

# Co-receptor switch during HAART is independent of virological success

Annalisa Saracino, Laura Monno, Donatella C<br/> Cibelli, Grazia Punzi, Gaetano Brindicci, Nicoletta Ladisa, Alessandra Tartaglia, Antonella Lagio<br/>ia, Gioacchino Angarano

# ▶ To cite this version:

Annalisa Saracino, Laura Monno, Donatella C<br/> Cibelli, Grazia Punzi, Gaetano Brindicci, et al.. Coreceptor switch during HAART is independent of virological success. Journal of Medical Virology, 2009, 81 (12), pp.2036.<br/>  $10.1002/\mathrm{jmv}.21598$ . hal-00531822

# HAL Id: hal-00531822 https://hal.science/hal-00531822

Submitted on 4 Nov 2010

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Journal of Medical Virology

# Co-receptor switch during HAART is independent of virological success

| Journal:                         | Journal of Medical Virology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                   | JMV-09-1289.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wiley - Manuscript type:         | Research Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date Submitted by the<br>Author: | 04-Jun-2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Complete List of Authors:        | Saracino, Annalisa; University of Foggia, Clinic of Infectious<br>Diseases<br>Monno, Laura; University of Bari, Clinic of Infectious Diseases<br>Cibelli, Donatella; University of Foggia, Clinic of Infectious Diseases<br>Punzi, Grazia; University of Bari, Clinic of Infectious Diseases<br>Brindicci, Gaetano; University of Bari, Clinic of Infectious Diseases<br>Ladisa, Nicoletta; University of Bari, Clinic of Infectious Diseases<br>Tartaglia, Alessandra; University of Foggia, Clinic of Infectious<br>Diseases<br>Lagioia, Antonella; University of Bari, Clinic of Infectious Diseases<br>Angarano, Gioacchino; University of Foggia, Clinic of Infectious<br>Diseases |
| Keywords:                        | HIV-1, biological phenotype, env V3 loop, co-receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



45 46 47

|       |                 |            | Ba        | seline patient         | characterist    | ics                       |                      | Virological and outco | immunological<br>ome | Co              | Co-receptor Shift |                       |  |  |  |  |
|-------|-----------------|------------|-----------|------------------------|-----------------|---------------------------|----------------------|-----------------------|----------------------|-----------------|-------------------|-----------------------|--|--|--|--|
| Pt    | MT-2<br>isolate | RNA<br>V3  | DNA<br>V3 | Baseline<br>CD4        | Baseline<br>pVL | Antiretroviral<br>Therapy | New HAART regimen    | F-up CD4              | F_up pVL             | MT-2<br>isolate | RNA<br>V3         | DNA<br>V3             |  |  |  |  |
| Naiv  | e patients      |            |           |                        |                 | 12                        |                      |                       |                      |                 |                   |                       |  |  |  |  |
| 1     | SI              | R5         | X4        | 48(6%)                 | 5,56            | none                      | EFV +AZT+3TC         | 169 (19%)             | 1,7                  | _               | _                 | X4→R5                 |  |  |  |  |
| 2     | SI              | R5         | X4        | 9 (1%)                 | 5,07            | none                      | LPV/r + TDF+3TC      | 198 (13%)             | 1,7                  |                 |                   | X4→R5                 |  |  |  |  |
| 3     | NSI             | X4/R5      | X4        | 94 (4%)                | 2,66            | none                      | LPV/r + TDF+3TC      | 104 (6%)              | 1,7                  | _               | _                 | X4→R5                 |  |  |  |  |
| 4     | NSI             | R5         | X4/R5     | 590 (24%)              | 5,14            | none                      | LPV/r + TDF/FTC+T-20 | 633 (24%)             | 1,7                  | _               | _                 | X4/R5→R               |  |  |  |  |
| 5     | NSI             | R5         | R5        | 3 (1%) ´               | 5,00            | none                      | LPV/r + TDF/FTC      | 170 (10%)             | 1,7                  | _               | -                 | R5→X4                 |  |  |  |  |
| 6     | NSI             | R5         | R5        | 15 (3%)                | 5,32            | none                      | EFV +ABC/3TC         | 112 (8%)              | 1,7                  | _               | -                 | R5→X4                 |  |  |  |  |
| 7     | NSI             | X4         | R5        | 22 (4%)                | 4.60            | none                      | LPV/r + ABC/3TC      | 369 (16%)             | 1.7                  | _               | -                 | no                    |  |  |  |  |
| 8     | NSI             | R5         | R5        | 72 (12%)               | 4.54            | none                      | LPV/r + ABC/3TC      | 395 (26%)             | 1.7                  | _               | _                 | no                    |  |  |  |  |
| 9     | NSI             | R5         | R5        | 73 (6%)                | 4.68            | none                      | LPV/r + TDF/FTC      | 341 (11%)             | 1.7                  | _               | _                 | no                    |  |  |  |  |
| 10    | NSI             | B5         | X4/R5     | 13 (3%)                | 5 25            | none                      | I PV/r + ABC/3TC     | 364 (12%)             | 17                   | _               | _                 | no                    |  |  |  |  |
| 11    | NSI             | R5         | R5        | 302 (24%)              | 4 90            | nono                      |                      | 484 (20%)             | 17                   | -               | -                 | no                    |  |  |  |  |
| 10    | NGI             | DE         | NJ<br>V/  | 07 (10%)               | 4,90            | none                      |                      | 404 (2970)            | 1,7                  | -               | -                 | 110                   |  |  |  |  |
| 12    | NO              |            | Λ4<br>D5  | 97 (10%)<br>254 (220/) | 0,27            | none                      |                      | 172 (10%)             | 2,7                  | -               | -                 | 110                   |  |  |  |  |
| 10    | INGI<br>NCI     | CD<br>V4   | n0<br>D5  | 304 (23%)<br>0         | 4,75            |                           |                      | 290 (20%)             | 1,7                  | -               | -                 | 110                   |  |  |  |  |
| 14    | INGI<br>NCI     | Λ4<br>D5   | n0<br>D5  |                        | 0,40<br>5.40    |                           |                      | 43 (2%)               | 1,7                  | -               | -                 | 110                   |  |  |  |  |
| 10    | INSI<br>NCI     |            | no<br>Dr  | 141(13%)               | 5,49            | none                      |                      | 227 (13%)             | 3,8                  | -               | -                 | no                    |  |  |  |  |
| 10    | INSI<br>NOI     | H0<br>D5   | HD<br>DF  | 101 (14%)              | 0,57            | none                      |                      | 531 (23%)             | 3,1                  | -               | -                 | no                    |  |  |  |  |
| 1/    | NSI             | R5         | H5        | 367 (20%)              | 4,64            | none                      |                      | 617 (32%)             | 1,7                  | -               | -                 | no                    |  |  |  |  |
| 18    | NSI             | R5         | H5        | 247 (26%)              | 5,04            | none                      | t-APV/r+ ABC/3TC     | 541 (30%)             | 1,7                  | _               | _                 | no                    |  |  |  |  |
| Antir | retroviral expe | erienced p | atients   |                        |                 |                           |                      |                       |                      |                 |                   |                       |  |  |  |  |
| Kes   | ponders         | <b>D</b> - |           |                        |                 |                           |                      | 000 (1000)            | , <u> </u>           |                 |                   | V4 D5                 |  |  |  |  |
| 19    | NSI             | R5         | X4        | 161 (12%)              | 5,77            | LPV/r + IDF+31C           | IPV/r+ EFV +IDF+31C  | 323 (19%)             | 1,7                  | -               | -                 | X4→H5                 |  |  |  |  |
| 20    | NSI             | H5         | H5        | 72 (15%)               | 6,38            | LPV/r + IDF+31C           | 1PV/r+1DF+31C+1-20   | 273 (21%)             | 1,7                  | -               | -                 | $H_5 \rightarrow X_4$ |  |  |  |  |
| 21    | NSI             | R5         | R5        | 264 (30%)              | 4,80            | f-APV/r + DDI+TDF+3TC     | TPV/r+TDF+3TC+T-20   | 459 (34%)             | 1,7                  | _               | -                 | R5→X4                 |  |  |  |  |
| 22    | NSI             | R5         | R5        | 562 (29%)              | 3,27            | LPV/r + D4T+3TC           | TPV/r+3TC+EFV        | 603 (32%)             | 1,7                  | -               | _                 | no                    |  |  |  |  |
| 23    | NSI             | R5         | R5        | 194 (11%)              | 4,39            | EFV + TDF+3TC             | TPV/r+TDF+3TC+T-20   | 324 (18%)             | 1,7                  | -               | _                 | no                    |  |  |  |  |
| 24    | NSI             | X4         | X4        | 65 (8%)                | 4,46            | LPV/r + TDF+3TC           | TPV/r+TDF+3TC+T-20   | 224 (14%)             | 1,7                  | _               | _                 | no                    |  |  |  |  |
| 25    | NSI             | R5         | R5        | 468 (18%)              | 5,11            | LPV/r + AZT+3TC           | TPV/r+TDF+3TC+T-20   | 367 (20%)             | 1,7                  | _               | _                 | no                    |  |  |  |  |
| 26    | NSI             | X4         | X4        | 235 (7%)               | 5,00            | LPV/r+3TC+TDF             | TPV/r+EFV +3TC       | 295 (8%)              | 1,7                  | _               | _                 | no                    |  |  |  |  |
| 27    | NSI             | X4         | X4        | 311 (17%)              | 4,36            | SQV/r + AZT/3TC           | TPV/r+TDF+3TC+T-20   | 470 (16%)             | 1,7                  | _               | _                 | no                    |  |  |  |  |
| Non   | responders      |            |           |                        |                 |                           |                      |                       |                      |                 |                   |                       |  |  |  |  |
| 28    | SI              | X4         | X4        | 27 (3%)                | 4,54            | LPV/r + TDF+3TC           | TPV/r+ EFV +TDF/FTC  | 22 (2%)               | 5,30                 | SI→NSI          | no                | X4→R5                 |  |  |  |  |
| 29    | SI              | R5         | R5        | 30 (5%)                | 5,84            | ATV/r+TDF+3TC +T-20       | TPV/r+TDF+3TC+T-20   | 77 (7%)               | 5,34                 | SI→NSI          | no                | no                    |  |  |  |  |
|       |                 |            |           | . ,                    |                 |                           |                      | · · ·                 |                      |                 |                   |                       |  |  |  |  |

| 2 | 30 | SI  | R5 | R5 | 90 (6%)   | 2,90 | LPV/r+TDF+ ABC +3TC  | TPV/r+TDF+ABC+3TC   | 122 (8%)  | 4,57 | no | no    | no |  |
|---|----|-----|----|----|-----------|------|----------------------|---------------------|-----------|------|----|-------|----|--|
| 3 | 31 | NSI | R5 | R5 | 143 (20%) | 4,44 | f-APV+RTV +ABC + 3TC | TPV/r+ABC/3TC+ T-20 | 178 (14%) | 3,36 | no | no    | no |  |
| 4 | 32 | NSI | R5 | R5 | 170 (25%) | 4,71 | LPV/r+TDF+3TC        | TPV/r+TDF+3TC+T-20  | 172 (21%) | 5,11 | no | no    | no |  |
| 5 | 33 | NSI | X4 | R5 | 123 (5%)  | 4,79 | LPV/r +TDF+3TC       | TPV/r+ABC/3TC+EFV   | 202 (6%)  | 4,04 | no | no    | no |  |
| 6 | 34 | NSI | R5 | R5 | 145 (7%)  | 5,27 | APV/r+NVF+DDI        | TPV/r+TDF+3TC       | 118 (7%)  | 5,63 | no | no    | no |  |
| 7 | 35 | NSI | R5 | R5 | 50 (17%)  | 6,48 | ATV/r + DDI + T-20   | TPV/r+3TC+T-20      | 196 (15%) | 5,08 | no | no    | no |  |
| 8 | 36 | NSI | X4 | R5 | 27(2%)    | 5,41 | LPV/r +TDF+3TC       | TPV/r+TDF+3TC+T-20  | 97(4%)    | 4,88 | no | X4→R5 | no |  |
| 9 |    |     |    |    |           |      |                      |                     |           |      |    |       |    |  |

Legend: Pt: patient; 3TC, lamivudine; AZT, zidovudine; d4T, stavudine; ddI, didanosine; ABC, abacavir; EFV, efavirenz; NVP, nevirapine; ATV, atazanavir; IDV, indinavir; LPV, lopinavir; NFV, nelfinavir; SQV, saguinavir; TPV, tipranavir; f-APV, fosaamprenavir; T-20, enfuvirtide; pVL: plasma viral load; F-up: Follow-up. 

John Wiley & Sons

| 3   |  |
|-----|--|
| 3   |  |
| 4   |  |
| 5   |  |
| 6   |  |
| 7   |  |
| 1   |  |
| 8   |  |
| 9   |  |
| 10  |  |
| 10  |  |
| 11  |  |
| 12  |  |
| 12  |  |
| 13  |  |
| 14  |  |
| 15  |  |
| 16  |  |
| 10  |  |
| 17  |  |
| 18  |  |
| 19  |  |
| 20  |  |
| 20  |  |
| 21  |  |
| 22  |  |
| 22  |  |
| 23  |  |
| 24  |  |
| 25  |  |
| 20  |  |
| 20  |  |
| 27  |  |
| 28  |  |
| 20  |  |
| 29  |  |
| 30  |  |
| 31  |  |
| 32  |  |
| 02  |  |
| 33  |  |
| 34  |  |
| 35  |  |
| 00  |  |
| 36  |  |
| 37  |  |
| 38  |  |
| 200 |  |
| 39  |  |
| 40  |  |
| 41  |  |
| 10  |  |
| 42  |  |
| 43  |  |
| 44  |  |
| 15  |  |
| 40  |  |
| 46  |  |
| 47  |  |
| 10  |  |
| 40  |  |
| 49  |  |
| 50  |  |
| 51  |  |
| 51  |  |
| 52  |  |
| 53  |  |
| 5/  |  |
| 54  |  |
| 55  |  |
| 56  |  |
| 57  |  |
| 50  |  |
| 28  |  |
| 59  |  |
| 60  |  |
| ~~  |  |

Table II. Correlation of baseline patient characteristics with the occurrence of a tropism shift in proviralDNA after one year of antiretroviral therapy.

Shift from

X4 to R5

р

Shift from

R5 to X4

р

No

shift

|                                |             |             | value |             | value |
|--------------------------------|-------------|-------------|-------|-------------|-------|
| All patients                   | n=26        | n=6         |       | n=4         |       |
| Naives                         | 12          | 4           | 0.6   | 2           | 1.0   |
| Experienced                    | 14          | 2           |       | 2           |       |
| Age                            |             |             |       |             |       |
| (Mean ±SD)                     |             | 49.0±14.8   | 0.9   | 41.2±3.8    | 0.3   |
| Gender                         |             |             |       |             |       |
| (n)                            |             |             |       |             |       |
| male                           | 23          | 5           | 0.6   | 3           | 0.4   |
| female                         | 3           | 1           |       | 1           |       |
| Clinical stage CDC             |             |             |       |             |       |
| (n)                            |             |             |       |             |       |
| stage C                        | 20          | 3           | 0.2   | 3           | 0.7   |
| others (B+A)                   | 6           | 3           |       | 1           |       |
| Risk factor                    |             |             |       |             |       |
| (n)                            |             |             |       |             |       |
| sexual                         | 19          | 4           | 0.5   | 3           | 0.7   |
| parenteral                     | 7           | 2           |       | 1           |       |
| Nadir CD4                      |             |             |       |             |       |
| (cells/mmc ±SD)                | 161.6±150.6 | 151.3±222.5 | 0.5   | 27.2±30.6   | 0.02  |
| Mean Baseline CD4              |             |             |       |             |       |
| (cells/mmc ±SD)                | 172.8±151.7 | 154.8±220.0 | 0.4   | 88.5±120.8  | 0.2   |
| Mean F_up CD4                  |             |             |       |             |       |
| (cells/mmc ±SD)                | 300.7±166.4 | 241.5±216.4 | 0.3   | 253.5±152.3 | 0.5   |
| Mean CD4 increase              |             |             |       |             |       |
| (cells/mmc ±SD)                | 128.0±138.0 | 86.7±81.9   | 0.6   | 165.0±47.7  | 0.2   |
| Mean Baseline pVL              |             |             |       |             |       |
| (log <sub>10</sub> cp/ml ±SD)  | 5.0±0.9     | 4.8±1.1     | 0.9   | 5.4±0.7     | 0.3   |
| N pts reaching pvL <50cp/mi    | 45          | _           | 0.0   | 4           | 0.1   |
| (II)<br>Time to n)// (E0en/m)  | 15          | 5           | 0.2   | 4           | 0.1   |
|                                | 4 . 0       | 4.0         | 0.0   | 0.1         | 0.1   |
| (monuns. mean±SD)              | 4±3         | 4±2         | 0.9   | 2±1         | 0.1   |
|                                | 17          | 1           | 0.4   | 2           | 0.5   |
| (II)<br>Brimary pol resistance | 17          | I           | 0.4   | 2           | 0.5   |
| associated mutations           |             |             |       |             |       |
| (n)                            |             |             |       |             |       |
| - BT                           | 3+3         | 3+4         | 05    | 4+5         | 05    |
| - PR                           | 4+4         | 3+4         | 0.0   | <u>4+0</u>  | 0.5   |
| Previous ARV exposure          | · 1         | 0± 1        | 0.1   | 12.1        | 0.7   |
| (years: mean±SD)               | 7±7         | 5±8         | 0.7   | 7±8         | 0.9   |

Legend: N: number; SD: standard deviation; CDC: Center for Diseases Control; F-up: Follow-up; pVL: plasma viral load; RT: reverse transcriptase; PR: protease; ARV: antiretroviral therapy

Journal of Medical Virology

| Pt  | Source  | _ |     |   |    |          |          |      |          |          |          |          |     | _   |          |          |     |   |   |          | V3 a     | amir | oaci | dic s | eque | nce    |     |     |     |    |           |       | _   |        |   |   |          |   |          |          |          |          | n  | NC  | PSSM     |
|-----|---------|---|-----|---|----|----------|----------|------|----------|----------|----------|----------|-----|-----|----------|----------|-----|---|---|----------|----------|------|------|-------|------|--------|-----|-----|-----|----|-----------|-------|-----|--------|---|---|----------|---|----------|----------|----------|----------|----|-----|----------|
|     | HxB2    | ( | СТ  | F | 2  | Ρ        | Ν        | N    |          | N        | ΤI       | R        | K   | R   |          | R        |     | G | R | G        | Ρ        | G    | R    | A     | F    | · V    |     | T   |     |    | _ G       | K     |     |        | G | Ν | М        | R | Q        | <u>A</u> | <u> </u> | C        |    |     |          |
| 1.  | RNA bl  |   |     |   |    |          |          |      |          |          |          |          | ·   | S   | · ·      | Н        | М   | _ | _ |          |          |      |      |       |      | Y      |     | A   | Т   |    | _ ·       | D     |     |        |   | D | Ι        | • | K        |          |          | •        | 35 | 6   | R5       |
|     | DNA bl  |   |     |   |    |          | S        |      |          |          |          | •        | ·   | G   | · ·      |          |     | _ | _ | •        |          |      |      |       | V    | Y Y    | 1   | A   | Т   |    | _ E       | R     |     | V      |   |   | Ι        |   |          |          |          |          | 35 | 7   | X4       |
|     | DNA fu  |   |     |   |    |          | S        |      |          |          |          |          |     | G   | V        | Н        |     | _ | _ |          |          |      |      |       | L    | . F    | ŀ   | R   | _   |    | _ T       | S     |     | Т      |   | D |          |   |          |          |          |          | 34 | 7   | R5       |
| 2.  | RNA bl  |   |     |   |    |          |          |      |          |          |          |          |     | S   | · · ·    | P/S/R/C  |     | _ | _ |          |          |      |      |       |      | F      |     | A   | Т   |    | _ G       | D/G   | ì   |        |   | D | Ι        |   |          |          |          |          | 35 | 4-6 | R5       |
|     | DNA bl  |   |     |   |    |          |          |      |          |          |          |          | .   | G   | . ·      |          |     | _ | _ |          |          |      |      |       | ١    | ' I    |     | A   | Т   |    | _ E       | K     |     |        |   |   | Ι        |   |          |          |          |          | 35 | 7   | X4       |
|     | DNA fu  |   |     |   |    |          |          |      |          |          |          |          | .   | S   |          | S        |     | _ | _ |          |          |      |      |       |      | V/F    | 1   | A   | Т   |    | _ G       | D     | 1   |        |   | D | Ι        |   |          |          | Y        |          | 35 | 3   | R5       |
| 3.  | RNA bl  |   |     |   |    |          |          |      |          |          |          |          |     | S   |          | Т        |     | _ | _ |          |          |      |      | V     |      | D      | 1   | A   | Т   |    |           | D     |     |        |   | D | Ι        |   | K/Q      |          | Υ        |          | 34 | 2-3 | X4/R5    |
|     | DNA bl  |   |     |   |    |          |          |      |          |          |          |          | .   | S   |          | Т        |     | _ | _ |          |          |      |      | V     |      | D      |     | A   | Т   |    |           | D     | 1   |        |   | D | Ι        |   | Κ        |          | Υ        |          | 34 | 3   | X4       |
|     | DNA fu  |   |     |   |    |          |          |      |          |          |          | I        | R   | S   |          | Н        | Μ   | _ | _ |          |          |      |      |       |      | Т      |     |     | Т   |    |           | D     | 1   |        |   | D | Ι        |   | Κ        |          |          |          | 35 | 5   | R5       |
| 4.  | RNA bl  |   |     |   |    |          |          |      |          |          |          |          |     | S   |          | Р        | М   | _ | _ |          |          |      |      |       |      | Y      |     |     | Т   |    |           | Q     |     |        |   | D | Ι        |   |          |          | F        |          | 35 | 4   | R5       |
|     | DNA bl  |   |     |   |    |          |          |      |          |          |          |          | . 1 | R/S | · .      | Р        | I/L | _ | _ |          |          |      |      | A/    | ν.   | Y      |     |     | Т   | _  |           | Q     |     |        |   | D | Ι        |   |          |          | F        |          | 35 | 4-5 | X4/R5    |
|     | DNA fu  |   |     |   |    |          |          |      |          |          |          |          | .   | S   | I/V      | Р        | М   |   | _ |          |          |      |      |       |      | Y      |     |     | Т   | _  |           | Q     |     |        |   | D | Ι        |   |          |          | F        |          | 35 | 4   | R5       |
| 5.  | RNA bl  |   |     |   |    |          |          |      |          |          |          |          | R   | S   |          | Н        | · . |   |   |          |          |      |      |       |      | Y      |     |     |     | (  | G T       | D     | V   | · .    |   | D |          |   |          |          | Y        |          | 34 | 4   | R5       |
|     | DNA bl  |   |     |   |    |          |          |      |          |          |          |          |     | S   |          | н        |     | 7 |   |          |          |      |      |       |      | Y      |     | _   | _   |    | А Т       | D     | V   | · .    |   | D | Ι        |   |          |          | Υ        |          | 34 | 4   | R5       |
|     | DNA fu  |   |     |   |    |          | S        | k    | (        | Т        | 1        |          | R   | R   |          | Ĥ        |     |   | 5 |          |          |      |      |       |      | Y      |     | Ā   | Ŧ   | D١ | νт        | G     | V   | K      |   | D | Ι        |   | R        |          | Υ        |          | 37 | 7   | X4       |
| 6.  | RNA bl  |   | . V |   |    |          |          |      |          |          |          |          |     | S   |          | Н        |     |   |   |          |          |      |      |       |      | Y      |     | -   |     |    |           | E     |     |        |   | D |          |   |          | <u> </u> |          |          | 34 | 5   | R5       |
|     | DNA bl  |   | . v |   |    |          |          |      |          |          |          |          |     | S   |          | Н        |     | _ | - |          |          |      |      |       |      | Y      |     | -   | _   |    |           | E     |     |        |   | D | Ι        |   |          |          |          |          | 34 | 5   | R5       |
|     | DNA fu  |   | . т |   |    |          |          |      |          |          |          |          | .   | G   |          |          |     |   |   |          |          |      |      |       | F    | F      | `   | Y   | Ā   |    | T         | K     |     |        |   | D | T        |   |          |          |          |          | 35 | 7   | X4       |
| 19. | RNA bl  |   |     |   |    |          | S        |      |          |          |          |          |     | S   |          | Р        | М   |   |   | -        | 1.       |      | 1.   |       |      | Y      |     |     | Т   |    | -         | D     |     |        |   |   | 1        |   |          |          |          |          | 35 | 5   | R5       |
|     | DNA bl  |   |     |   |    |          |          |      |          |          |          |          |     | R   |          | T        | L   |   |   |          |          |      |      | v     | Y    | Ý      |     |     | Ť   |    | - :       | Q     | i i |        |   |   | i        |   | R        |          |          |          | 35 | 7   | X4       |
|     | DNA fu  |   |     |   |    |          | N/S      |      |          |          |          |          |     | S   |          | H/P      | I/M | _ | _ |          |          |      | K/F  | }.    |      | Y      |     |     | Т   |    |           | D     | 11  |        |   |   | T        |   |          |          |          |          | 35 | 5-6 | R5       |
| 20. | RNA bl  |   |     |   |    |          |          |      |          |          |          |          | K/R | G   |          | N/H/S/R  |     |   |   |          |          |      |      | A/    | S .  | N/Y/I/ | = , | A   | R/T |    | E/G/D     | R     | 1   |        |   | D | I        |   | <u> </u> |          |          | <u> </u> | 35 | 6-7 | B5       |
|     | DNA bl  |   |     |   |    | ÷        |          |      |          |          |          |          |     | ŝ   |          | P        |     | _ | _ |          |          |      |      |       |      | Y      |     |     | T   |    | , 0, 2    | D     | i i |        |   | - | i        |   | ÷        | ÷        |          |          | 35 | 5   | R5       |
|     | DNA fu  |   |     |   |    | ÷        |          |      |          |          |          |          | R   | Ğ   |          | S        | ÷   | _ | _ |          | ÷        |      |      | S     |      | i i i  |     | Ă   | Ř   |    | <br>_ D   | R     | l i |        |   | D | i        |   |          |          |          |          | 35 | 6   | X4       |
| 21  | BNA bl  |   |     | R | /T | <u> </u> | N/S      |      |          | <u> </u> | <u>.</u> | <u> </u> |     | G   | <u> </u> | <u>н</u> |     | _ | _ | <u> </u> | <u> </u> |      |      |       | 1    | Ý      |     |     | A   |    | <br>T     | 0     |     |        |   | D | i        |   |          |          |          |          | 35 | 5-6 | B5       |
|     | DNA bl  |   | • • |   | •  | •        | S        |      |          | •        | •        | •        | ·   | Ğ   | · ·      | н        | •   | _ | _ | •        | ·        | •    | •    | •     |      | y y    |     |     | Δ   |    | <br>      | õ     | i i | •      | • | D | i        | • | •        | •        | •        | •        | 35 | 6   | R5       |
|     | DNA fu  |   | • • |   |    | •        | N/S      |      |          | •        | •        | •        | ·   | Ğ   | · ·      | н        | •   | _ | _ | •        | ·        | •    | •    | •     | Ň    | Ý Ý    |     |     | A   |    | - <u></u> | Γκ/C  | ) i | •      | • | D | i        | • | •        | •        | •        | •        | 35 | 6-7 | X4/85    |
| 28  | RNA hl  |   | · · |   |    | •        | <u>v</u> | K/   | 'n       | K        | ·<br>    | K        | B   | R   | <u> </u> | 0        | •   |   |   | •        | •        | •    | •    | •     |      | v      |     | ~   |     |    | Ť         | <br>П |     |        |   | D | <u> </u> | • | <u> </u> | <u> </u> | Ý        | · ·      | 33 | 4-6 | X4       |
| 20. | RNA fu  |   | • • |   |    | ·        | v        | - IV | :        | ĸ        | •        | ĸ        | B   | B   | · ·      | ĸ        | ·   | - | - | ·        | ·        | ·    | •    | •     | •    | v      | -   | -   | -   |    | T T       |       |     | N<br>N | • | D | ī        | • | I        | ·        | v        | •        | 33 | 6   | X4       |
|     |         |   | • • |   |    | ·        | v        | k    | <u>,</u> | K        | •        | K        | B   | B   | · ·      | 0        | ·   | _ | - | ·        | ·        | ·    | •    | •     |      | v      | -   | _   | -   | -  | - t       | n n   |     | 0      | · | D | ī        | • | ī        | •        | v        | •        | 33 | é   | X4<br>X4 |
|     |         |   | • • |   |    | •        |          | г    | `        | 11       | •        | <b>`</b> | K/R | 6   | · ·      | ч        | ·   | - | - | •        | ·        | •    | •    | •     | •    | v      | Ť   | ·/A | Ŧ   |    |           | E/D   |     | 1      | • | Б | 1        | · |          | ·        | 1        | ·        | 35 | 5   | R5       |
|     | DINA IU |   |     |   |    |          | •        |      |          | •        | •        |          | IVN | 3   | · ·      | П        | •   | _ | _ | •        | •        | •    | •    |       |      | Ĭ      | ,   | /A  | 1   |    | //        | E/U   |     |        | • | U | 1        |   | U/ri     | <u> </u> | · ·      | <u> </u> | 30 | 5   | บอ       |

Figure 1. Serial V3 loop sequences of patients changing their V3 genotype during HAART.

Legend: Pt=Patient; n: number of aminoacids (V3 sequence length); NC=net charge; PSSM (Position-Specific Scoring Matrix). Columns corresponding to positions 11 and 25 of the env V3 sequence are highlighted.

| 1<br>2<br>3                            | 1  | Title page                                                                                                   |
|----------------------------------------|----|--------------------------------------------------------------------------------------------------------------|
| 4<br>5                                 | 2  |                                                                                                              |
| 6<br>7<br>8                            | 3  | Co-receptor switch during HAART is independent of virological success                                        |
| 9<br>10                                | 4  |                                                                                                              |
| 11<br>12                               | 5  | Annalisa Saracino*, Laura Monno, Donatella C. Cibelli*, Grazia Punzi, Gaetano                                |
| 13<br>14<br>15                         | 6  | Brindicci $^{\$}$ , Nicoletta Ladisa $^{\$}$ , Alessandra Tartaglia*, Antonella Lagioia $^{\$}$ , Gioacchino |
| 16<br>17                               | 7  | Angarano *                                                                                                   |
| 18<br>19<br>20                         | 8  |                                                                                                              |
| 20<br>21<br>22                         | 9  | *Clinic of Infectious Diseases, University of Foggia; <sup>§</sup> Clinic of Infectious Diseases,            |
| 23<br>24                               | 10 | University of Bari, Italy                                                                                    |
| 25<br>26<br>27                         | 11 |                                                                                                              |
| 28<br>29                               | 12 |                                                                                                              |
| 30<br>31<br>22                         | 13 | Running head: Co-receptor switch during HAART                                                                |
| 32<br>33<br>34                         | 14 |                                                                                                              |
| 35<br>36                               | 15 |                                                                                                              |
| 37<br>38<br>39                         | 16 |                                                                                                              |
| 40<br>41                               | 17 |                                                                                                              |
| 42<br>43                               | 18 | Address for correspondence :                                                                                 |
| 44<br>45<br>46                         | 19 | Annalisa Saracino, MD                                                                                        |
| 47<br>48                               | 20 | Clinic of Infectious Diseases, University of Foggia                                                          |
| 49<br>50                               | 21 | v.le L. Pinto, 1 – 71100, Foggia, Italy                                                                      |
| 51<br>52<br>53                         | 22 | tel/fax: +39 0881 732215                                                                                     |
| 54<br>55<br>56<br>57<br>58<br>59<br>60 | 23 | e.mail: a.saracino@medicina.unifg.it                                                                         |

# 24 ABSTRACT

The influence of antiretroviral therapy on co-receptor tropism remains controversial. To verify if co-receptor tropism shift was affected by HAART, the evolution of proviral DNA V3 genotype after 12 months of a new antiretroviral regimen was compared between responder and non-responder patients.

Baseline blood samples were collected from 36 patients infected with HIV-1 subtype-B (18 naïve and 18 experienced) for virus isolation and *env* V3 genotyping from plasma HIV-1 RNA and PBMC DNA. DNA V3 genotyping was repeated after 12 months from initiating HAART. WebPSSM was used for categorizing V3 sequences into X4 or R5; for analysis purposes, dual/mixed viruses were considered as X4.

From the 10 (28%) patients changing their proviral DNA V3 genotype during therapy, six 28 35 shifted from R5-to-X4 and four from X4-to-R5. The lack of reaching virological suppression was not associated with an X4-to-R5 (p=0.25) or R5-to-X4 (p=0.14) shift; time-to-viral suppression and CD4 increase were similar in both groups. No association was found 33 37 between tropism shift and patient baseline characteristics including age, sex, CDC stage, CD4 count, viral load, exposure and length of previous HAART, enfuvirtide use in the new regimen, number of reverse-transcriptase and protease resistance-associated mutations. 40 40 Conversely, CD4 nadir was correlated to emergence of X4 virus in proviral DNA (mean 27.2±30.6 in R5-to-X4 shifting patients vs 161.6±150.6 in non-shifting patients, p=0.02). 

47 43 The occurrence of a tropism shift in both directions was independent of HAART use,
 48
 49 44 irrespective of its efficacy. The CD4 count nadir was the only baseline characteristic able
 50 51 52 45 to predict an R5-to-X4 viral shift.

| 1<br>2 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KEY WORDS: HIV-1, biological phenotype, env V3 loop, co-receptor |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 3 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 4 5 6 7 8 9 101 12 13 14 13 4 5 6 7 8 9 101 12 13 14 13 4 4 5 6 7 8 9 101 12 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 13 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 |                                                                  |

## INTRODUCTION

The third variable (V3) region of the HIV-1 gp120 envelope is known to be responsible for viral tropism. Specific amino acid variations in the V3 loop, especially the distribution of charged amino acids, have been correlated with the type of co-receptor used by HIV-1 [de Jong et al., 1992; Fouchier et, al. 1995]. Together with CD4, two different chemokine receptors (CXCR4 and CCR5) are employed mainly by the virus for entry into cells and therefore, HIV-1 variants can be distinguished into X4 and R5 variants [Deng et al., 1996]; dual/tropic strains and/or mixture of the two variants have also been described (D/M or X4/R5 viruses). The use of co-receptor can be tested by adopting different cell lines, each expressing one of the two co-receptors; one commercial recombinant phenotype assay (Trofile<sup>™</sup> Monogram Biosciences, San Francisco, CA, USA) [Whitcomb et al., 2007] and some in-house methods are available. This classification has replaced the previous distinction of viral isolates on MT-2 cells as syncytium inducing (SI) and non-syncytium inducing (NSI) [Schuitemaker H et al., 1991] since MT-2 cells are exclusively permissive to infection by SI viruses because they only express CXCR4 on 38 62 their surface [Berger et al., 1999]. The correlation between these different methods for determining co-receptor tropism (V3 genotype, MT-2 isolation and phenotype) is still not clear and discrepancies have been demonstrated between these approaches [Low et al., 2007], even if a substantial correlation has been found by more recent studies [Garrido et al., 2008, Raymond et al., 2008; Poveda et al., 2009; Chueca et al., 2009]. Easier and less expensive methods for determining the co-receptor tropism of HIV are required, as they are no longer used exclusively for research but have entered into clinical practice, given 57 70 the development of new chemokine-co-receptor inhibitors.

Many aspects, however, are still unresolved. Firstly, it is known that variants able to utilize CXCR4, which target preferentially naïve and resting CD4<sup>+</sup> T-lymphocytes and have an 

### Journal of Medical Virology

higher replication rate than R5 variants, emerge in approximately 40-50% of infected persons over the course of disease [Berger et al., 1999]. However, whether these X4 isolates arise as a consequence of the loss of CD4<sup>+</sup> cells, or precede it (in which case they might be involved causally in CD4<sup>+</sup> cell depletion), is still debated. Moreover, it is not known if the presence of X4 viruses, which affect immune progenitor cells at the thymus level, might cause an impairment of CD4 reconstitution even during HAART [Moore et al., 2004; Delobel et al., 2006].

Previous studies based on HIV-1 isolation in MT-2 cells have correlated the presence of SI variants to a worse clinical outcome in terms of CD4 decrease, viral load, disease stage and mortality [Berger et al., 1999; Connor, HO 1994; Karlsson et al., 1994; Maas et al., 2000; de Roda et al., 1997]. Also studies based on V3 genotype [Brumme et al., 2004] or phenotype [Daar et al., 2007, Waters et al., 2008] agree that the use of the X4 co-receptor is associated with a more rapid HIV-1 disease progression, while results regarding the response to HAART are equivocal; some authors [Brumme et al., 2004] have found that response to antiretroviral therapy is diminished in patients harbouring a X4 rather than a R5 variant, whereas other studies exclude the direct effect of co-receptor tropism on therapy response [Waters et al., 2008].

On the other hand, the influence of HAART on tropism shift is unclear. It has been hypothesized that antiretroviral therapy might exert a different selective pressure on X4 or R5 variants in the viral population. Some studies reported a preferential suppression of X4 viruses with HAART [Philpott et al., 2001; Equils et al., 2000, Skrabal et al., 2003, Galan et al., 2004] while other studies suggested a predominant R5 to X4 switch in cell reservoirs with effective therapy [Johnston et al., 2003, Delobel et al., 2005]. More recently, a greater overall prevalence of X4 viruses was observed in experienced-patient cohorts [Melby et al., 2006; Wilkin et al., 2007; Hunt et al., 2006; Coakley et al., 2006] when compared to 

naïve patients [Brumme et al., 2005; Moyle et al., 2005; Demarest et al., 2004; Coakley et
al., 2006; Poveda et al., 2007].

The use of co-receptors is now mandatory for patients who are candidates to receive an anti-CCR5 inhibitor, but viral tropism shifts between the time of testing and start of therapy have been described [Fätkenheuer et al., 2008]. Whether some patient characteristics might be predictive of tropism shift is still unknown; their identification would certainly help to better define therapeutic strategies including virus entry inhibitors. Therefore, the aim of the present study was to compare the V3 genotype at baseline and after initiating a new antiretroviral therapy in two groups of patients (naïve and experienced) according to their response to a new HAART regimen.

John Wiley & Sons

# PATIENTS AND METHODS

# Patients

A total of 36 patients infected with HIV were enrolled in the study, including 18 antiretroviral-naïve patients and 18 patients failing HAART, whose clinical, virological and immunological characteristics are shown in Table I.

Naïve patients were enrolled consecutively from newly diagnosed patients requiring antiretroviral therapy; all were diagnosed with advanced stage of disease (CD4 cell count <350 cells/mmc) with the exception of patients 4, 11, 13 and 17 who, despite of an high absolute number of CD4 cells/mmc, required treatment with HAART due to presence of clinical symptoms.

Antiretroviral-experienced patients were enrolled from those participating in an expanded access program for a new antiretroviral drug (tipranavir) and, according to the protocol inclusion criteria, had been treated previously with all three antiretroviral classes including at least two PI-based regimens. Blood samples from all patients were collected at baseline (from a few days up to two weeks before starting or changing the antiretroviral regimen) for virus isolation and genotyping of the env V3 region on plasma RNA and PBMC DNA.

Patients were followed monthly for virological and immunological parameters and clinical evolution; for patients achieving virological success (HIV-RNA <50 cp/ml), V3 genotyping was determined on PBMC DNA 12 months after initiating HAART while for patients who did not response to therapy and remained viremic, virus isolation and genotyping of the env V3 region were determined on both plasma RNA and PBMC DNA 12 months after initiating HAART.

#### 130 **METHODS**

1 2

3 4

5 6

7 8 9

11

15

17

20 21138 22

Phylogenetic analysis of *pol* and *env* gene sequences (neighbor-joining method using 131 132 Kimura two-parameter distances) from these patients was performed to confirm that all 133 enrolled patients were infected with a subtype B HIV-1. 10

12<sup>134</sup> Plasma HIV-RNA was assessed using a NASBA real time PCR (Nuclisens Easy-Q HIV-1, 13 Biomérieux, Boseind, France) with a lower detection limit of 50 copies/ml. 14135

<sup>16</sup>136 Peripheral blood CD4+T lymphocytes were quantified by flow cytometry using a 18 19 137 commercially-available monoclonal antibodies (Beckman Coulter, Inc., Fullerton, CA).

## 23 24<sup>139</sup> **HIV-1** isolation

25 26 140 Peripheral blood mononuclear cells (PBMCs) were obtained by centrifuging whole blood 27 on a Ficoll-Hypaque density gradient. A total of 5x10<sup>6</sup> PBMCs were co-cultivated with 28141 29 <sup>30</sup> 31 142 5x10<sup>6</sup> phytoemoagglutinin (PHA)-stimulated PBMCs from healthy seronegative donors in 5 32 ml of RPMI 1640 supplemented with 10% of Human IL-2, 10% of fetal bovine serum, 33143 34 35 <sub>144</sub> glutamine (2nM), 100 IU/ml penicillin and 100 µg/ml streptomycin. On the seventh day of 36 37 38<sup>145</sup> culture and then twice weekly, supernatants were collected, stored at -80 °C and replaced 39 with fresh medium. Cultures, placed in a humidified chamber at 37 °C with 5% CO<sub>2</sub> air, 40146 41 <sup>42</sup>147 were maintained for 27 days. Viral growth on cell culture was demonstrated by p24 antigen 43 44 45 148 production using a commercially available kit (VIDAS HIV P24 II, Biomérieux, Marcy 46 47149 l'Etoile, France). A culture was considered positive if the concentration of p24 was higher 48 <sup>49</sup><sub>50</sub>150 than 5.0 pg/ml. Positive supernatants were used for infecting 10<sup>6</sup> MT-2 cells; cultures were 51 52151 maintained for 2 weeks, examined for syncytia twice a week and supernatant aliquots 53 54152 were stored at -80 °C. Viral cultures with syncytium formation were defined as having a SI 55 56 57 153 biological phenotype, whereas cultures without syncytium formation were defined as 58 59154 having a NSI biological phenotype. 60

3 4

5 6

7 8

27

53

# 2 155 V3 loop genotyping

Using standard methods, HIV-1 proviral DNA and RNA were extracted from the 156 PBMC and plasma samples of all 36 patients, respectively, at time of virus isolation. 157

9 158 After cDNA was obtained from HIV-RNA by retrotranscription, the cDNA and proviral DNA 10 12<sup>159</sup> 11 from PBMCs were amplified by a nested PCR using outer primers MK603 (forward) 5' 13 CAGAAAAATTGTGGGTCACAGTCTATTATGGGGGTACCT 3' (HXB2 nt 6316-6353) and 14160 15 <u>16</u>161 CD4R (reverse) 5' TATAATTCACTTCTCCAATTGTCC 3' (HXB2 nt 7675-7652), and 17 18 19162 inner primers: SQV2F1 (forward) 5' ACACATGCCTGTGTACCCACAGA 3' (HXB2 nt 20 21163 6435-6457) and V3O2R (reverse) 5' ATTACAGTAGAAAAATTCCCCTCCAC 3' (HXB2 nt 22 23 24<sup>164</sup> 7382-7357). A PCR product of 947 base pairs was obtained, including almost the entire 25 26165 gp120 from codon 43 of C1 to codon 2 of V4.

28166 If no product was amplified, alternative first and second-round forward primers were 29 30 31 167 employed: V3O2F (forward) 5' AATGTCAGYACAGTACAATGTACAC 3' (HXB2 nt 6945-32 6969) V3O2R (reverse) 5' ATTACAGTAGAAAAATTCCCCTCCAC 3' (HXB2 nt 7382-7357) 33168 34 35169 as outer primers, and V3I2F (forward) 5' TAAATGGCAGTYTAGCAGAAGAAG 3' (HXB2 36 37 38 170 nt 7006-7029) V3I2R (reverse) 5' ACAATYTCTGGGTCCCCTCCTGAGGA 3' (HXB2 nt 39 40171 7039-7314) as inner primers, thus obtaining a smaller PCR product of length 333 bp, 41 <sup>42</sup>172 including the V3 loop from codon 65 of C2 to codon 42 of C3. 43

44 45<sup>173</sup> PCR products were then sequenced in both 5' and 3' directions using the BigDye dye 46 47174 terminator cycle sequencing kit (Applied Biosystems, Foster City, CA) with primers V3O2F, 48 <sup>49</sup><sub>50</sub>175 V3O2R, V3I2F, V3I2R for gp120, and V3I2F and V3I2R for V3, and run on an ABI 310 51 52176 automated sequencer.

54177 A multiple alignment of patient sequences (GenBank accession numbers DQ984217-55 56 57 178 DQ984276: DQ841560-DQ841561; DQ841564-DQ841567; DQ841569: FJ798215-58 798302) with a reference alignment of the V3 region provided by the HIV sequence 59179 60 180 database of Los Alamos was obtained using Clustal W2. Only the alignment with the HxB2 reference sequence has been reported; as sequence length ranged from 33 to 37 amino acids (aa), gaps were inserted for sequences of a length < 37 aa.

The Position-Specific Scoring Matrix PSSM method, freely available on the web (http://ubik.microbiol.washington.edu/computing/pssm/), was used arbitrarily for categorizing V3 sequences into X4 or R5 phenotype, by means of an X4R5 matrix <sup>16</sup>187 calculated by comparing patient sequences to sequences of known co-receptor phenotype. This comparison produces a score: the higher the score, the more closely the sequence resembles those of known X4 viruses [Jensen et al., 2003]. When nucleotide <sup>23</sup>190 mixtures were observed, nucleic acid sequence from each patient were translated into amino-acidic sequences containing all possible combinations; a X4 genotype was assigned arbitrarily if at least 25% of all possible combinations from a given patient resulted in a X4 virus according to PSSM.

#### Statistical analysis

38<sup>196</sup> For the purpose of this study, dual/mixed virus (X4/R5) were considered as X4.

Descriptive statistics were calculated for the demographic, clinical and virological-<sup>42</sup>198 immunological characteristics of all cases. Mean and standard deviation (SD) are 45<sup>199</sup> presented for normally distributed variables.

The Kruskall-Wallis test was utilized to compare quantitative variables, and Pearson's Chi-<sup>49</sup><sub>50</sub>201 square test (Fisher exact test where appropriate) was used for categorical variables. The 52<sup>202</sup> concordance between genotypic and phenotypic testing was analyzed by means of Kappa-statistics. Data analysis was performed with Epi InfoTM Version 3.4.3.

3 4

5 6

7 8

#### 204 Results

#### Viro-immunological response to HAART 205

206 Viro-immunological characteristics of patients in the study are shown in Table I. Naïve 9 207 patients (pt 1-18) presented a mean CD4 count of 146.6±171.2 and a mean plasma viral 10 12<sup>208</sup> load log<sub>10</sub> 5.1±0.9 at baseline. In 17/18 patients, a TAMs-sparing regimen based on 13 14209 abacavir or tenofovir plus lamivudine or emtricitabine was chosen, in combination with 15 16<sub>210</sub> 17 efavirenz in 2/18 patients and with a boosted PI in 16/18 patients; in one patient, T20 was 18 19211 also included in the first PI-based regimen. A total of 15/18 patients achieved virological 20 21212 success (83%); the median time to virological suppression was 3 months (range: 1 to 10). 22 <sup>23</sup><sub>24</sub>213 In three patients (pt 12, 15 and 16), plasma viral load was still detectable after 12 months, 25 26214 most likely due to a low adherence rate. In all patients, independent of viral suppression, a 27 28215 CD4 increase from baseline was observed, with a mean gain of CD4+ cells/mmc equal to 29 <sup>30</sup><sub>31</sub>216 173.4±139.1.

32 Antiretroviral-experienced patients (pt 19 to 36) had a mean CD4 count of 174.3±149.7 33217 34 35218 and a pVL of 4.9±0.9 at time of failure; they were all NNRTI-experienced, and had been 36 37 38<sup>219</sup> treated previously with a mean number of 5±1 NRTIs and 4±1 PIs, respectively; 7/18 39 40220 patients were also enfuvirtide-experienced. The mean length of previous antiretroviral 41 <sup>42</sup>221 therapy was 14±4 years. All patients started a new antiretroviral regimen including boosted 43 44 45<sup>222</sup> tipranavir; 11/18 patients were also treated with enfuvirtide. Patients 19-27 achieved 46 47 2 2 3 virological success after a median time of three months (range 1 to 3); in this group of 48 <sup>49</sup><sub>50</sub>224 patients the mean CD4 increase after one year was 111.8±96.9 cells. Patients 28 to 36 did 51 52225 not respond to therapy and remained viremic; after a mean 12 month follow-up, the mean 53 54226 pVL was 4.81±0.7; nevertheless, a mean CD4 count increase of 42.1±52.1 was also 55 56 57<sup>227</sup> obtained for these non-responder patients.

58 59228

60

229 Co-receptor characteristics at baseline.

2 230 The biological phenotype determined with MT-2 cell isolation (SI/NSI) and the predicted 231 co-receptor use according to the V3 genotype for each patient are also shown in Table I. 232 In 27/36 (75%) patients, a concordant baseline V3 genotype was observed in plasma and 7 9 233 PBMCs (Kappa agreement = 0.39). In the plasma compartment, a X4 virus was noted in 10 11 12<sup>234</sup> 9/36 (25%) patients, three of whom were naïve (17%) and six were experienced (33%). 13 14235 The presence of a X4 variant did not correlate to any of the investigated clinical variables 15 16<sub>236</sub> 17 (gender, age, risk factor, CDC stage, baseline pVL). The CD4 nadir and the absolute 18 19<sup>237</sup> number of CD4 cells at baseline, however, were lower in X4 patients, without a statistical 20 21238 significant difference between the two groups. 22

<sup>23</sup>239 Also in the proviral DNA compartment where a total of 11/36 (30.5%) patients (six of whom 24 25 26240 were naïve and five were experienced patients) harboured a X4 genotype, no association 27 28241 was found with any clinical variable, including baseline CD4 cells/mmc and pVL. 29

<sup>30</sup><sub>31</sub>242 SI isolates were cultured in five patients, only one of whom (pt 28) showed a complete 32 agreement with the presence of a X4 genotype in both RNA and DNA. The overall 33243 34 35244 concordance between MT-2 isolation and predicted co-receptor use based on RNA and 36 37 38 245 DNA genotype was 69% (K=0.10) and 72% (K=0.23), respectively. An association 39 40246 between the presence of an SI isolate and a lower number of nadir (36.8±34.1 cells/mmc 41 <sup>42</sup>247 in patients carrying SI viruses vs 162.4 cells/mmc ±164.5 in those carrying NSI viruses, 43 44 45 248 p=0.03) and baseline CD4 cell count (40.8±30.8 cells/mmc vs 179.7±163.2 cells/mmc in 46 47249 the two groups, respectively, p=0.05) was described, while no correlation was found 48 <sup>49</sup><sub>50</sub>250 between SI phenotype and baseline pVL ( $4.8\pm1.2$  log<sub>10</sub> cp/ml vs  $5.0\pm0.9$  log<sub>10</sub> cp/ml, 51 52251 respectively, p = 0.9).

54252 In the group of experienced patients, the length of the previous treatment with 55 56 57<sup>253</sup> antiretrovirals was not associated with the presence of SI variants at MT-2 isolation (p=0.9) 58 nor with X4 variants either in plasma RNA (p=0.2) or in the proviral DNA (p=0.9). 59254

255

60

53

1

3 4

5 6

8

Page 17 of 31

### Journal of Medical Virology

# Association between baseline co-receptor usage and viro-immunological outcome

The probability of achieving virological suppression after 12 months of therapy was not influenced by the presence of a X4 variant in plasma RNA (OR=1.23; 0.26 - 5,98 95% IC; p= 0.56) or PBMC DNA (OR=3. 00; 0.53-16,90 95% IC; p= 0.19), nor by the presence of SI isolates at baseline (OR=0.27; 0.04 - 1.92 95% IC; p=0.19). In addition, the mean increase in CD4+ cells was similar for patients with a SI versus a NSI isolate (p=0.30) and for patients with X4 versus a R5 variant in plasma (p=0.47) or in PBMCs (p=0.97); when considering the absolute number of CD4 cells/mmc at follow-up, the CD4+ count was significantly lower in patients with an SI isolate at baseline (p<0.001).

# V3 genotype shift and response to HAART

When analyzing the proviral DNA compartment, a total of 10/36 (28%) patients (6/18 naïve and 4/18 experienced patients) switched their V3 genotype during the first 12 months of the new antiretroviral therapy (Table I); the env V3 sequences of these patients at baseline and at one-year follow-up are reported in Figure 1. In particular, in the naïve patient group, four subjects showed a shift from a X4 (pt 1-3) or X4/R5 (pt 4) to a R5 genotype after starting HAART. All these patients were virological responders and experienced a mean increase of 91±80 CD4/mmc during the course of therapy. Conversely, in two cases (pt 5) and 6), the emergence of a X4 genotype was described after 12 months of therapy, together with an undetectable viral load: also in this case an increase in the CD4 cell count was obtained (mean 132±49 CD4 cells/mmc). No changes in V3 genotype were observed for the three naïve patients (pt 12, 15 and 16) who did not reach viral suppression after one year of therapy, even if they all showed a pVL decrease in viral load (-3,57, -1,69, -3.47 log<sub>10</sub> cp/ml, respectively).

280 In the group of experienced patients, a X4 to R5 shift was described both in virological responders (pt 19) and in non-responders (pt 28), while two virological responder patients 281 282 (pt 20 and 21) showed a reversion from a R5 to a X4 genotype.

1 2

3 4

5 6

7 8 9

10

13

15

17

22

24 25

27

29

32 33293 34

36

39

18 19<sup>287</sup> 20

283 Among non-responders, virus isolation and RNA genotyping were also performed; two 12<sup>284</sup> cases of reversion from a SI to a NSI phenotype were observed with HAART which was confirmed in only one case by DNA genotyping. Lastly, in one case a change from an X4 14285 1<u>6</u>286 to an R5 genotype was described only in RNA, but not in DNA or by virus isolation.

21288 Overall, the lack of achieving virological suppression was not associated with a shift in <sup>23</sup>289 proviral DNA from X4 to R5 (OR=3.67; 0.37-35.9 95% IC, p=0.25) or from R5 to X4 26290 (RR=1.3, 1.00-1.60 95% IC, p=0.14); time-to-viral-suppression was also similar in the two 28291 patient groups (p=0.9 and 0.1, respectively). No differences in terms of CD4 increase in 30 31<sup>292</sup> both groups were observed (p=0.6 and p=0.2, respectively)(Table II).

### 35 294 Correlation between baseline patient characteristics and occurrence of a tropism 37 38<sup>295</sup> shift

The following baseline variables did not demonstrate any statistically significant 40296 41 <sup>42</sup>297 association with a tropism shift in both directions: age, gender, CDC stage of infection, risk 43 44 45<sup>298</sup> factor for HIV-1, previous exposure to antiretroviral therapy, length of previous HAART for 46 47 2 99 the group of experienced patients, baseline CD4 count and pVL (Table II). On the contrary, 48 <sup>49</sup><sub>50</sub>300 a lower CD4 cell count nadir was associated with a greater probability of a R5 to X4 shift in 51 **52** 301 the proviral compartment (mean CD4 nadir 27.2±30.6 in shifting patients vs 161.6±150.6 in 53 54302 patient not shifting V3 genotype, p=0.02). 55

56 57 303 The presence of a discordant V3 genotype between RNA and DNA at baseline was not 58 59304 associated with a higher probability of shifting during therapy (OR=1.43; 0.28-7.30 95% IC, 60

| 1                                                                                                                                                                                                                                                                                                     |                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 2 305<br>3                                                                                                                                                                                                                                                                                            | p=0.49). Also the total number of pol mutations associated with resistance in reverse         |
| $\frac{4}{5}$ 306                                                                                                                                                                                                                                                                                     | transcriptase (RT) and protease (PR) was not related to tropism change (Table II).            |
| 6<br>7 307<br>8                                                                                                                                                                                                                                                                                       | Lastly, the possible effect of including enfuvirtide in the new therapy on genotype shift was |
| 9 308<br>10                                                                                                                                                                                                                                                                                           | investigated, but no association was found between use of enfuvirtide and presence of a       |
| 11<br>12 <sup>309</sup>                                                                                                                                                                                                                                                                               | shift from a X4 to R5 (OR=0.38, 0.04-3.74 95% IC, p=0.37) or from a R5 to X4 variant          |
| 13<br>14310<br>15                                                                                                                                                                                                                                                                                     | (OR=1.89, 0.23-15.74 95% IC, p=0.47) in the proviral compartment.                             |
| 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>32<br>42<br>52<br>62<br>7<br>28<br>29<br>30<br>31<br>22<br>32<br>42<br>52<br>62<br>7<br>28<br>29<br>30<br>31<br>23<br>34<br>53<br>63<br>7<br>83<br>940<br>41<br>42<br>43<br>44<br>546<br>748<br>950<br>51<br>52<br>354<br>556<br>57<br>58<br>59<br>60 |                                                                                               |

#### 2 311 Discussion

1

3 4

5 6

8

53

The env gene of HIV-1, which is directly exposed to host immunological pressure, is the 312 7 313 most variable viral region. This variability influences the penetration of HIV-1 into different 9 314 cell types, according to the two main chemokine co-receptor binding variants (X4 and R5) 10 12<sup>315</sup> which are known to be correlated to diverse disease progression rates. However, the 13 14316 relationship between the prevalence of X4 and/or R5 strains in the viral quasispecies and 15 16<sub>317</sub> 17 the use of antiretroviral therapy requires further clarification. In fact, it is not known if 18 19318 HAART might facilitate the emergence of X4 variants, as some reports seem to suggest 20 21319 [Johnston et al., 2003, Delobel et al., 2005], or whether the presence of X4 variants could 22 <sup>23</sup><sub>24</sub>320 hamper achievement of virological and immunological success [Brumme et al., 2004].

25 26 321 The aim of our study was to verify if tropism shift in both naïve and experienced patients is 27 28322 affected by HAART; thus, the evolution of the V3 genotype after 12 months of HAART was 29 <sup>30</sup><sub>31</sub>323 studied and compared in responder and non-responder patients.

32 Firstly, a varying frequency of X4 strains in naïve and antiretroviral experienced patient 33324 34 35 3 2 5 cohorts was described, illustrating a higher amount of X4 strains in experienced [Melby et 36 37 38 326 al., 2006; Wilkin et al., 2007; Hunt et al., 2006; Coakley et al., 2006] than in naïve subjects 39 40327 [Brumme et al., 2005; Moyle et al., 2005; Demarest et al., 2004; Coakley et al., 2006. 41 42<sub>328</sub> Poveda et al., 2007]. In fact, an association between the presence of X4 variants and 44 45 329 HAART had been noted in our previous study [Saracino et al., 2007]; in the present study, 46 47330 the prevalence of X4 variants at baseline was similar in treated and naïve patients, the 48 49 50<sup>331</sup> majority of whom, however, demonstrated an advanced stage of immunological 51 52332 impairment.

54333 No statistically significant differences were observed in terms of mean CD4 increase nor 55 56 57<sup>334</sup> probability of achieving virological suppression after starting or changing HAART between 58 the two patient groups harboring a X4 or a R5 variant at baseline, respectively, even if 59335 60 336 patients carrying X4 variants at baseline had a decreased CD4 count, with a consequently

Page 21 of 31

1

### Journal of Medical Virology

2 reduced mean absolute number of CD4+ cells at follow-up. These results were 337 3 4 comparable in naive and experienced patients, but the limited size of the sample did not 338 5 6 339 permit definite conclusions; however, it must be emphasized that in no case was 7 8 9 340 antiretroviral therapy success affected by the presence of a X4 strain in the viral mixture. 10 12<sup>341</sup> Previous reports on the HOMER cohort suggested that the presence of X4 variants could 13 14342 be associated with a worse virological response, a finding, however, which was not 15 16<sub>343</sub> 17 confirmed by further analyses using co-receptor phenotype testing [Brumme et al., 2005]. 18 19<sup>344</sup> Interestingly, and in contrast with earlier reports [Philpott et al., 2001; Equils et al., 2000; 20 21345 Skrabal et al., 2003; Galán et al., 2004; Johnston et al., 2003; Delobel et al., 2005], our 22 <sup>23</sup><sub>24</sub>346 study demonstrates that the V3 genotype shift is not influenced by HAART. In fact, a 25 26<sup>347</sup> similar number of shifts was observed in both directions (from a X4 to an R5 or from a R5 27 28348 to an X4 variant) during therapy in patients with homogeneous characteristics at baseline. 29 <sup>30</sup> 31<sup>349</sup> This is in agreement with more recently published articles [Lwembe et al., 2009; Briz et al., 32 2008; Souliè et al., 2007] which also found that co-receptor switching is independent of 33350 34 35351 HAART, while it is most likely affected by the rate of disease progression. Also the length 36 37 38 352 of a previous HAART treatment in the group of experienced patients did not seem to 39 influence the detection of a X4 variant at baseline or after therapy change in our 40353 41 <sup>42</sup>354 population. No associations were found with the number of pol resistance associated 43 44 45 355 mutations for NRTI, NNRTIs and PIs [Lehman et al., 2006], nor did the use of enfuvirtide 46 47356 correlate with a tropism change from baseline in our patient group, in contrast to data 48 49 50<sup>357</sup> reported by Melby [Melby et al., 2006]. 51

If the tropism shift is unrelated to HAART, the identification of other predictive factors for tropism change would be of great importance when treating with anti-CCR5 inhibitors; a shift between the testing for coreceptor tropism and the initiation of an anti-CCR5-based therapy is quite common, and might be associated to virological failure [Fätkenheuer et al., 2008]. The majority of baseline features investigated in our cohort, however, did not

demonstrate a sufficient predictive power; in particular, the tropism shift was equally 363 364 frequent among naïve patients initiating their first regimen and in previously-failed patients 365 after therapy change, and did not seem to be associated with age, gender, clinical stage, 366 modality of acquiring HIV-1 infection, and baseline viro-immunological parameters. Of 10 12 367 note, however, the CD4 cell count nadir was associated to a R5-to- X4 tropism shift in our 13 14368 group of patients; if confirmed, this result which is in agreement with several reports which 15 16<sub>369</sub> 17 highlight the importance of immune impairment in the emergence of X4 variants, might be 18 19370 helpful for the selection of patients who would benefit from anti-CCR5 therapy and who 20 21371 most likely need to initiate therapy close to the time of screening. 22

1 2

3 4

5 6

7 8 9

53

<sup>23</sup><sub>24</sub>372 Among the 5/6 patients who switched from X4 to R5 in DNA, five subjects already 25 26<sup>373</sup> harbored R5 viruses in the plasma at baseline; therefore, the detection of a R5 strain after 27 28374 a one-year follow-up is probably due to the enrichment of the proviral reservoir by 29 30 31 375 circulating viruses rather than by the *ex-novo* selection of new tropism variants. In some 32 samples, the co-existence of both variants could have been underestimated for viral 33376 34 35 377 strains with a frequency below the sensitivity threshold (10-20%) of the current PCR 36 37 38 378 assays. This is an important limitation as these variants could eventually emerge during 39 40379 virological failure with CCR5-antagonist therapy; in the near future, studies based on the 41 42 380 43 new ultra-deep sequencing techniques will permit the evaluation of the impact that these 44 45 381 minority variants might have on clinical practice [Paredes and Clotet, 2009]. At present, 46 47382 direct sequencing on plasma and PBMC samples is currently accepted as an appropriate 48 <sup>49</sup><sub>50</sub>383 method due to its simplicity and acceptable correlation with clonal analysis [Delobel et al., 51 52 384 2007].

54385 A reduced degree of concordance (Cohen's K statistics 0.39) was observed between the 55 56 57 386 results obtained from the plasma and proviral DNA compartments in paired samples at 58 baseline. In addition, the overall concordance between MT-2 isolation and predicted co-59387 60 receptor use based on RNA (K=0.10) and DNA genotype (K=0.23) was low. Discrepancies 388

Page 23 of 31

1 2

### Journal of Medical Virology

389 between the two compartments were also noted by other researchers [Verhofstede C et 390 al., 2009]; in a previous study, V3 analysis from plasma samples largely agreed with the 391 corresponding DNA samples but greatly differed from the MT-2 biological phenotype [Saracino et al., 2007]. The differences existing between phenotypic (MT-2 isolation, coreceptor testing) and V3 genotype interpretation methods are not vet completely understood [Low et al., 2007, Garrido et al., 2008; Raymond et al., 2008; Saracino et al., 2007] although the validation of improved algorithms is ongoing [Poveda et al., 2009; Chueca et al., 2009] and must be considered when interpreting the results. However, it must be emphasized that in the current study, a closer association emerged between baseline immunological/clinical characteristics and the biological phenotype when compared to genotyping, thereby suggesting that, in the presence of a mixed viral population including X4R5 variants which are able to use both co-receptors, the finding of an SI isolate by the MT-2 cell assay clearly suggests the presence of a more aggressive virus. In fact, several reports indicate that co-receptor use and real cellular tropism are related, but distinct, whereas tropism reflects the ability of an isolate not only to enter, but also to replicate, in a particular target cell [Goodenow and Collman, 2006]. We acknowledge, however, the purely speculative value of these considerations due to the small sample size and to the lack of a comparison with a tropism assay.

In conclusion, in our cohort, the occurrence of a tropism shift both from an X4 to R5 or, on the contrary, from an R5 to a X4 variant was independent of HAART, irrespective of its efficacy. The tropism change in the proviral compartment during antiretroviral therapy could not be predicted from baseline patient features, with the exception of the CD4 cell count nadir which appeared to correlate with the occurrence of R5 to X4 shift.

- 57
- 59
- 60

# 2 412 ACKNOWLEDGMENTS

 ${}^{4}_{5}$  413 We are grateful to Ms. Paulene Butts for the review of the manuscript and Gianfranco  ${}^{6}_{7}$  414 Botte for secretarial assistance.

# 415 **REFERENCES**

Berger EA, Murphy PM, Farber JM. 1999. Chemokine receptors as HIV-1 coreceptors:
roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657-700.

<sup>9</sup> 418 Brumme ZL, Dong WWY, Yipa B, Wynhovena B, Hoffman NG, Swanstrom R, Jensen MA,
<sup>11</sup> 12419 Mullins JI, Hogg RS, Montanera JSG, Harrigan PR. 2004. Clinical and immunological
<sup>13</sup> impact of HIV envelope V3 sequence variation after starting initial triple antiretroviral
<sup>15</sup> therapy. AIDS 18:F1-9.

Brumme ZL, Goodrich J, Mayer HB, Brumme CJ, Henrick BM, Wynhoven B, Asselin JJ, Cheung PK, Hogg RS, Montaner JSG, Harrigan PR. 2005. Molecular and Clinical Epidemiology of CXCR4-Using HIV-1 in a Large Population of Antiretroviral-Naive Individuals J Infect Dis 192:466-474.

Briz V, Poveda E, del Mar González M, Martín-Carbonero L, González-González R,
 Soriano V. 2008. Impact of antiretroviral therapy on viral tropism in HIV-infected patients
 followed longitudinally for over 5 years. J Antimicrob Chemother 61(2):405 -10.

<sup>35</sup> 429 Chueca N, Garrido C, Alvarez M, Poveda E, de Dios Luna J, Zahonero N, Hernández <sup>37</sup> 430 Quero J, Soriano V, Maroto C, de Mendoza C, García F. 2009. Improvement in the
 <sup>39</sup> 40431 determination of HIV-1 tropism using the V3 gene sequence and a combination of
 <sup>42</sup> 432 bioinformatics tools. J Med Virol 81:763-7.

44 45433 Coakley E, Benhamida J, Chappey, Whitcomb J, Goodrich J, van der Ryst E, Westby M, 46 James I, Tressler R, Harrigan PR, Mayer H. 2006. An evaluation of tropism profiles and 47434 48 <sup>49</sup><sub>50</sub>435 other characteristics among 3988 individuals screened for the A4001026, A4001027 51 52436 (MOTIVATE 1) and A4001028 (MOTIVATE 2) phase 2b/3 studies of MARAVIROC, abstr. 53 54437 B. Second Int. Workshop Targeting HIV Entry, Boston, MA, 20 to 21 October 2006. 55

<sup>56</sup><sub>57</sub>438 Connor RI, Ho DD. 1994. Human immunodeficiency virus type 1 variants with increased
 replicative capacity develop during the asymptomatic stage before disease progression. J
 440 Virol 68: 4400-08.

| 1                               |                                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------|
| 2 441<br>3                      | Daar ES, Kesler KL, Petropoulos CJ, Huang W, Bates M, Lail AE, Coakley EP, Gomperts                    |
| 4<br>5 442                      | ED, Donfield SM. Hemophilia Growth and Development Study. 2007. Baseline HIV type 1                    |
| 6<br>7 443<br>8                 | coreceptor tropism predicts disease progression. Clin Infect Dis 1;45 (5):643-9.                       |
| 9<br>10 <sup>444</sup>          | Delobel P, Sandres-Sauné K, Cazabat M, Pasquier C, Marchou B, Massip P, Izopet J.                      |
| 11<br>12445<br>12               | 2005. R5 to X4 switch of the predominant HIV-1 population in cellular reservoirs during                |
| 14 446<br>15                    | effective highly active antiretroviral therapy. J Acquir Immune Defic Syndr 38 (4):382-392.            |
| 16<br>17447                     | Delobel P, Nugeyre MT, Cazabat M, Sandres-Sauné K, Pasquier C, Cuzin L, Marchou B,                     |
| 19 <sub>448</sub><br>20         | Massip P, Cheynier R, Barré-Sinoussi F, Izopet J, Israël N. 2006. Naive T-cell depletion               |
| 21<br>22 <sup>449</sup>         | related to infection by X4 HIV-1 in poor immunological responders to HAART. J Virol 80                 |
| 23<br>24450<br>25               | (20):10229-10236.                                                                                      |
| 26<br>27 451                    | Delobel P, Nugeyre MT, Cazabat M, Pasquier C, Marchou B, Massip P, Barre-Sinoussi F,                   |
| 28<br>29452<br>30               | Israël N, Izopet J. 2007. Population-based sequencing of the V3 region of env for                      |
| $31_{32}_{32}453$               | predicting the coreceptor usage of human immunodeficiency virus type 1 quasispecies. J                 |
| 33<br>34 454<br>25              | Clin Microbiol 45(5):1572-1580.                                                                        |
| 36455<br>37                     | Demarest J, Bonny T, Vavaro C,LaBranche C,Kitrinos K, McDanal C,Sparks S, Chavers S,                   |
| <sup>38</sup> <sub>39</sub> 456 | Castillo S, Elrick D, McCarty D, Whitcomb J, Huang W, Petropoulos C, Piscitelli S. 2004.               |
| 40<br>41 457<br>42              | HIV-1 co-receptor tropism in treatment naive and experienced subjects, abstr. H-1136. 44 <sup>th</sup> |
| 43 <sub>458</sub><br>44         | Intersci. Conf. Antimicrob. Agents Chemother., Washington, DC, 30 October to 2                         |
| 45<br>46 <sup>459</sup>         | November 2004.                                                                                         |
| 48<br>49<br>49                  | Deng H, Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P,                         |
| 50<br>51 461                    | Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR.                   |
| 52<br>53462<br>54               | 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661-             |
| <sup>55</sup> 463<br>56         | 66.                                                                                                    |
| 57<br>58 464<br>59              | de Jong JJ, De Ronde A, Keulen W, Tersmette M, Goudsmit J. 1992. Minimal                               |
| 60 465                          | requirements for the human immunodeficiency virus type 1 V3 domain to support the                      |

### Journal of Medical Virology

466 syncytium-inducing phenotype: analysis by single amino acid substitution. J Virol 467 66(11):6777-6780.

de Roda HAM, Koot M, Cornelissen M, Keet IP, Brouwer M, Broersen SM, Bakker M,
Roos MT, Prins M, de Wolf F, Coutinho RA, Miedema F, Goudsmit J, Schuitemaker H.
1997. Association between CCR5 genotype and the clinical course of HIV-1 infection. Ann
Intern Med 127:882–890.

Equils O, Garratty E, Wei LS, Plaeger S, Tapia M, Deville J, Krogstad P, Sim MS, Nielsen K, Bryson YJ. 2000. Recovery of replication competent virus from CD4 T cell reservoirs and change in co-receptor use in HIV-1-infected children responding to HAART. J Infect Dis 182:751-7.

Fätkenheuer G, Nelson M, Lazzarin A, Konourina I, Hoepelman AI, Lampiris H, Hirschel B,
Tebas P, Raffi F, Trottier B, Bellos N, Saag M, Cooper DA, Westby M, Tawadrous M,
Sullivan JF, Ridgway C, Dunne MW, Felstead S, Mayer H, van der Ryst E; MOTIVATE 1
and MOTIVATE 2 Study Teams. 2008. Subgroup analyses of maraviroc in previously
treated R5 HIV-1 infection. N Engl J Med 2;359 (14):1442-55.

Fouchier RA, Brouwer M, Broersen SM, Schuitemaker H. 1995. Simple determination of human immunodeficiency virus type 1 syncitium inducing V3 genotype by PCR. J Clin Microbiol 33:906-911.

Galán I, Jiménez JL, González-Rivera M., De José MI, Navarro ML, Ramos JT, Mellado
 MJ, Gurbindo MD, Bellón JM, Resino S, Cabrero E, Muñoz-Fernández MA. 2004.
 Virological phenotype switches under salvage therapy with lopinavir-ritonavir in heavily
 pretreated HIV-1 vertically infected children. AIDS 23;18(2):247-55.

Garrido C, Roulet V, Chueca N, Poveda E, Aguilera A, Skrabal K, Zahonero N, Carlos S, García F, Faudon JL, Soriano V, de Mendoza C. 2008. Evaluation of eight different bioinformatics tools to predict viral tropism in different human immunodeficiency virus type
1 subtypes. J Clin Microbiol 46(3):887-91.

Goodenow MM, Collman RG. 2006. HIV-1 coreceptor preference is distinct from target cell
 tropism: a dual-parameter nomenclature to define viral phenotypes. J Leukoc Biol
 80(5):965-972.

1

8

27

51

58

<sup>9</sup> 495 Hunt PW, Harrigan PR, Huang W, Bates M, Williamson DW, McCune JM, Price RW,
<sup>11</sup> 12 496 Spudich SS, Lampiris H, Hoh R, Leigler T, Martin JN, Deeks SG. Harrigan PR. 2006.
<sup>13</sup> 14 497 Prevalence of CXCR4 Tropism among Antiretroviral-Treated HIV-1–Infected Patients with
<sup>16</sup> 498 Detectable Viremia. J Infect Dis 194:926-930.

Jensen MA, Li FS, van 't Wout AB, Nickle DC, Shriner D, He HX, McLaughlin S, Shankarappa R, Margolick JB, Mullins JI. 2003. Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 77(24), 13376-88.

Johnston ER, Zijenah LS, Mutetwa S, Kantor R, Kittinunvorakoon C, Katzenstein DA.
 Johnston ER, Zijenah LS, Mutetwa S, Kantor R, Kittinunvorakoon C, Katzenstein DA.
 2003. High frequency of syncytium-inducing and CXCR4-tropic viruses among human
 immunodeficiency virus type 1 subtype C-infected patients receiving antiretroviral
 treatment. J Virol 77(13):7682-8.

Karlsson A, Parsmyr K, Sandstrom E, Fenyo EM, Albert J. 1994. MT-2 cell tropism as
 prognostic marker for disease progression in human immunodeficiency virus type 1
 infection. J Clin Microbiol 32:364–370.

Lehmann C, Däumer M, Boussaad I, Sing T, Beerenwinkel N, Lengauer T, Schmeisser N,
 Wyen C, Fätkenheuer G, Kaiser R. 2006. Stable coreceptor usage of HIV in patients with
 ongoing treatment failure on HAART. J Clin Virol 37(4):300-4.

Low AJ, Dong W, Chan D, Sing T, Swanstrom R, Jensen M, Pillai S, Good B, Harrigan
 PR. 2007. Current V3 genotyping algorithms are inadequate for predicting X4 co-receptor
 usage in clinical isolates. AIDS 12;21(14):F17-24.

<sup>59</sup><sub>60</sub>516 Lwembe R, Lihana RW, Ochieng' W, Panikulam A, Mongoina CO, Palakudy T, de Koning
517 H, Ishizaki A, Kageyama S, Musoke R, Owens M, Songok EM, Okoth FA, Ichimura H,

Page 29 of 31

| 1<br>2 518                         | 2009. Changes in the HIV Type 1 Envelope Gene from Non-Subtype B HIV Type 1-              |
|------------------------------------|-------------------------------------------------------------------------------------------|
| $\frac{3}{5}$ 519                  | Infected Children in Kenya. AIDS Res Hum Retrovir 25 (2):141-7.                           |
| 6<br>7 520                         | Maas JJ, Gange SJ, Schuitemaker H, Coutinho RA, van Leeuwen R, Margolick JB. 2000.        |
| 8<br>9 521                         | Strong association between failure of T cell homeostasis and the syncytium-inducing       |
| 10<br>11<br>12 522                 | phenotype among HIV-1-infected men in the Amsterdam Cohort Study AIDS 14:1155-            |
| 12 <sup>522</sup><br>13            |                                                                                           |
| 14 <i>523</i><br>15                | 1161.                                                                                     |
| 16 <sub>524</sub><br>17            | Melby T, Despirito M, Demasi R, Heilek-Snyder G, Greenberg ML, Graham N. 2006. HIV-1      |
| 18<br>19 <sup>525</sup>            | Coreceptor Use in Triple-Class Treatment-Experienced Patients: Baseline Prevalence,       |
| 20<br>21 526<br>22                 | Correlates, and Relationship to Enfuvirtide Response. J Infect Dis 194:238-246.           |
| <sup>23</sup> 527<br>24            | Moore JP, Kitchen SG, Pugach P, Zack JA. 2004. The CCR5 and CXCR4 coreceptors -           |
| 25<br>26 <sup>528</sup>            | Central to understanding the transmission and pathogenesis of HIV-1 infection. AIDS Res   |
| 27<br>28529<br>29                  | Hum Retrov 20:111-126.                                                                    |
| <sup>30</sup><br>31 <sup>530</sup> | Moyle GJ, Wildfire A, Mandalia S, Mayer H, Goodrich J, Whitcomb J, Gazzard BG. 2005.      |
| 32<br>33 5 3 1                     | Epidemiology and Predictive Factors for Chemokine Receptor Use in HIV-1 Infection. J      |
| 34<br>35 532<br>36                 | Infect Dis 191:866-872.                                                                   |
| 37<br>38 <sup>533</sup>            | Paredes R, Clotet B. HIV Drug Resistance testing. 2008. http://www.touchinfectionus-eu-   |
| 39<br>40534                        | digital.com/euinfectious/vol2iss2/template (accessed 20/02/2009).                         |
| 42<br>43<br>535                    | Philpott S, Weiser B, Anastos K, Kitchen CM, Robison E, Meyer WA 3rd, Sacks HS,           |
| 44<br>45 536                       | Mathur-Wagh U, Brunner C, Burger H. 2001. Preferential suppression of CXCR4-specific      |
| 46<br>47<br>537                    | strains of HIV-1 by antiviral therapy. J Clin Invest 107:431-438.                         |
| 48<br>49<br>50 538                 | Poveda F. Briz V. de Mendoza C. Benito JM. Corral A. Zahonero N. Lozano S. González-      |
| 51<br>52 <sub>530</sub>            | Laboz J. Soriano V 2007 Prevalence of X4 Tropic HIV-1 Variants in Patients With           |
| 53 <sup>55</sup><br>54             | Differences in Disease Store and Expedure to Antiretrovital Thereny, J. Med Vital 70:1040 |
| 55 540<br>56                       | Differences in Disease Stage and Exposure to Antiretroviral Therapy. J Med Virol 79:1040- |
| 57 541<br>58                       | 1046.                                                                                     |
| <sup>59</sup> <sub>60</sub> 542    | Poveda E, Seclén E, González Mdel M, García F, Chueca N, Aguilera A, Rodríguez JJ,        |
| 543                                | González-Lahoz J, Soriano V. 2009. Design and validation of new genotypic tools for       |

2 544 easy and reliable estimation of HIV tropism before using CCR5 antagonists. JAC 3 4 63:1006-10. 545 5

1

13

16

30

37

44

6 546 Raymond S, Delobel P, Mavigner M, Cazabat M, Souyris C, Sandres-Sauné K, Cuzin L, 7 8 9 547 Marchou B, Massip P, Izopet J. 2008. Correlation between genotypic predictions based on 10 12<sup>548</sup> V3 sequences and phenotypic determination of HIV-1 tropism. AIDS 12; 22 (14): F11- 6.

14 5 4 9 Saracino A, Monno L, Punzi G, Cibelli DC, Tartaglia A, Scudeller L, Brindicci G, Lagioia A, 15

17 550 Scotto G, Angarano G. 2007. HIV-1 biological phenotype and predicted co-receptor usage 18

based on V3 loop sequence in paired PBMC and plasma samples. Virus Res 130:34-42. 19551 20

21 22<sup>552</sup> Schuitemaker H, Kootstra NA, de Goede RE, de Wolf F, Miedema F, Tersmette M. 1991. 23 24553 Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all 25 26 27 554 stages of HIV-1 infection lack T-cell line tropism and syncitium-inducing ability in primary 28 29 555 T-cell culture. J Virol 65:356-363.

31 5 56 Skrabal K, Trouplin V, Labrosse B, Obry V, Damond F, Hance AJ, Clavel F, Mammano F. 32  $^{33}_{34}557$ 2003. Impact of antiretroviral treatment on the tropism of HIV-1 plasma virus populations. 35 36 5 58 AIDS 17:809-814.

38 5 59 Soulié C, Marcelin AG, Ghosn J, Amellal B, Assoumou L, Lambert S, Duvivier C, 39  $^{40}_{41}560$ Costagliola D, Katlama C, Calvez V. 2007. HIV-1 X4/R5 co-receptor in viral reservoir 42 43 561 during suppressive HAART. AIDS 21:2243-2250.

45 562 46 Verhofstede C, Vandekerckhove L, Eygen VV, Demecheleer E, Vandenbroucke I, Winters 47 48 563 B, Plum J, Vogelaers D, Stuyver L. 2009. CXCR4-using HIV type 1 variants are more 49 50564 commonly found in peripheral blood mononuclear cell DNA than in plasma RNA. J Acquir 51 <sup>52</sup>565 Immune Defic Syndr 1;50(2):126-36. 53

54 55 566 Waters L, Mandalia S, Randell P, Wildfire A, Gazzard B, Moyle G. 2008. The impact of 56 57 567 HIV tropism on decreases in CD4 cell count, clinical progression, and subsequent 58 <sup>59</sup><sub>60</sub>568 response to a first antiretroviral therapy regimen. Clin Infect Dis 15;46(10):1617-23.

| 3<br>4 | _ |    |
|--------|---|----|
| 5      | 5 | 7( |
| 6      |   |    |
| 7      | 5 | 71 |
| 8      |   |    |
| 9      | 5 | 72 |
| 10     |   |    |
| 12     | 5 | 73 |
| 13     |   |    |
| 14     | 5 | 74 |
| 15     |   |    |
| 16     | 5 | 75 |
| 18     |   |    |
| 19     | 5 | 76 |
| 20     |   |    |
| 21     |   |    |
| 22     |   |    |
| 23     |   |    |
| 24     |   |    |
| 20     |   |    |
| 27     |   |    |
| 28     |   |    |
| 29     |   |    |
| 30     |   |    |
| 31     |   |    |
| 32     |   |    |
| 33     |   |    |
| 34     |   |    |
| 36     |   |    |
| 37     |   |    |
| 38     |   |    |
| 39     |   |    |
| 40     |   |    |
| 41     |   |    |
| 42     |   |    |
| 43     |   |    |
| 44     |   |    |
| 46     |   |    |
| 47     |   |    |
| 48     |   |    |
| 49     |   |    |
| 50     |   |    |
| 51     |   |    |
| 52     |   |    |
| 53     |   |    |
| 55     |   |    |
| 56     |   |    |
| 57     |   |    |
| 58     |   |    |
| 59     |   |    |

<sup>2</sup> 569 Whitcomb JM, Huang W, Fransen S, Limoli K, Toma J, Wrin T, Chappey C, Kiss LD,
 <sup>4</sup> 570 Paxinos EE, Petropoulos CJ. 2007. Development and characterization of a novel single <sup>6</sup> 571 cycle recombinant virus assay to determine HIV-1 coreceptor tropism. Antimicrob Agents
 <sup>9</sup> 572 Chemother 51:566-575.

Wilkin TJ, Su Z, Kuritzkes DR, Hughes M, Flexner C, Gross R, Coakley E, Greaves W, 3 Godfrey C, Skolnik PR, Timpone J, Rodriguez B, Gulick RM. 2007. HIV Type 1 Chemokine 4 5 Coreceptor Use among Antiretroviral Experienced Patients Screened for a Clinical Trial of n. Trial Gi 6 a CCR5 Inhibitor: AIDS Clinical Trial Group A5211 Clin Infect Dis 44:591-595.