with a plane transverse wave which propagates in the z-direction.
Strictly speaking (1.2) does not contain (1.3) as special case but, as we will
show in the last section of the present paper, (1.2) is equivalent to a general-
ization of (1.3) if the underlying biaxial stretch is time-dependent. Moreover,

1A string in the ideal world of mathematics is a slender body characterized by the
property that it cannot withstand compression or bending and is therefore a very special
elastic structure.
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we point out that in (Carroll, 1974) the special case of (1.2) where

λ = µ ≡ 1, f(Z, t) = ϕ(t) cos(kZ), g(Z, t) = ϕ(t) sin(kZ), (1.5)

is considered. Therefore, also the results contained in (Carroll, 1974) are
generalized by our findings.

The plan of the paper is the following. In the next section we write
down the basic equations and deduce the determining equations for the
class of shearing motions (1.2). Section 3 is devoted to a discussion of the
possible reduction of these determining equations to a system of ordinary
differential equations when a suitable generalization of the idea of circularly
polarized transverse waves is considered. In section 4 we investigate in
detail this generalization in the special case of standing waves. For a Mooney-
Rivlin material, assuming the underlying unsteady simple extension in the
Z−direction to be an harmonic oscillation superimposed on a static stretch,
under some reasonable approximations of mechanical interest, it is possible
to compute the amplitude of the standing waves by solving a linear Mathieu
equation. This enables us to discuss the emergence of the parametric
resonance phenomenon in a clear and direct way. For nonlinear standing
waves we give numerical evidence that the nonlinear and non-autonomous
equation for the amplitude of the standing waves is stable although the so-
called pseudo-instability (Kidachi and Onogi, 1997) phenomenon may occur.
In this phenomenon the amplitude of the solution is bounded for all time but
it grows-up significantly with respect to the initial conditions. In section
5 we show that there is an equivalence between the motion introduced in
(Rajagopal, 1998) and the direct generalization to an unsteady biaxial stretch
of the class of motions (1.3) containing the Carroll waves (Carroll, 1967).
Some concluding remarks are contained in the last section of the paper.

2 Basic equations

The kinematic quantities of interest associated with the motion (1.1) are

F =
∂x

∂X
, B = FFT , C = FTF. (2.1)

When the material is incompressible it can undergo only isochoric motions
and thus

det F = 1. (2.2)

Requiring that the material in equilibrium is hyperelastic and isotropic
we introduce the strain energy density function W (I1, I2), where I1 and I2
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are the principal invariants of B or C. For isochoric deformations

I1 = trB ≡ trC, I2 = tr(B−1) ≡ tr(C−1). (2.3)

The usual representation formula for the Cauchy stress tensor reads

T = −pI + 2W1B − 2W2B
−1, (2.4)

where p is the indeterminate pressure introduced by the constraint (2.2), and
Wi = ∂W/∂Ii, i = 1, 2.

The balance equation of linear momentum is

divT + ρb = ρ
dv

dt
, (2.5)

where ρ is the material density, v is the velocity and, in what follows, we
shall ignore the body force b.

From (1.2) we compute

(Fij) =

⎛
⎝ µ 0 fZ

0 µ gZ

0 0 λ

⎞
⎠ (F−1

ij ) =

⎛
⎝ µ−1 0 −µfZ

0 µ−1 −µgZ

0 0 λ−1

⎞
⎠ , (2.6)

where a suffix denotes partial differentiation with respect to the considered
variable and because of (2.2) λ(t)µ2(t) ≡ 1.

On the other hand,

(Bij) =

⎛
⎝ µ2 + f 2

Z fZgZ λfZ

fZgZ µ2 + g2
Z λgZ

λfZ λgZ λ2

⎞
⎠ ,

(
B−1

ij

)
=

⎛
⎝ λ 0 −fZ

0 λ −gZ

−fZ −gZ λ−1 (µ2 + f 2
Z + g2

Z)

⎞
⎠ .

(2.7)

From (2.7) we have
I1 = 2µ2 + λ2 + f 2

Z + g2
Z (2.8)

and
I2 = 2λ2 + λ−1

(
µ2 + f 2

Z + g2
Z

)
. (2.9)
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Using (2.4) we compute the components of the Cauchy stress tensor as

T11 = −p+ 2 (µ2 + f 2
Z)W1 − 2λW2,

T22 = −p+ 2W1 (µ2 + g2
Z) − 2λW2,

T33 = −p+ 2λ2W1 − 2λ−1 (µ2 + f 2
Z + g2

Z)W2,

T12 = 2fZgZW1,

T13 = 2 (λW1 +W2) fZ ,

T23 = 2 (λW1 +W2) gZ .

(2.10)

Introducing (2.10) into the balance equations (2.5) we obtain

ρ (ftt + µttX) = − ∂p
∂x

+ ∂
∂z

[2(λW1 +W2)fZ ]

ρ (gtt + µttY ) = −∂p
∂y

+ λ ∂
∂z

[2(λW1 +W2)gZ ] ,
(2.11)

and

ρλttZ = −∂p
∂z

+
∂

∂z

{
2λ2W1 − 2λ−1

(
µ2f 2

Z + g2
Z

)
W2

}
. (2.12)

Using the formulas

∂

∂x
= µ−1 ∂

∂X
,
∂

∂y
= µ−1 ∂

∂Y
,

∂

∂z
= −µfZ

∂

∂X
− µgZ

∂

∂Y
+ µ2 ∂

∂Z
, (2.13)

and the notations F = fZ , G = gZ and Q = 2(W1 + λ−1W2) and eliminating
the indeterminate Lagrange multiplier p, we obtain the determining equations
for F and G

ρ

(
Ftt − µtt

µ
F

)
=
∂2 (QF )

∂Z2
,

(2.14)

ρ

(
Gtt − µtt

µ
G

)
=
∂2 (QG)

∂Z2
,

where Q = Q(t;F 2 +G2).
The system (2.14) is the generalization to any incompressible, isotropic

hyperelastic material of the equations in (Rajagopal, 1998) for neo-Hookean
solids. In this special case of constant Q the system (2.14) comprises two
linear and uncoupled partial differential equations for F and G.
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3 Special shearing motions

Here we determine a special class of solutions for the general system (2.14)
by reducing the partial differential equations to a system of ordinary differ-
ential equations via a generalization of the classical method of separation of
variables. Obviously, when Q is constant the standard method of separation
of variables may be applicable, but here our aim is to consider the general
class of incompressible isotropic elastic materials.

To this end, it is convenient to recast (2.14) as a single differential equa-
tion by introducing the complex notation Λ(Z, t) = F + iG to obtain

Λtt − µtt

µ
Λ =

∂2

∂Z2

[
Q(t; Λ2)

ρ
Λ

]
. (3.1)

We now search for solutions of (3.1) in the form

F = Ω(t) cos (θ(Z, t)) , G = Ω(t) sin (θ(Z, t)) , (3.2)

or equivalently
Λ = Ω(t) exp (iθ(Z, t)) . (3.3)

Introducing (3.3) in (3.1), we may write the real and imaginary part of
the resulting equation as

E1 := θ2
t − ρ−1Q(t; Ω2)θ2

Z − δ1(t) = 0,

(3.4)

E2 := θtt − ρ−1Q(t; Ω2)θZZ + δ2(t)θt = 0,

where δ1 = Ωtt/Ω − µtt/µ and δ2 = 2Ωt/Ω.
If in E1 = 0 we have δ1 = 0 then we obtain the factorization(

θt −
√
ρ−1QθZ

)(
θt +

√
ρ−1QθZ

)
= 0. (3.5)

Assuming that the Baker-Ericksen inequalities hold we deduce that Q > 0
(Beatty, 1987) and therefore (3.5) is meaningful.

By standard methods, we obtain the general integral of (3.5) in the form

θ(Z, t) = H(Z ± ψ(t)), (3.6)

where H is a function to be determined and

ψ′2 = ρ−1Q. (3.7)
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Introducing (3.6) into E2 = 0 we obtain

ψ′′ + δ2ψ
′ = 0, (3.8)

and hence Ω2ψ′ = constant, and so, by (3.7),

Ω4Q (λ(t),Ω) = constant. (3.9)

Therefore, for a given material and an unsteady stretch λ(t) equation (3.9)
determines Ω(t) as a function of λ(t). By substitution of the resulting Ω =
Ω (λ(t)) in δ1 = 0 we obtain a second order differential equation in λ = λ(t)
that restricts for the given material the admissible class of motions.

When δ1 �= 0, the compatibility problem for the overdetermined system
(3.4) in the unknown θ(Z, t) is considered by taking into account also the
derivatives of E1 with respect t and Z. The system

(E1)t = 0, (E1)Z = 0, E2 = 0, (3.10)

allows us to obtain explicitly the second derivatives, θZZ , θZt, θtt and to im-
pose the compatibility condition for the system (3.4) by cross differentiation.
In so doing, a long but straightforward computation allows us to find that
θ(Z, t) = kZ + φ(t), where k is a constant and φ is an unknown function.
Therefore, the overdetermined system (3.4) reduces to the (determined) sys-
tem of ordinary differential equations

Ω′′ = Ω

[
φ′2 +

µ′′

µ
− k2Q

ρ

]
, φ′′Ω + 2Ω′φ′ = 0, (3.11)

in the unknowns Ω(t) and φ(t). This system, when µ = λ ≡ 1, has been
derived in (Carroll, 1974).

By a simple integration of the second equation in (3.11) we obtain φ′ =
k1/Ω

2, where k1 is an arbitrary constant, and the amplitude Ω(t) is the
solution of the nonlinear and non-autonomous ordinary differential equation

Ω′′ = Ω

[
µ′′

µ
− k2Q

ρ

]
+
k2

1

Ω3
. (3.12)

The solutions of equation (3.11) when φ′ �= 0 are an important case;
indeed, the Carroll waves (1.3), (1.4) are solutions of this system when µ is
constant, Ω(t) = Ω0 and φ(t) = �t.

When θ(Z, t) = kZ + φ(t), from (3.2) we deduce in (1.2)

f(Z, t) = −Ω(t)

k
sin (kZ + φ(t)) , g(Z, t) =

Ω(t)

k
cos (kZ + φ(t)) (3.13)
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and therefore the solutions investigated in this section may be considered
as a generalization of the classical circularly polarized shear waves. Indeed,
when (3.13) is in force, the shearing motions in (1.2) are of equal amplitude
and they differ in phase by π/2.

In the following we restrict attention only to the case k1 = 0 and there-
fore φ(t) ≡ constant; then the solutions (3.2) may be considered as standing
waves. The equation (3.12) may be linear for special choices of the constitu-
tive equations. When k1 �= 0 the equation(3.12) is always nonlinear. This is
an interesting case related to the Pinney-Ermakov equation (Pinney, 1950).

4 Standing waves

4.1 Linear waves

We start by considering the Mooney-Rivlin strain-energy density W defined
by

2W (I1, I2) = µ0

(
1

2
+ β

)
(I1 − 3) + µ0

(
1

2
− β

)
(I2 − 3), (4.1)

where µ0 > 0 is the infinitesimal shear modulus and β is a constant satisfying
−1/2 ≤ β ≤ 1/2. When β = 1/2 we recover the neo-Hookean material and
the results in (Rajagopal, 1998).

Now

Q = µ0

[
1

2
+ β + λ−1

(
1

2
− β

)]
, (4.2)

and therefore the system (2.14) is once again linear (and decoupled). Now,
equation (3.12) reduces to the linear ODE

Ωtt −
{
µtt

µ
− µ0

ρ

[
1

2
+ β + λ−1

(
1

2
− β

)]
k2

}
Ω = 0. (4.3)

Let us consider a periodic oscillation superimposed on a static longitudinal
stretch,

λ(t) = λS + ε cos(ωt), (4.4)

where we assume ε > 0. Because λ(t) > 0 we must have λS − ε > 0. The
functional form (4.4) is of obvious mechanical interest.

We now introduce the dimensionless time τ = ωt and normalize (4.4) as

λ∗ ≡ λ

λS
= 1 + ε∗ cos(τ), (4.5)

where ε∗ ≡ ε/λS ∈ [0, 1[. Moreover, considering that the squared speed of a
transverse shear wave in an unstressed Mooney-Rivlin material is v2

T = µ0/ρ,

9



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

we introduce the dimensionless ratio between the squares of the two velocities
vT and ω/k, i.e.

v2
R = v2

T

k2

ω2
,

and rewrite (4.3) as

Ωττ −
{
µττ

µ
− v2

R

[
1

2
+ β + (λSλ

∗)−1

(
1

2
− β

)]}
Ω = 0. (4.6)

Introducing (4.5) in (4.6) we obtain Hill’s equation (Stoker, 1950)

Ωττ −
{
ε∗(ε∗ sin2(τ) + 2 cos(τ) + 2ε∗)

(2ε∗ cos(τ) + 2)2

− v2
R

[
1

2
+ β +

(
1
2
− β

)
λ−1

S

1 + ε∗ cos(τ)

]}
Ω = 0. (4.7)

If ε∗ << 1 equation (4.7) may be approximated by Mathieu’s equation
(Stoker, 1950)

Ωττ +

{
v2

R

[
1

2
+ β +

(
1

2
− β

)
λ−1

S

]

− [
(1 − 2β) v2

Rλ
−1
S + 1

] ε∗
2

cos(τ)

}
Ω = 0. (4.8)

For the neo-Hookean material (β = 1/2) we obtain the Hill equation

Ωττ +

{
v2

R − ε∗(ε∗ sin2(τ) + 2 cos(τ) + 2ε∗)
(2ε∗ cos(τ) + 2)2

}
Ω = 0, (4.9)

and the related Mathieu equation

Ωττ +

{
v2

R − ε∗

2
cos(τ)

}
Ω = 0. (4.10)

The approximation of the Hill equation with the Mathieu equation allows
us to obtain in a simple and direct way some analytical results. Indeed, the
classical analysis for the Mathieu equation Ωττ + [δ+ ε cos(τ)]Ω = 0 predicts
the first instability (2 : 1 resonance) for any ε > 0 when δ = 1/4 (Stoker,

10
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Figure 1: The critical value of vR at the 2 : 1 resonance as a function of the
parameter β for different λS.

1950). This means that, for equation (4.8), the 2 : 1 resonance occurs for
any ε∗ > 0 when

v2
R =

1

4

[
1

2
+ β +

(
1

2
− β

)
λ−1

S

]−1

. (4.11)

For the neo-Hookean material (4.11) gives v2
R = 1/4, i.e. 2vT = ω/k as in the

Melde experiment. It is also important to observe that, when (4.11) holds,
then also the Hill equation (4.7) is unstable for any value of ε∗.

In figure 1 we plot, for different values of λS, vR versus β at the 2 : 1
resonance. For all values of λS the curves collapse to 1/2 when β = 1/2
(this because the neo-Hookean case is independent of the static amount of
pre-stretch). In extension (λS > 1) the critical value of vR is a monotone
decreasing function of β whereas in compression (λS < 1) it is monotone
increasing. The case λS = 1 is equivalent to the neo-Hookean case.

It must be clear that the Mathieu approximation is meaningful only for
small ε∗, whereas, for the critical value vR both the Hill and Mathieu equa-
tions predict the instability for all ε∗ > 0, and as we depart from this critical

11
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Figure 2: Examples of the limit of the Mathieu approximation for ε∗ = 0.2
and initial conditions Ω(0) = 1, Ωτ (0) = 0 in the neo-Hookean case. In the
top figure v2

R = 0.2 and in the bottom figure v2
R = 0.3.
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value and increase ε∗ the Mathieu approximation fails. To illustrate this we
consider the neo-Hookean case, i.e. equations (4.9) and (4.10). For example,
if we pick vR smaller than 1/2 and ε∗ = 0.2 we find that the solution of the
Mathieu equation is unstable, whereas the solution of the Hill equation is sta-
ble. On the other hand, for a vR ≥ 1/2 and ε∗ = 0.2 the situation is reversed.
In figure 2 the two situations are illustrated via two specific numerical ex-
amples. The numerical stability (instability) of the Hill equation considered
in these example may be confirmed by the standard Floquet theory (Stoker,
1950).

For β �= 1/2 the analysis of the problem is more complex because several
parameters enter the picture. To understand what is going on, we consider
the classical Mathieu tongues (Stoker, 1950) emanating from the 2 : 1 reso-
nance at order O(ε). In this case the tongues dividing the stable from the
unstable region are the two lines2 δ = 1/4 ± ε/2. Let us denote by α the
angle between these two lines with v2

R given by (4.11). As shown in figure
3 this angle does not depend on λS for β = 1/2 (neo-Hookean materials)
or β = −1/2. For other β increasing the pre-stretch decreases the angle α.
This is because a certain amount of extension helps to stabilize the amplitude
of the oscillations. On the other hand, the materials with a positive param-
eter β are more stable than a material with a negative β. In this sense the
neo-Hookean material is the most stable within the family of Mooney-Rivlin
strain energies (4.1).

From the analysis of this sub-section we recognize that, although the use
of a Mathieu approximation of the Hill equation may be misleading (see
figure2), the possibility of using a simple analytical procedure to investi-
gate a differential equation is a fundamental tool for understanding what is
happening and to address possible numerical experiments. Clearly, all this
is more important when a long list of parameters characterize the problem
under scrutiny.

REMARK: We point out that the Mooney-Rivlin material (4.1) is the only
one for which the determining equation for the amplitude Ω(t) is linear.
Indeed, a necessary condition , when φ = 0, for equation (3.11) to be linear in
Ω(t) is W1 +λ−1W2 ≡ ϕ(λ), where ϕ is an arbitrary function of its argument.
Indeed, in this case we have Q = Q(λ) instead of Q = Q(Ω2, λ). Because, by
(2.8) and (2.9), we have ∂W/∂(Ω2) = W1 + λ−1W2 our assumption requires
W = ϕ(λ)Ω2 + ϕ̂(λ). A strain-energy function which is linear in Ω2 must be
linear in the principal invariants I1 and I2.

2We are using the standard form of Mathieu’s equation.
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Figure 3: The angle α between the two tongues emanating from the 2 : 1
resonance. Top figure: α as a function of the parameter β for various λS.
Bottom figure: α as a function of λS for various β.
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4.2 Nonlinear waves

In the linear case the phenomena of stability or instability depend only on
the parameters describing the physics of the phenomena. The situation is
quite different when we consider the nonlinear case, because now the initial
conditions play an important role. To examine this situation, let us consider
the strain-energy density function W given by

2W = µ0(I1 − 3) +
µNL

2
(I1 − 3)2, (4.12)

where µ0 > 0 is the infinitesimal shear modulus (as in the neo-Hookean
material) and µNL is a constitutive parameter 3.

Now
Q = µ0 + µNL(2µ2 + λ2 + Ω2 − 3) (4.13)

and the determining differential equation for the amplitude of the shearing
motions is the nonlinear equation

Ωττ −
{
µττ

µ
− k2

ρω2

[
µ0 + µNL(2λ−1

S λ∗−1 + λ2
Sλ

∗2 − 3)
]}

Ω

− µNLk
2

ρω2
Ω3 = 0. (4.14)

By assuming ε∗ << 1 we obtain the approximate equation

Ωττ +

{
v2

R + v2
RnlIS1 +

[
v2

Rnl

(
2λ2

S − 2λ−1
S

) − 1

2

]
ε∗ cos(τ)

}
Ω

+ v2
RnlΩ

3 = 0, (4.15)

where

v2
R =

µ0k
2

ρω2
, v2

Rnl =
µNLk

2

ρω2
, IS1 = 2λ−1

S + λ2
S − 3.

It is convenient to rewrite equation (4.15) by introducing the notation

Ω =
Ω̂

2vRnl

, τ = 2τ̂ , (4.16)

and

1 + δ̂ = 4(v2
R + v2

RnlIS1), ε∗ =
1

2

ε̂

1 − 2v2
Rnl(2λ

2
S − 2λ−1

S )
, (4.17)

3When the Baker-Ericksen inequality is in force we must have µNL > 0
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so that
Ω̂τ̂ τ̂ +

[
1 + δ̂ ∓ ε̂ cos(2τ̂)

]
Ω̂ + Ω̂3 = 0. (4.18)

Equation (4.18) is a nonlinear Mathieu equation4.
To investigate the behavior of the solutions of equation (4.18) it is usual to

restrict the analysis to a neighborhood of the origin by considering Ω̂ =
√
ε̂Ω̃,

i.e.
Ω̃ττ +

[
1 + δ̂ ∓ ε̂

]
Ω + ε̂Ω̃3 = 0, (4.19)

and to use classical perturbation methods (see for example Kidachi and
Onogi, 1997).

For ε̂ = 0 equation (4.18) is autonomous and it is possible to compute
its exact solution in terms of elliptic functions. In (Zounes and Rand, 2002)
on the basis of this fact a perturbation expansion in ε̂, valid also for large
amplitudes, has been considered. We mention that the method of Zounes
and Rand is applicable only because we know the exact solution of the un-
perturbed equation and this is a happenstance.

For more complex strain-energy functions than (4.12) the corresponding
nonlinear Hill equation contains nonlinearities that may be non-polynomial.
For example, this is the case for the Gent model

2W = −µ0Jm ln

(
1 − I1 − 3

Jm

)
, (4.20)

where µ0 > 0 is the infinitesimal shear modulus and Jm > 1 is a limiting
chain extensibility parameter. Now, since for (4.20) we have

Q =
µ0Jm

Jm − (I1 − 3)
, (4.21)

equation (3.12) (with k1− = 0) gives

Ωττ −
{
µττ

µ
− k2

ρω2

[
µ0Jm

Jm − (2λ−1
S λ∗−1 + λ2

Sλ
∗2 + Ω2 − 3)

]}
Ω = 0. (4.22)

Assuming ε∗ small we have

Ωττ +

{
λSv

2
R

Γ − λSΩ2
+ ε∗ cos(τ)

[
2(λ2

S − 1)λSv
2
R

(Γ − λSΩ2)2
− 1

2

]}
Ω = 0, (4.23)

where Γ = λS(Jm + 3) − λ3
S − 2. It is not possible to perform a direct

perturbation in ε∗ as in (Zounes and Rand, 2002) to study (4.23) because

4The ∓ in (4.18) has been introduced to set ε̂ for any choice of λS

16



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

0 20 40 60 80 100 120 140 160 180 200
−10

−8

−6

−4

−2

0

2

4

6

8

τ

Ω

non−linear

linear

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

τ

Ω

Figure 4: Solutions of (4.15) for ε∗ = 0.1, λS = 1 and initial conditions
Ω(0) = 0.1, Ωτ (0) = 0. For the linear case v2

R = 0.24, v2
Rnl = 0, for the

nonlinear case v2
R = 0.24, v2

Rnl = 0.5. In the bottom figure the solution of
the nonlinear equation is computed for a longer time.
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we do not know the exact solution of the nonlinear unperturbed equation
(ε∗ = 0). On the other hand, if we consider Ω =

√
ε∗ΓΩ̂/(λSvr), at order

O(ε∗), we obtain

Ω̂ττ +

{
λSv

2
R

Γ
+

[
2(λ2

S − 1)λSv
2
R

Γ2
− 1

2

]
ε∗ cos(τ)

}
Ω̂ + ε∗Ω̂3 = 0, (4.24)

which may be recast in the form (4.18) by renaming the various parameters.
For any strain energy such that Q(Ω2, t) = Q0(t) +Q1(t)Ω

2 + . . . is valid
with Q1(t) �= 0 in the neighborhood of the origin the determining equation
for the amplitude is equivalent, up to O(ε∗), to equation (4.18), therefore we
shall restrict our attention to the perturbation approach as in (Kidachi and
Onogi, 1997).

A general result about the nonlinear case is that the nonlinearity may
stabilize the linear unstable motion. For example, when δ = 1/4 in the linear
case for all the values of ε the corresponding motions are unstable, whereas
all the motions of the nonlinear equation are bounded. This situation is
justified in (Rand and Zounes, 2002):

From a mechanical point of view, motion under nonlinear res-
onance is prevented from becoming unbounded: as the ampli-
tude of motion increases, the frequency increases, and the system
ceased to be in resonance.

Nevertheless, in the nonlinear case, there may be observed a relevant growth
of the amplitude of the solution. Although the solution is bounded, it may
be that, for some values of the parameters and of the initial conditions the
amplitude evolves in time in such a way that relevant peaks may be reached.
The values of the parameters and the initial data for which this phenomenon
is encountered may be teased out by performing the classical multiple scale
perturbation method. To this end, because there is an interval centered on
λS = 1 such that for any vRnl we have ε̂ > 0 we restrict our attention to this
case and to simplify the notation we drop the hats.

We consider a fast time τ0 ≡ τ and a slow time τ1 ≡ ετ such that

Ω(τ) =
√
ε (Ω0(τ0, τ1) + εΩ1(τ0, τ1) + . . .) , δ = εδ1 + . . . . (4.25)

On introducing (4.25) into (4.18) standard computations allow us to find

Ω0(τ0, τ1) = 2A(τ1) cos(τ0) + 2B(τ0) sin(τ0). (4.26)

18



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

      

  

To remove secular terms A(τ1) and B(τ1) must be determined from the non-
linear but autonomous system

Aτ1 = −1

2
B

[
1

2
+ δ1 + 3

(
A2 +B2

)]
,

Bτ1 =
1

2
A

[
−1

2
+ δ1 + 3

(
A2 +B2

)]
. (4.27)

To obtain information on the behavior of the solutions of (4.18), in a neigh-
bour of the origin, we perform a phase plane analysis of the system (4.27).
We start by noting that for δ1 < −1/2 and δ1 > 1/2 the origin (A,B) = (0, 0)
is a center, whereas for −1/2 < δ1 < 1/2 the origin is a saddle point. Because

Ω(0) = 2
√
ε (A(0) +O(ε)) , Ωτ (0) = 2

√
ε (B(0) +O(ε)) , (4.28)

all the information collected from (4.27) may be read directly in terms of the
amplitude of the shearing motion.

For δ1 < −1/2 there are equilibria of (4.27): the origin, the saddle
points (0,±√

(1/2 − δ1)/3) and the centers (±√
(−1/2 − δ1)/3, 0). It is

therefore interesting to study what happens to the solutions of (4.18) when
we move from the center (A,B) = (0, 0) to the saddle point (A,B) =
(0,

√
(1/2 − δ1)/3. This means that we start from a solution correspond-

ing to initial conditions Ω(0),Ωτ (0) near to (0, 0) and we increase the initial
value of the kinetic energy.

As in (Kidachi and Onogi, 1997) we consider the total energy of the linear
autonomous equation, i.e. E(τ) := (Ω2

τ + Ω2)/2, and the function

E(τ) = log10 {E(τ)/E(0)} . (4.29)

At time τ , E(τ) is balanced by the power expended by the O(ε)-forces in
(4.19) in the interval [0, τ ]. Therefore, if the quantity E(τ) computed from
the solutions of (4.19) is positive it means that the terms of order O(ε) pump
energy into the system, otherwise energy is absorbed.

In figure 5 (top) we show a solution usually characterized as stable. For
any τ the amplitude oscillates in the interval (−0.2, 0.2) and the quantity
E(τ) is negative. On the other hand in the bottom plot we show a pseudo-
unstable solution because we are nearer to the saddle point of the system
(4.27). The range of the oscillations of the amplitude after a very short time
(less than τ = 50) is (−0.2, 0.2), then we move to the range (−0.5, 0.5). The
solutions are bounded in both cases (as can be checked by considering that
their orbits in the phase-plane of (4.27) are closed), but a small difference
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in the initial conditions determines an appreciable growth of the amplitude
of the shearing motions and this is because, as clearly shown by the time
evolution of E(τ), the O(ε)-forces are pumping energy into the system.

In the last figure 6 we show what happens around the origin (A,B) =
(0, 0) when δ1 = −0.02 and therefore the origin is a saddle point and when
δ1 = 0.06 and the origin is a center. In the first numerical experiment we
record a pseudo-unstable solution. We start with Ω(0) = 0.01,Ωτ(0) = 0
and then Ω(τ) oscillates in the range (−0.4, 0.4). On the other hand, in the
second numerical experiment the initial value is the bound for |Ω(τ)| for all
τ .

5 An equivalent class of motions

The strict generalization of (1.3) to the case of a dynamical biaxial stretch
reads

x = µ(t)X + f̃(z, t), y = µ(t)Y + g̃(z, t), z = λ(t)Z, (5.1)

where again µ2(t)λ(t) = 1.
From (5.1) it follows that the components of the gradient of the deforma-

tion F and its inverse have the forms

(F̃ij) =

⎛
⎝ µ 0 λf̃z

0 µ λg̃z

0 0 λ

⎞
⎠ , (F̃−1

ij ) =

⎛
⎝ µ−1 0 −µ−1f̃z

0 µ−1 −µ−1g̃z

0 0 λ−1

⎞
⎠ . (5.2)

We point out that the gradient of the deformation (5.1) may be decom-
posed as F̃ = F̃2F̃1, where

(F̃1,ij) =

⎛
⎝ µ 0 0

0 µ 0
0 0 λ

⎞
⎠ , (F̃2ij) =

⎛
⎝ 1 0 f̃z

0 1 g̃z

0 0 1

⎞
⎠ . (5.3)

From this decomposition it is clear what we mean by declaring that (5.1) is
the superposition of two principal transverse shearing motions on an isochoric
biaxial stretch motion. A similar decomposition is not possible for (1.2). We
point out that if we substitute f̃z and g̃z with λ−1f̃Z and λ−1g̃Z the tensor
F̃ looks similar to F but we have to be careful to evaluate the dependence
f̃ (λ(t)Z, t) and g̃ (λ(t)Z, t). Despite all this, we show that the motions (1.2)
and (5.1) are indeed equivalent.

The components of the left Cauchy-Green tensor and its inverse associated
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Figure 5: Solutions of equation (4.18) and the corresponding evolution of
the quantity E(τ) for ε∗ = 0.1 and δ = −0.08 and initial conditions Ω(0) =
0, Ωτ (0) = 0.19 (top) and Ω(0) = 0, Ωτ (0) = 0.21 (bottom).21
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with the motion (5.1) are

(
B̃ij

)
=

⎛
⎝ µ2 + λ2f̃ 2

z λ2f̃zgz λ2f̃z

λ2f̃zg̃z µ2 + λ2g̃2
z λ2g̃z

λ2f̃z λ2g̃z λ2

⎞
⎠ ,

(
B̃−1

ij

)
=

⎛
⎜⎝

λ 0 −λf̃z

0 λ −λg̃z

−λf̃z −λg̃z µ4 + λ
(
f̃ 2

z + g̃2
z

)
⎞
⎟⎠ .

(5.4)

From (5.4) we have

Ĩ1 = 2µ2 + λ2
(
1 + f̃ 2

z + g̃2
z

)
(5.5)

and

Ĩ2 = µ4 + λ
(
2 + f̃ 2

z + g̃2
z

)
≡ 2λ+ λ−1

(
µ2 + λ2(f̃ 2

z + g̃2
z)

)
. (5.6)

The components of the Cauchy stress tensor are given by

T11 = −p + 2
(
µ2 + λ2f̃ 2

z

)
W1 − 2λW2,

T22 = −p + 2W1 (µ2 + λ2g̃2
z) − 2λW2,

T33 = −p + 2λ2W1 − 2
[
µ4 + λ

(
f̃ 2

z + g̃2
z

)]
W2,

T12 = 2λ2f̃z g̃zW1,

T13 = 2 (λW1 +W2)λf̃z,

T23 = 2 (λW1 +W2)λg̃z.

(5.7)

Introducing (5.7) into the representation formula and into the balance
equation (2.5) we obtain

ρ
[
f̃tt + µttX + f̃zz

(
λt

λ

)2
z2 +

(
2f̃zt

λt

λ
+ f̃z

λtt

λ

)
z
]

=

− ∂p
∂x

+ ∂
∂z

{
2 (λW1 +W2)λf̃z

}
,

ρ
[
g̃tt + µttY + g̃zz

(
λt

λ

)2
z2 +

(
2g̃zt

λt

λ
+ g̃z

λtt

λ

)
z
]

=

− ∂p
∂y

+ ∂
∂z

{2 (λW1 +W2)λg̃z} ,

(5.8)
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and

ρ
λtt

λ
z =

∂

∂z

{
2λ2W1 − 2

(
µ4 + λ

(
f 2

z + g2
z

))
W2

} − ∂p

∂z
. (5.9)

Now we observe that

f̃(z, t) ≡ f̃(λZ, t) ≡ f̂(Z, t), (5.10)

and therefore the following transformation rules are in force:

∂f̂

∂t
≡ ∂f̃

∂z

λt

λ
z +

∂f̃

∂t
,
∂f̂

∂z
≡ ∂f̃

∂z
λ,

(5.11)

∂2f̂

∂t2
≡ ∂2f̃

∂z2

λ2
t

λ2
z2 + 2

∂2f̃

∂z∂t

λt

λ
z +

∂f̃

∂z

λtt

λ
z +

∂2f̃

∂t2
.

Similar relations are obviously obtained for the derivatives of ĝ.
Using in (5.8) the relations (5.11) and the corresponding relations for the

derivatives of ĝ, we rewrite these equations as

ρ
[
f̂tt + µttX

]
= − ∂p̂

∂x
+ ∂

∂z

[
2(λŴ1 + Ŵ2)f̂Z

]
,

ρ
[
ĝtt + µttY

]
= −∂p̂

∂y
+ λ ∂

∂z

[
2(λŴ1 + Ŵ2)ĝZ

]
,

(5.12)

where Ŵ = W (Î1, Î2) and

Î1 = 2µ2 + λ2 + f̂ 2
Z + ĝZ , Î2 = 2λ+ λ−1(µ2 + f̂ 2

Z + ĝ2
Z). (5.13)

Now, it is clear that if f(Z, t) and g(Z, t) are chosen so that the motion
(1.2) of the equations (2.11) then

f(Z, t) = f̂(Z, t) = f̂
(z
λ
, t

)
, g(Z, t) = ĝ(Z, t) = ĝ

(z
λ
, t

)
(5.14)

determine two functions f̃(z, t) and g̃(z, t) such that the motion (5.1) is a
solution of the equations (5.11).

The converse is also true: if f̃(z, t) and g̃(z, t) are such that the motion
(5.1) is a solution of the balance equations the transformation chains

f̃(z, t) = f̃(λZ, t) = f̂(Z, t) = f(Z, t),

g̃(z, t) = g̃(λZ, t) = ĝ(Z, t) = g(Z, t), (5.15)
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deliver two functions f(Z, t) and g(Z, t) such that the motion (1.2) is a solu-
tion of the balance equations.

Therefore the class of motions (1.2) studied in (Rajagopal, 1998) is equiv-
alent to the generalization (5.1) of the solutions proposed in (Carroll, 1967).
For example, if we have a solution of the system (3.11) the corresponding
functions

F̃ (z, t) = Ω(t) cos

(
k

λ
z + ψ(t)

)
, G̃(z, t) = Ω(t) sin

(
k

λ
z + ψ(t)

)

allow us to compute the functions f̃(z, t) and g̃(z, t) such that the motion
(5.1) is a solution of the corresponding balance equations.

6 Concluding remarks

The shearing motions considered here are interesting for at least two reasons.
First of all there is a class of solutions that may be determined by re-

ducing the balance equations to the system of ordinary differential equations
(3.11). This system of ordinary differential equations is non-autonomous and
nonlinear, but for some choices of the axial stretch λ(t) it is possible to find
some exact solutions. In such a way new exact solutions of the equations of
nonlinear elastodynamics may be added to the few reported in the literature,
but these solutions seems to be quite artificial.

The second reason why the solutions reported here are interesting is that
they may be used to build up examples of parametric resonance in the frame-
work of nonlinear elastodynamics, and this is exactly the aspect we have
chosen to investigate. By choosing the axial stretch in a significant way from
the mechanical point of view we have shown that the system of equations
(3.11) in the standing wave case may be reduced to a nonlinear or linear
Mathieu equation. In the linear case the classical treatment of Mathieu’s
equation has allowed a detailed discussion of the 2 : 1 resonance case. It is
interesting to point out that the same parametric resonance determined in
the Melde experiment may be reproduced if we consider the special case of
the neo-Hookean material. In the nonlinear case, at least for small ε∗ and
small initial data, we find other explicit examples of global existence in non-
linear elastodynamics. Clearly, more sophisticated analyses are possible for
obtaining in this direction more definitive results, but the analyses we have
reported are sufficient to give some interesting and mechanically meaningful
examples. It is important to point out that these examples of global existence
satisfy the same class of initial data as the Carroll waves for the displacement,
but a slightly more general class of initial data for the velocities.
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Several open problems related to the topic of the present research may
be discussed. First of all, a detailed study of traveling waves; then, the
possibility of extending the class of solutions determined here to the non-
linear theory of viscoelasticity of differential and integral type. Moreover,
because the equations for the propagation of transverse waves are similar to
the equations governing the motion of nonlinear elastic strings (see Destrade
and Saccomandi, 2004), it would be interesting to investigate if a Melde ex-
periment with a rubber cord is able to display in the real world some of the
theoretical predictions of the present research.
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