
HAL Id: hal-00531814
https://hal.science/hal-00531814v1

Preprint submitted on 3 Nov 2010 (v1), last revised 9 Dec 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The maximal regularity operator on tent spaces
Pascal Auscher, Sylvie Monniaux, Pierre Portal

To cite this version:
Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces.
2010. �hal-00531814v1�

https://hal.science/hal-00531814v1
https://hal.archives-ouvertes.fr


The maximal regularity operator on tent spaces

Pascal Auscher, Sylvie Monniaux, Pierre Portal

En l’honneur des 60 ans de Michel Pierre

Abstract

Recently, Auscher and Axelsson gave a new approach to non-smooth boundary value prob-

lems with L2 data, that relies on some appropriate weighted maximal regularity estimates. As

part of the development of the corresponding Lp theory, we prove here the relevant weighted

maximal estimates in tent spaces T p,2 for p in a certain open range. We also study the case

p = ∞.

1 Introduction

Let −L be a densely defined closed linear operator acting on L2(Rn) and generating a bounded
analytic semigroup (e−tL)t≥0. We consider the maximal regularity operator defined by

MLf(t, x) =

t
∫

0

Le−(t−s)Lf(s, .)(x)ds,

for functions f ∈ Cc(R+ ×R
n). The boundedness of this operator on L2(R+ ×R

n) was established
by de Simon in [15]. The Lp(R+ × R

n) case, for 1 < p < ∞, turned out, however, to be much more
difficult. In [10], Kalton and Lancien proved that ML could fail to be bounded on Lp as soon as
p 6= 2. The necessary and sufficient assumption for Lp boundedness was then found by Weis [16] to
be a vector-valued strengthening of analyticity, called R-analyticity. As many differential operators
L turn out to generate R-analytic semigroups, the Lp boundedness of ML has subsequently been
successfully used in a variety of PDE situations (see [13] for a survey).

Recently, maximal regularity was used as an important tool in [2], where a new approach to
boundary value problems with L2 data for divergence form elliptic systems on Lipschitz domains, is
developed. More precisely, in [2], the authors establish and use the boundedness of ML on weighted
spaces L2(R+ × R

n; tβdtdx), for certain values of β ∈ R. The use of these spaces is common in the
study of boundary value problems, where they are seen as variants of the tent space T 2,2, introduced
by Coifman, Meyer and Stein in [6]. For p 6= 2, the corresponding spaces are weighted versions of
the tent spaces T p,2, which are defined, for parameters β ∈ R and m ∈ N, as the completion of
Cc(R+ × R

n) with respect to

‖g‖Tp,2,m(tβdtdy) =





∫

Rn

(

∞
∫

0

∫

Rn

1
B(x,t

1
m )

(y)

t
n
m

∣

∣g(t, y)
∣

∣

2
tβdydt

)
p
2

dx





1
p

,

the classical case corresponding to β = −1, m = 1, and being denoted simply by T p,2. The parameter
m is used to allow various homogeneities, and thus to make these spaces relevant in the study of
differential operators L of order m. To develop an analogue of [2] for Lp data, we need boundedness
results for the maximal operator ML on these tent spaces. This is the purpose of this note. It will
be used in the study of such boundary value problems, as well as in the context of well-posedness
of non-autonomous Cauchy problems, in subsequent papers. The proof is based on recent results
and methods developed in [9], building on ideas from [5] and [8]. In Section 2 we recall the relevant
definitions and result from [9]. In Section 3 we then state and prove the adequate boundedness
results.
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2 Tools

When dealing with tent spaces, the key estimate needed is a change of aperture formula, i.e., a
comparison between the T p,2 norm and the norm

‖g‖Tp,2
α

:=





∫

Rn

(

∞
∫

0

∫

Rn

1B(x,αt)(y)

tn

∣

∣g(t, y)
∣

∣

2 dydt

t

)
p
2

dx





1
p

,

for some parameter α > 0. Such a result was first established in [6], building on similar estimates in
[7], and analogues have since been developed in various contexts. Here we use the following version
given in [9, Theorem 4.3].

Theorem 2.1. Let 1 < p < ∞ and α ≥ 1. There exists a constant C > 0 such that, for all f ∈ T p,2,

‖f‖Tp,2 ≤ ‖f‖Tp,2
α

≤ C(1 + logα)αn/τ‖f‖Tp,2,

where τ = min(p, 2).

Theorem 2.1 is actually a special case of the Banach space valued result obtained in [9] corre-
sponding to the scalar valued situation. Note, however, that it improves the power of α appearing
in the inequality from the n given in [6] to n

τ . This is crucial in what follows, and has been shown
to be optimal in [9].

Applying this to (t, y) 7→ t
m(β+1)

2 f(tm, y) instead of f , we also have the weighted result, where

‖g‖Tp,2,m
α (tβdtdy) =





∫

Rn

(

∞
∫

0

∫

Rn

1
B(x,αt

1
m )

(y)

t
n
m

∣

∣g(t, y)
∣

∣

2
tβdydt

)
p
2

dx





1
p

.

Corollary 2.2. Let 1 < p < ∞, m ∈ N, α ≥ 1, and β ∈ R. There exists a constant C > 0 such
that, for all f ∈ T p,2,m(tβdtdy),

‖f‖Tp,2,m(tβdtdy) ≤ ‖f‖Tp,2,m
α (tβdtdy) ≤ C(1 + logα)αn/τ‖f‖Tp,2,m(tβdtdy),

where τ = min(p, 2).

To take advantage of this result, one needs to deal with families of operators, that behave nicely
with respect to tent norms. As pointed out in [9], this does not mean considering R-bounded families
(which means R-analytic semigroups when one considers (tLe−tL)t≥0) as in the Lp(R+ × R

n) case,
but tent bounded ones, i.e. families of operators with the following L2 off-diagonal decay, also known
as Gaffney-Davies estimates.

Definition 2.3. A family of bounded linear operators (Tt)t≥0 ⊂ B(L2(Rn)) is said to satisfy off-
diagonal estimates of order M , with homogeneity m, if, for all Borel sets E,F ⊂ R

n, all t > 0, and
all f ∈ L2(Rn):

‖1ETt1F f‖2 .
(

1 +
dist(E,F )m

t

)−M

‖1F f‖2.

In what follows ‖ · ‖2 denotes the norm in L2(Rn).

As proven, for instance, in [4], many differential operators of order m, such as (for m = 2)
divergence form elliptic operators with bounded measurable complex coefficients, are such that
(tLe−tL)t≥0 satisfies off-diagonal estimates of any order, with homogeneity m. This condition can,
in fact, be seen as a replacement for the classical gaussian kernel estimates satisfied in the case of
more regular coefficients.
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3 Results

Theorem 3.1. Let m ∈ N, β ∈ (−∞, 1), p ∈
(

2n
n+m(1−β) ,∞

)

∩ (1,∞), and τ = min(p, 2). If

(tLe−tL)t≥0 satisfies off-diagonal estimates of order M > n
mτ , with homogeneity m, then ML extends

to a bounded operator on T p,2,m(tβdtdy).

Proof. The proof is very much inspired by similar estimates in [5] and [9]. Let f ∈ Cc(R+ × R
n).

Given (t, x) ∈ R+ × R
n, and j ∈ Z+, we consider

Cj(x, t) =

{

B(x, t) if j = 0,

B(x, 2jt)\B(x, 2j−1t) otherwise.

We write ‖MLf‖Tp,2 ≤
∞
∑

k=1

∞
∑

j=0

Ik,j +
∞
∑

j=0

Jj where

Ik,j =







∫

Rn

(

∞
∫

0

∫

Rn

1
B(x,t

1
m )

(y)

t
n
m

∣

∣

∣

2−kt
∫

2−k−1t

Le−(t−s)L(1
Cj(x,4t

1
m )

f(s, .))(y)ds
∣

∣

∣

2

tβdy dt
)

p
2

dx







1
p

,

Jj =







∫

Rn

(

∞
∫

0

∫

Rn

1
B(x,t

1
m )

(y)

t
n
m

∣

∣

∣

t
∫

t
2

Le−(t−s)L(1
Cj(x,4s

1
m )

f(s, .))(y)ds
∣

∣

∣

2

tβdy dt
)

p
2

dx







1
p

.

Fixing j ≥ 0, k ≥ 1 we first estimate Ik,j as follows. For fixed x ∈ R
n,

∫ ∞

0

∫

B(x,t
1
m )

∣

∣

∣

∫ 2−kt

2−k−1t

Le−(t−s)L(1
Cj(x,4t

1
m )

f(s, ·))(y) ds
∣

∣

∣

2

tβ−
n
m dy dt

≤

∫ ∞

0

∫

B(x,t
1
m )

(

∫ 2−kt

2−k−1t

∣

∣

∣
(t− s)Le−(t−s)L(1

Cj(x,4t
1
m )

f(s, ·))(y)
∣

∣

∣

ds

t− s

)2

tβ−
n
m dy dt

.

∫ ∞

0

∫ 2−kt

2−k−1t

2−kt
(

∫

B(x,t
1
m )

∣

∣(t− s)Le−(t−s)L(1
Cj(x,4t

1
m )

f(s, ·))(y)
∣

∣

2
dy

)

tβ−
n
m

−2ds dt

.

∫ ∞

0

∫ 2−kt

2−k−1t

2−k
(

1 +
2jmt

t− s

)−2M
∥

∥1
B(x,2j+2t

1
m )

f(s, ·)
∥

∥

2

2
tβ−

n
m

−1ds dt

. 2−k2−2jmM

∫ ∞

0

(

∫ 2k+1s

2ks

tβ−
n
m

−1dt
)

∥

∥1
B(x,2j+

k
m

+3s
1
m )

f(s, ·)
∥

∥

2

2
ds

. 2−k( n
m

+1−β)2−2jmM

∫ ∞

0

∥

∥1
B(x,2j+

k
m

+3s
1
m )

f(s, ·)
∥

∥

2

2
sβ−

n
m ds.

In the second inequality, we use Cauchy-Schwarz inequality for the integral with respect to t, the
fact that t− s ∼ t for s ∈ ∪k≥1[2

−k−1t, 2−kt] ⊂ [0, t
2 ] and Fubini’s theorem to exchange the integral

in t and the integral in y. The next inequality follows from the off-diagonal estimate verified by
(t− s)Le−(t−s)L and again the fact that t− s ∼ t. By Corollary 2.2 this gives

Ik,j . (j + k)2−k( 1
2 (

n
m

+1−β)− n
mτ

)2−j(mM−n
τ
)‖f‖Tp,2,m(tβdtdy),

where τ = min(p, 2). It follows that
∞
∑

k=1

∞
∑

j=0

Ik,j . ‖f‖Tp,2,m(tβdtdy) since M > n
mτ and n

m + 1− β >

2n
mτ (Note that for p ≥ 2, this requires β < 1).
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We now turn to J0 and remark that J0 ≤
(∫

Rn J0(x)
p
2 dx

)
1
p , where

J0(x) =

∞
∫

0

∫

Rn

∣

∣

∣

t
∫

t
2

Le−(t−s)L(g(s, ·)(y)ds
∣

∣

∣

2

tβ−
n
m dy dt

with g(s, y) = 1
B(x,4s

1
m )

(y)f(s, y). The inside integral can be rewritten as

MLg(t, ·)− e−
t
2LMLg(

t

2
, ·).

As ML is bounded on L2(R+ × R
n; tβ−

n
m dydt) by [3, Theorem 3.1] and (e−tL)t≥0 is uniformly

bounded on L2(Rn), we get

J0(x) .

∫ ∞

0

∥

∥1
B(x,4s

1
m )

f(s, ·)
∥

∥

2

2
sβ−

n
m ds.

We finally turn to Jj , for j ≥ 1. For fixed x ∈ R
n,

∞
∫

0

∫

Rn

1
B(x,t

1
m )

(y)
∣

∣

∣

t
∫

t
2

Le−(t−s)L(1
Cj(x,4s

1
m )

f(s, .))(y)ds
∣

∣

∣

2

tβ−
n
m dy dt

≤

∞
∫

0

∫

Rn

1
B(x,t

1
m )

(y)
(

t
∫

t
2

∣

∣(t− s)Le−(t−s)L(1
Cj(x,4s

1
m )

f(s, .))(y)
∣

∣

ds

t− s

)2

tβ−
n
m dy dt

.

∞
∫

0

∫

Rn

1
B(x,t

1
m )

(y)

t
∫

t
2

∣

∣(t− s)Le−(t−s)L(1
Cj(x,4s

1
m )

f(s, .))(y)
∣

∣

2 ds

(t− s)2
tβ−

n
m

+1dy dt

.

∞
∫

0

t
∫

t
2

(t− s)−2
(

1 +
2jmt

t− s

)−2M∥

∥1
B(x,2j+2s

1
m )

f(s, .)
∥

∥

2

2
sβ−

n
m

+1ds dt

. 2−jm(2M−2)

∞
∫

0





2s
∫

s

s(t− s)−2
(

1 +
2jmt

t− s

)−2

dt





∥

∥1
B(x,2j+2s

1
m )

f(s, .)
∥

∥

2

2
sβ−

n
m ds

. 2−2jmM

∞
∫

0

∥

∥1
B(x,2j+2s

1
m )

f(s, .)
∥

∥

2

2
sβ−

n
m ds,

where we have used Cauchy-Schwarz inequality in the second inequality, the off-diagonal estimates
and the fact that s ≤ t in the third, Fubini’s theorem and the fact that s ≥ t

2 in the fourth, and the
change of variable σ = t

t−s in the last. An application of Corollary 2.2, then gives

Jj . 2−jmMj2j
n
τ ‖f‖Tp,2,m(tβdtdy) = j2−j(mM−n

τ
)‖f‖Tp,2,m(tβdtdy),

and the proof is concluded by summing the estimates.

An end-point result holds for p = ∞. In this context the appropriate tent space consists of
functions such that |g(t, x)|2 dxdt

t is a Carleson measure, and is defined as the completion of the
space Cc(R+ × R

n) with respect to

‖g‖2T∞,2 = sup
(x,r)∈Rn×R+

r−n

∫

B(x,r)

r
∫

0

|g(t, x)|2
dxdt

t
.

4



We also consider the weighted version defined by

‖g‖2T∞,2,m(tβdtdy) := sup
(x,r)∈Rn×R+

r−
n
m

∫

B(x,r
1
m )

r
∫

0

|g(t, x)|2tβdxdt.

Theorem 3.2. Let m ∈ N, and β ∈ (−∞, 1). If (tLe−tL)t≥0 satisfies off-diagonal estimates of
order M > n

2m , with homogeneity m, then ML extends to a bounded operator on T∞,2,m(tβdtdy).

Proof. Pick a ball B(z, r
1
m ). Let

I2 =

∫

B(z,r
1
m )

r
∫

0

|(MLf)(t, x)|
2tβdxdt.

We want to show that I2 . r
n
m ‖f‖2T∞,2(tβdtdy). We set

I2j =

∫

B(x,r
1
m )

r
∫

0

|(MLfj)(t, x)|
2tβdxdt

where fj(s, x) = f(s, x)1
Cj(z,4r

1
m )

(x)1(0,r)(s) for j ≥ 0. Thus by Minkowsky inequality, I ≤
∑

Ij .

For I0 we use again [3, Theorem 1.3] which implies that ML is bounded on L2(R+ × R
n, tβdxdt).

Thus

I20 .

∫

B(z,4r
1
m )

r
∫

0

|f(t, x)|2tβdxdt . r
n
m ‖f‖2T∞,2,m(tβdtdy).

Next, for j 6= 0, we proceed as in the proof of Theorem 3.1 to obtain

I2j .

∞
∑

k=1

r
∫

0

2−kt
∫

2−k−1t

2−kt
(

1 +
2jmr

t− s

)−2M

‖fj(s, .)‖
2
L2t

β−2ds dt

+

r
∫

0

t
∫

t
2

t(t− s)−2
(

1 +
2jmr

t− s

)−2M

‖fj(s, .)‖
2
L2t

βds dt.

Exchanging the order of integration, and using the fact that t ∼ t− s in the first part and that t ∼ s

in the second, we have the following.

I2j .

∞
∑

k=1

2−k2−2jmMr−2M

2−kr
∫

0

2k+1s
∫

2ks

tβ+2M−1‖fj(s, .)‖
2
L2dtds

+

r
∫

0

2s
∫

s

r(t− s)−2
(

1 +
2jmr

t− s

)−2M

‖fj(s, .)‖
2
L2s

βdtds

.

∞
∑

k=1

2−k2−2jmM

2−kr
∫

0

(2ks)β‖fj(s, .)‖
2
L2ds+

r
∫

0

∞
∫

1

(

1 + 2jmσ
)−2M

‖fj(s, .)‖
2
L2s

βdσds

. 2−2jmM

r
∫

0

‖fj(s, .)‖
2
L2s

βds,
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where we used β < 1. We thus have

I2j . 2−2jmM (2jr
1
m )n‖f‖2T∞,2,m(tβdtdy),

and the condition M > n
2m allows us to sum these estimates.

Remark 3.3. Assuming off-diagonal estimates, instead of kernel estimates, allows to deal with differ-
ential operators L with rough coefficients. The harmonic analytic objects associated with L then fall
outside the Calderón-Zygmund class, and it is common (see for instance [1]) for their boundedness
range to be a proper subset of (1,∞). Here, our range ( 2n

n+m(1−β) ,∞] includes [2,∞] as β < 1,

which is consistent with [2]. In the case of classical tent spaces, i.e., m = 1 and β = −1, it is the
range (2∗,∞], where 2∗ denotes the Sobolev exponent 2n

n+2 . We do not know, however, if this range
is optimal.

Remark 3.4. Theorem 3.2 is a maximal regularity result for parabolic Carleson measures norms.
This is quite natural from the point of view of non-linear parabolic PDE (where maximal regularity
is often used), and such norm have, actually, already been used in the context of Navier-Stokes
equations in [11], and, subsequently, for some geometric non-linear PDE in [12]. Theorem 3.1 is also
reminiscent of Krylov’s Littlewood-Paley estimates, and of their recent far-reaching generalization
in [14]. In fact, the methods and results from [9], on which this paper relies, use the same circle of
ideas (R-boundedness, Kalton-Weis γ multiplier theorem...) as [14]. The combination of these ideas
into a ”conical square function” approach to stochastic maximal regularity will be the subject of
another forthcoming paper.
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Current Address:
Australian National University, Mathematical Sciences Institute, John Dedman Building, Acton
ACT 0200, Australia.
pierre.portal@math.univ-lille1.fr

7


