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The maximal regularity operator on tent spaces

Recently, Auscher and Axelsson gave a new approach to non-smooth boundary value problems with L 2 data, that relies on some appropriate weighted maximal regularity estimates. As part of the development of the corresponding L p theory, we prove here the relevant weighted maximal estimates in tent spaces T p,2 for p in a certain open range. We also study the case p = ∞.

Introduction

Let -L be a densely defined closed linear operator acting on L 2 (R n ) and generating a bounded analytic semigroup (e -tL ) t≥0 . We consider the maximal regularity operator defined by

M L f (t, x) = t 0 Le -(t-s)L f (s, .)(x)ds, for functions f ∈ C c (R + × R n ).
The boundedness of this operator on L 2 (R + × R n ) was established by de Simon in [START_REF] De Simon | Un'applicazione della theoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine[END_REF]. The L p (R + × R n ) case, for 1 < p < ∞, turned out, however, to be much more difficult. In [START_REF] Kalton | A solution to the problem of L p maximal-regularity[END_REF], Kalton and Lancien proved that M L could fail to be bounded on L p as soon as p = 2. The necessary and sufficient assumption for L p boundedness was then found by Weis [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal L p -regularity[END_REF] to be a vector-valued strengthening of analyticity, called R-analyticity. As many differential operators L turn out to generate R-analytic semigroups, the L p boundedness of M L has subsequently been successfully used in a variety of PDE situations (see [START_REF] Kunstmann | Maximal L p regularity for parabolic problems, Fourier multiplier theorems and H ∞ -functional calculus[END_REF] for a survey).

Recently, maximal regularity was used in a different manner as an important tool in [START_REF] Auscher | Weighted maximal regularity estimates and solvability of elliptic systems I[END_REF], where a new approach to boundary value problems with L 2 data for divergence form elliptic systems on Lipschitz domains, is developed. More precisely, in [START_REF] Auscher | Weighted maximal regularity estimates and solvability of elliptic systems I[END_REF], the authors establish and use the boundedness of M L on weighted spaces L 2 (R + × R n ; t β dtdx), for certain values of β ∈ R, under the additional assumption that L has bounded holomorphic functional calculus on L 2 (R n ). This additional assumption was removed in [START_REF] Auscher | Remarks on maximal regularity estimates[END_REF]Theorem 1.3]. Here is the version when specializing the Hilbert space to be L 2 (R n ).

Theorem 1.1. With L as above, M L extends to a bounded operator on

L 2 (R + × R n ; t β dtdx) for all β ∈ (-∞, 1).
The use of these weighted spaces is common in the study of boundary value problems, where they are seen as variants of the tent space T 2,2 which occurs for β = -1, introduced by Coifman, Meyer and Stein in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]. For p = 2, the corresponding spaces are weighted versions of the tent spaces T p,2 , which are defined, for parameters β ∈ R and m ∈ N, as the completion of

C c (R + × R n ) with respect to g T p,2,m (t β dtdy) =   R n ∞ 0 R n 1 B(x,t 1 m ) (y) t n m g(t, y) 2 t β dydt p 2 dx   1 p
, the classical case corresponding to β = -1, m = 1, and being denoted simply by T p,2 . The parameter m is used to allow various homogeneities, and thus to make these spaces relevant in the study of differential operators L of order m. To develop an analogue of [START_REF] Auscher | Weighted maximal regularity estimates and solvability of elliptic systems I[END_REF] for L p data, we need, among many other estimates yet to be proved, boundedness results for the maximal operator M L on these tent spaces. This is the purpose of this note. Another motivation is well-posedness of non-autonomous Cauchy problems for operators with varying domains, which will be presented elsewhere. In the latter case, M L can be seen as a model of the evolution operators involved. However, as M L is an important operator on its own, we thought interesting to present this special case alone.

In Section 3 we state and prove the adequate boundedness results. The proof is based on recent results and methods developed in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF], building on ideas from [START_REF] Auscher | Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds[END_REF] and [START_REF] Hytönen | Kato's square root problem in Banach spaces[END_REF]. In Section 2 we recall the relevant material from [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF].

Tools

When dealing with tent spaces, the key estimate needed is a change of aperture formula, i.e., a comparison between the T p,2 norm and the norm

g T p,2 α :=   R n ∞ 0 R n 1 B(x,αt) (y) t n g(t, y) 2 dydt t p 2 dx   1 p
, for some parameter α > 0. Such a result was first established in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF], building on similar estimates in [START_REF] Fefferman | H p spaces of several variables[END_REF], and analogues have since been developed in various contexts. Here we use the following version given in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF]Theorem 4.3].

Theorem 2.1. Let 1 < p < ∞ and α ≥ 1. There exists a constant C > 0 such that, for all f ∈ T p,2 , f T p,2 ≤ f T p,2 α ≤ C(1 + log α)α n/τ f T p,2 ,
where τ = min(p, 2) and C depends only on n and p. 1 Theorem 2.1 is actually a special case of the Banach space valued result obtained in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF]. Note, however, that it improves the power of α appearing in the inequality from the n given in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF] to n τ . This is crucial in what follows, and has been shown to be optimal in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF].

Applying this to (t, y) → t m(β+1) 2 f (t m , y) instead of f , we also have the weighted result, where

g T p,2,m α (t β dtdy) =   R n ∞ 0 R n 1 B(x,αt 1 m ) (y) t n m g(t, y) 2 t β dydt p 2 dx   1 p . Corollary 2.2. Let 1 < p < ∞, m ∈ N, α ≥ 1, and β ∈ R. There exists a constant C > 0 such that, for all f ∈ T p,2,m (t β dtdy), f T p,2,m (t β dtdy) ≤ f T p,2,m α (t β dtdy) ≤ C(1 + log α)α n/τ f T p,2,m (t β dtdy) ,
where τ = min(p, 2) and C depends only on n and p.

To take advantage of this result, one needs to deal with families of operators, that behave nicely with respect to tent norms. As pointed out in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF], this does not mean considering R-bounded families (which means R-analytic semigroups when one considers (tLe -tL ) t≥0 ) as in the L p (R + × R n ) case, but tent bounded ones, i.e. families of operators with the following L 2 off-diagonal decay, also known as Gaffney-Davies estimates. Definition 2.3. A family of bounded linear operators (T t ) t≥0 ⊂ B(L 2 (R n )) is said to satisfy offdiagonal estimates of order M , with homogeneity m, if, for all Borel sets E, F ⊂ R n , all t > 0, and all f ∈ L 2 (R n ):

1 E T t 1 F f 2 1 + dist(E, F ) m t -M 1 F f 2 .
In what follows • 2 denotes the norm in L 2 (R n ).
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As proven, for instance, in [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF], differential operators of order m, such as (for m = 2) divergence form elliptic operators with bounded measurable complex coefficients, are such that (tLe -tL ) t≥0 satisfies off-diagonal estimates of any order, with homogeneity m. This condition can, in fact, be seen as a replacement for the classical gaussian kernel estimates satisfied in the case of more regular coefficients.

3 Results

Theorem 3.1. Let m ∈ N, β ∈ (-∞, 1), p ∈ 2n n+m(1-β) , ∞ ∩ (1, ∞)
, and τ = min(p, 2). If (tLe -tL ) t≥0 satisfies off-diagonal estimates of order M > n mτ , with homogeneity m, then M L extends to a bounded operator on T p,2,m (t β dtdy).

Proof. The proof is very much inspired by similar estimates in [START_REF] Auscher | Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds[END_REF] and [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF].

Let f ∈ C c (R + × R n ). Given (t, x) ∈ R + × R n , and j ∈ Z + , we consider C j (x, t) = B(x, t) if j = 0, B(x, 2 j t)\B(x, 2 j-1 t) otherwise.
We write

M L f T p,2 ≤ ∞ k=1 ∞ j=0 I k,j + ∞ j=0
J j where

I k,j =    R n ∞ 0 R n 1 B(x,t 1 m ) 
(y)

t n m 2 -k t 2 -k-1 t
Le -(t-s)L (1

Cj(x,4t 1 
m ) f (s, .))(y)ds 2 t β dy dt p 2 dx    1 p , J j =    R n ∞ 0 R n 1 B(x,t 1 m ) (y) 
t

n m t t 2 
Le -(t-s)L (1

Cj(x,4s 1 m ) 
f (s, .))(y)ds

2 t β dy dt p 2 dx    1 p
.

Fixing j ≥ 0, k ≥ 1 we first estimate I k,j as follows. For fixed

x ∈ R n , ∞ 0 B(x,t 1 m ) 2 -k t 2 -k-1 t
Le -(t-s)L (1

Cj(x,4t 1 
m ) f (s, •))(y) ds 2 t β-n m dy dt ≤ ∞ 0 B(x,t 1 m ) 2 -k t 2 -k-1 t (t -s)Le -(t-s)L (1 Cj (x,4t 1 
m ) f (s, •))(y) ds t -s 2 t β-n m dy dt ∞ 0 2 -k t 2 -k-1 t 2 -k t B(x,t 1 m ) (t -s)Le -(t-s)L (1 Cj(x,4t 1 
m ) f (s, •))(y) 2 dy t β-n m -2 ds dt ∞ 0 2 -k t 2 -k-1 t 2 -k 1 + 2 jm t t -s -2M 1 B(x,2 j+2 t 1 m ) f (s, •) 2 2 t β-n m -1 ds dt 2 -k 2 -2jmM ∞ 0 2 k+1 s 2 k s t β-n m -1 dt 1 B(x,2 j+ k m +3 s 1 m ) f (s, •) 2 2 ds 2 -k( n m +1-β) 2 -2jmM ∞ 0 1 B(x,2 j+ k m +3 s 1 m ) f (s, •) 2 2 s β-n m ds.
In the second inequality, we use Cauchy-Schwarz inequality for the integral with respect to t, the fact that t -

s ∼ t for s ∈ ∪ k≥1 [2 -k-1 t, 2 -k t] ⊂ [0, t 2 
] and Fubini's theorem to exchange the integral in t and the integral in y. The next inequality follows from the off-diagonal estimate verified by (ts)Le -(t-s)L and again the fact that ts ∼ t. By Corollary 2.2 this gives

I k,j (j + k)2 -k( 1 2 ( n m +1-β)-n mτ ) 2 -j(mM-n τ ) f T p,2,m (t β dtdy) , τ = min(p, 2). It follows that ∞ k=1 ∞ j=0 I k,j f T p,2,m (t β dtdy) since M > n mτ and n m + 1 -β > 2n
mτ (Note that for p ≥ 2, this requires β < 1). We now turn to J 0 and remark that J 0 ≤ R n J 0 (x) p 2 dx 1 p , where

J 0 (x) = ∞ 0 R n t t 2
Le -(t-s)L (g(s, •)(y)ds

2 t β-n m dy dt with g(s, y) = 1 B(x,4s 1 m ) 
(y)f (s, y). The inside integral can be rewritten as

M L g(t, •) -e -t 2 L M L g( t 2 , •).
As M L is bounded on L 2 (R + × R n ; t β-n m dydt) by Theorem 1.1 and (e -tL ) t≥0 is uniformly bounded on L 2 (R n ), we get

J 0 (x) ∞ 0 1 B(x,4s 1 m ) f (s, •) 2 2 s β-n m ds.
We finally turn to J j , for j ≥ 1. For fixed

x ∈ R n , ∞ 0 R n 1 B(x,t 1 m ) (y) t t 2
Le -(t-s)L (1

Cj(x,4s 1 
m ) f (s, .))(y)ds 2 t β-n m dy dt ≤ ∞ 0 R n 1 B(x,t 1 m ) (y) t t 2 (t -s)Le -(t-s)L (1 Cj(x,4s 1 
m ) f (s, .))(y) ds t -s 2 t β-n m dy dt ∞ 0 R n 1 B(x,t 1 m ) 
(y)

t t 2 (t -s)Le -(t-s)L (1 Cj(x,4s 1 m ) 
f (s, .))(y)

2 ds (t -s) 2 t β-n m +1 dy dt ∞ 0 t t 2 (t -s) -2 1 + 2 jm t t -s -2M 1 B(x,2 j+2 s 1 m ) f (s, .) 2 2 s β-n m +1 ds dt 2 -jm(2M-2) ∞ 0   2s s s(t -s) -2 1 + 2 jm t t -s -2 dt   1 B(x,2 j+2 s 1 m ) f (s, .) 2 2 s β-n m ds 2 -2jmM ∞ 0 1 B(x,2 j+2 s 1 m ) f (s, .) 2 2 s β-n m ds,
where we have used Cauchy-Schwarz inequality in the second inequality, the off-diagonal estimates and the fact that s ≤ t in the third, Fubini's theorem and the fact that s ≥ t 2 in the fourth, and the change of variable σ = t t-s in the last. An application of Corollary 2.2, then gives

J j 2 -jmM j2 j n τ f T p,2,m (t β dtdy) = j2 -j(mM-n τ ) f T p,2,m (t β dtdy) ,
and the proof is concluded by summing the estimates.

An end-point result holds for p = ∞. In this context the appropriate tent space consists of functions such that |g(t, x)| 2 dxdt t is a Carleson measure, and is defined as the completion of the space C c (R + × n ) with respect to

g 2 T ∞,2 = sup (x,r)∈R n ×R+ r -n B(x,r) r 0 |g(t, x)| 2 dxdt t .
We also consider the weighted version defined by Proof. Pick a ball B(z, r 1 m ). Let

I 2 = B(z,r 1 
m ) r 0 |(M L f )(t, x)| 2 t β dxdt.
We want to show that I 2 r n m f 2 T ∞,2 (t β dtdy) . We set

I 2 j = B(x,r 1 
m ) r 0 |(M L f j )(t, x)| 2 t β dxdt where f j (s, x) = f (s, x)1 Cj(z,4r 1 m ) 
(x)1 (0,r) (s) for j ≥ 0. Thus by Minkowsky inequality, I ≤ I j .

For I 0 we use again Theorem 1.1 which implies that M L is bounded on L 2 (R + × R n , t β dxdt). Thus

I 2 0 B(z,4r 1 
m ) r 0 |f (t, x)| 2 t β dxdt r n m f 2 T ∞,2,m (t β dtdy) .
Next, for j = 0, we proceed as in the proof of Theorem 3.1 to obtain

I 2 j ∞ k=1 r 0 2 -k t 2 -k-1 t 2 -k t 1 + 2 jm r t -s -2M f j (s, .) 2 L 2 t β-2 ds dt + r 0 t t 2 t(t -s) -2 1 + 2 jm r t -s -2M f j (s, .) 2 L 2 t β ds dt.
Exchanging the order of integration, and using the fact that t ∼ ts in the first part and that t ∼ s the second, we have the following.

I 2 j ∞ k=1 2 -k 2 -2jmM r -2M 2 -k r 0 2 k+1 s 2 k s t β+2M-1 f j (s, .) 2 L 2 dtds + r 0 2s s r(t -s) -2 1 + 2 jm r t -s -2M f j (s, .) 2 L 2 s β dtds ∞ k=1 2 -k 2 -2jmM 2 -k r 0 (2 k s) β f j (s, .) 2 L 2 ds + r 0 ∞ 1 1 + 2 jm σ -2M f j (s, .) 2 L 2 s β dσds 2 -2jmM r 0 f j (s, .) 2 L 2 s β ds,
where we used β < 1. We thus have

I 2 j 2 -2jmM (2 j r 1 m ) n f 2 T ∞,2,m (t β dtdy) ,
and the condition M > n 2m allows us to sum these estimates. Remark 3.3. Assuming off-diagonal estimates, instead of kernel estimates, allows to deal with differential operators L with rough coefficients. The harmonic analytic objects associated with L then fall outside the Calderón-Zygmund class, and it is common (see for instance [START_REF] Auscher | On necessary and sufficient conditions for L p estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]) for their boundedness range to be a proper subset of (1, ∞). Here, our range ( 2n n+m(1-β) , ∞] includes [2, ∞] as β < 1, which is consistent with [START_REF] Auscher | Weighted maximal regularity estimates and solvability of elliptic systems I[END_REF]. In the case of classical tent spaces, i.e., m = 1 and β = -1, it is the range (2 * , ∞], where 2 * denotes the Sobolev exponent 2n n+2 . We do not know, however, if this range is optimal. Remark 3.4. Theorem 3.2 is a maximal regularity result for parabolic Carleson measure norms. This is quite natural from the point of view of non-linear parabolic PDE (where maximal regularity is often used), and such norm have, actually, already been used in the context of Navier-Stokes equations in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], and, subsequently, for some geometric non-linear PDE in [START_REF] Koch | Geometric flows with rough initial data[END_REF]. Theorem 3.1 is also reminiscent of Krylov's Littlewood-Paley estimates [START_REF] Krylov | A parabolic Littlewood-Paley inequality with applications to parabolic equations[END_REF], and of their recent far-reaching generalization in [START_REF] Van Neerven | Stochastic maximal L p regularity[END_REF]. In fact, the methods and results from [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF], on which this paper relies, use the same circle of ideas (R-boundedness, Kalton-Weis γ multiplier theorem...) as [START_REF] Van Neerven | Stochastic maximal L p regularity[END_REF]. The combination of these ideas into a "conical square function" approach to stochastic maximal regularity will be the subject of a forthcoming paper.
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