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| ncremental response of granular materials. DEM results
F. Froiio" and J.-N. Rouk
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Abstract. We systematically investigate the incremental responseuabus equilibrium states of dense 2D model granular
materials, along the biaxial compression paiiy (< 022, 012 = 0). Stress increments are applied in arbitrary directiorgs i
dimensional stress spate 1, 022, 012). In states with stable contact networks we compute thenegf matrix and the elastic
moduli, and separate elastic and irreversible strainseénréimge in which the latter are homogeneous functions ofegegr
one of stress increments. Without principal stress axagian, the response abides by elastoplasticity with a Metutomb
criterion and a non-associated flow rule. However a norielabear strain is also observed for incrementsgf and shear
and in-plane responses couple. This behavior correlatibe tdistribution of friction mobilization and sliding at ctacts.

Keywords: discrete element simulation; incremental behavior; efdasticity; flow rule; hardening
PACS: 81.05.Rm ; 81.40.Jj; 62.20.F- ; 83.80.F¢g

INTRODUCTION lates to the elastic pafi of the tangential relative dis-
placement, abt = Kt 9, and is incrementally computed
Although the mechanical behavior of solidlike granular to enforce the Coulomb conditidhr | < uFy. Some vis-
materials under quasistatic loading conditions is oftencous damping is also introduced, which proves irrelevant
modeled as elastoplastic at the continuum level [1, 2]to the material behavior for low enough strain rates.
there are still few studies addressing the microscopic We focus here on dense samples, which are initially
origins of such a behavior by discrete, grain-level sim-assembled without friction, under an isotropic pressure
ulation [3-6]. To assess the applicability of elastoplas-P. The initial state is thus characterized by an isotropic
tic laws, one needs to investigate the response to smalabric and a large coordination number (close to 4). The
stress or strain increments, superimposed in various didimensionless stiffness parameter= Ky/P sets the
rections on an equilibrium state. One essential motivascale of contact deflections, agd 0 k1. We choose
tion for such studies is the prediction of shear band forvaluek = 10* in most simulations.
mation, for which such criteria as the Rudnicki-Rice [7] Deformations of the simulation cell, i.e. macroscopic
condition involve the incremental response. In particu-strains, are controlled, or vary in response to applied
lar, localization is crucially sensitive to the response tostresses. This is achieved with specific implementa-
stress increments with rotation of principal axes, as whenions of Parrinello-Rahman and Lees-Edwards tech-
some simple shear is superimposed on a biaxial compresiques (first developed for molecular systems [9]), as ex-
sion [8]. The present study addresses this issue for thplained in Ref. [10]. Stresses are given by the classical
simplest model material, an assembly of disks in 2 di-Love formula. In the biaxial compression test, the de-
mensions, for which the response to load increments ifiormable cell remains rectangular, its edges parallel to
all 3 dimensions of stress space is computed at variouthe principal stress directions. Principal stress valye
points along a biaxial loading path. (the lateral stress) is kept equal Bp while g, (the ax-
ial stress) increases in response to steajivhich grows
at a controlled rate (compressive stresses and shrinking
MODEL MATERIAL AND METHODS strains are positive). As indicated in Fig. 1, the com-
pression test is stopped at different stages and the sam-
Our simulation samples comprise 5600 disks enclosegle is equilibrated at constant stresses. This entailbtslig
in a periodic rectangular cell. The diameter distributioncreepstrain increments, which remain quite small (of or-
is uniform between @d and 13d. We use a simple, der 10°), until equilibrium conditions are satisfied with
frictional-elastic contact model, involving (constantyn ~ good accuracy (the tolerance is~f0in units of P, dP,
mal contact stiffnesKy, tangential contact stiffnedér andd?P for stresses, forces and moments, respectively).
(here we seKt = Ky) and a friction coefficienty, set  In those well-equilibrated intermediate states, hereafte
to 0.3. The normal (elastic) contact forcefy = Kyh  referred to asnvestigation pointswe first compute elas-
wherehis the interpenetration of contacting disks (which tic moduli. To do so, we use the stiffness matrix associ-
models surface deflection). The tangential foFgere-  ated to the contact network, as in Ref. [11]. It is conve-



1.5 0.04 7
2D biaxial test, dense ]
_ =104 w©=0.3 1 1
| L REGIME I1] 0.02 1
- 1+ o i
° I Apply 60 there \N ]
~ pply
5 I |.8 0.00 4
Il L
~ 0.5 - 1
L | -0.02 4
} ]
-0.04 L+
OO‘“‘015‘“‘1““115“‘%““25 -004 002 0.0 0.02 0.04
" 10%,=103, ' o01/P

FIGURE 1. Deviator stress versus axial strain curve, and ~FIGURE 2. Stress increments in principal axis plane
location of 2 investigation points for incremental respons

INCREMENTAL RESPONSE

nient to denote stresses and strains as 3-vectoddas
5€) with 603 = /2015, while notationsday, 50, keep No rotation of principal axes
the same meaning (and similarly fd€). Due to sym-

metry about the principal axes there are four independent we first investigate the response to stress increments

elastic moduli, which satisfy: lying in the plane of principal stresses (i.8¢3 = 0).
For each investigation point along the curve of Fig. 1, 12
. SE Cu G O different orientations o®d in this plane are tested, as
00 =C-0e%, withC = |Cr> C2 0 (1) shown in Fig. 2, with 12 different amplitudes (as speci-
0 0 Zg fied before). In order to assess the relevance of classical

plasticity models for the material studied here we focus

. . o= on the following three aspects: (i) the existence of a flow
The incremental response for various load direction g P O

Jule dictating the direction 08&; (ii) at equal ampli-
is then computed, for different stress increments. W 9 ; (i) 9 P

% . Sude|d3], the linear dependence of amplitud®| on
choosedd values on a sphere in 3-space, centered at th?ne positive par{d5], of 36 — Nc - 53, whereNg is

. . . 73 - _ . - . '
origin, of radius 2/2 x 10-%P. Such increments are 8P~ the outer normal to some yield criterion in stress space;

f“eldz’ :_;md tgientmultlpllgtihby_ |rf1|teger fac;t%rsch,th&_.. (ljJ_p (iii) the same linear dependence for varying stress incre-
0 4, In order 1o record tne intidence of bo eI a* ment amplitudes. The existence of a plastic flow rule is

r(:‘ctlon an? tne('jr ar?:r[])htud_ei_The (icaltl:lu:lsan?n_s are fullya sharp feature arising from incremental tests, as shown
stress-controfied, with variations ot afl > strain compo-;, Fig. 3, corresponding to an investigation point with

nents. Once a new, pertubed equilibrium is rtf?cltfi?d, 0,/ 01 = 1.4. Elastic strain incrementet anddef are

IS measured, from Wh'Ch .the ela§t|c péf :.g 00 disposed along as many directions as the stress incre-
IS s_ubtracted, deflnl_ng therevers_lblestr?m mt_:r”ement, ments in Fig. 2, while plastic strain incremend&f and
Wh'c.h we denpte W't.h superscript (for “plastic”). In- d¢e¥) clearly align along a unique direction, consistently
vestigation points withoz/0y = 1.2, 1.4, 1.6 and 1.8 iy the flow rule. The same features are observed for all
were studied investigation points.

Before presenting the results in the next secti.on, let We discuss point (i) of our list by referring to Fig. 4
us recall that as a consequence of the assembling pra. .\ 527 is plotted versus the angle between

cess, the investigated states possess a large coordinati anipal axis 1 and incremedid, at constant amplitude

rlumber, ﬁnd I(Seet:]:lgt-)_l) _aﬁa Wét_hm the ra?hg(?[_ofdstral d4]. In the framework of classical plasticity these values
.( regime I), along the laxialioading curve, thats dom- ¢, 4 fit to the positive part of a cosine function reach-
inated by contact deformation [11, 12]. This means thal'ing its maximum in tnormal to the yield criterion. Fit-

the contact network does not break apart, and that th ng theoretical curves to data allows to estimate the an-

T %Ie ony c characterising the normbl: to the yield crite-
the Cpulom_b limit is reached. As aconsequence, macrog, , [4] and the maximal amplitudésf; ,, of the plastic
scopic strains, on changing confining stresses or stiff

; strain increment. Notably, for all investigation pointset
ness constants, scale es* [12]. For larger deviators, Y 9 pointsy

. . i _ normalNc, oriented at anglernyc, is consistently ver
or in poorly coordinated samples (which might be very c gleve y very

. . nearly orthogonal to the current stress directmno,
dense nevertheless [11]), the macroscopic strains Ster&)riented at anglexp in stress space). This suggests

from network ruptures and Irearr_anger.nents (‘regime II”)that the yield criterion might be defined by the Coulomb
and the incremental behavior might differ.

superscriptE recalling that strains are purely elastic.
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FIGURE 3. Elastic and anelastic parts of response to stres
increments marked (Oa, Ob, ..., Ol) in Fig. 2
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FIGURE 4. Amplitude |6¢P| vs. orientationa of & for
constant amplitud®o| = 3.394- 1072 (0»/ 01 = 1.4).

condition of a constant ratia,/ 1. Sinceaprp # anyc
the plastic flow direction differs from the normidt, as
in nonassociated elastoplasticiths to point (iii), it is
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FIGURE 5. Nonelastic strain amplitude v$66]; defined
with normal to criterion identified in Fig. 4.

checked in Fig. 5, from which the followingastic mod-
uli Cp (in units ofKy) are measuredp =??, ??, ??, ??
corresponding, respectively, /o0, =1.2, 1.4, 1.6 and
1.8.

General case

If elastoplasticity applies — which seems to be the
case fordd in the plane of the principal stress direc-
tions — then a small load increment in the third direction,
003 # 0, 001 = 802 = 0 should entail a purely elastic
response. Fig. 6 contradicts this prediction, as a nonelas-
tic shear strairzﬁeg immediately appears, which increase
proportionnally to shear stre$s;,|. Coefficients can be
slightly different for positive and negativi®oi, because
of finite sample size effects. Like in-plane increments,
suchda, if extremely small, yield a nonelastic response
$hat is slightly sublinear in their amplitude, but a plas-
tic modulus can be identified fa¥os /P of order 1072,
Out-of-plane increment§d also entail plastic strains
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FIGURE 6. Total, elastic, nonelastic shear strains as func-
tions of applied shear stress to state witty o1 = 1.8. Plastic
modulus is close toky (resp. 28Ky) for a1 > 0 (0012 < 0).

def, 8e5, which are still related by the same flow rule
as previously identified for in-plane loadéds = 0).
Fig. 7 gathers results both from 16 load directions for
which 605 = £./80? + 502, as well as simple shear

increments §o; = 60, = 0) with both signs ofdas.
Quite surprisingly, the latter also produce a nonelastic re
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FIGURE 7. Analog of Fig. 3 in state witloy /01 = 1.8, for
out-of-planedd. Big red dots correspond dog; = d0, = 0.
Elastic strains (bottom right) are comparatively smaller.

ponse in the plane of principal stresses. We thus observe



that both the irreversible strains and the stress increis observed fordd > 0, while the population of slid-
ments causing them span two-dimensional spaces, witing contacts virtually vanishes on applyidg < 0 and
one in-plane and one out-of-plane direction, and that the&dgs = 0. The sliding contact fabric depends on béth
response couples both directions. To be complete, wanddd in general. A nonzerdos breaks its symmetry.
should then specify howeP depends o for allload  The angular distribution of sliding displacements at con-
increments. Although we are still investigating this issue tacts (Fig. 9), albeit different, is also strongly anisgimo
some preliminary attempts at superposition of responseand shows similar sensitivity to the direction ®f. Fi-
to shear and to in-plane stress increments are encouragally, stress increments for whidl@ is proportional tad
ing, as shown by Fig. 8. Upon superimposing the pre<{the neutral direction), entail no sliding, as contact &src
015 tend to increase proportionnally to their previous value.

oLl e 1 PERSPECTIVES
The essential finding of the present study, which still re-

[ R ] mains to be systematized and calls for more thorough mi-

0.05 o _ cromechanical investigations, is the correspondence be-

T 1 tween 2D stress increments orthogonal to the currrent

L e ] stress level and nonelastic strains belonging to a 2D

f}’ | | space. In the near future we plan to formulate it as a com-
% oos . o1 ois plete constitutive incremental law, to relate it to micro-
x6ep (observed) scopic phenomena and to use it in localization criteria.

The incremental response in systems with gradually re-
arranging contact networks (“regime 11", associated with

microscopic instabilities) should also be investigated.
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FIGURE 8. Predicted, with procedure defined in text, versus
observedde; for combined loadsdy/o01 = 1.8).

viously identified responses to (in-plan®y = N¢ - 7
and to|das| in simple shear, Fig. 8 shows that the pre-
dicted values are fairly close to the measured ones. REFERENCES
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FIGURE 9. Left: sliding contact orientational distribution
(major principal axis vertical on the plot), normalized kulat
its angular average is a coordination number. Diameterroleci
is 1.1, global coordination is 3.5. Right: angular disttibn
of amplitude of sliding relative displacement in contaats i
response to in-plane load increment, normalized by plastic
strain.oz/o0; = 1.8.



