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Incremental response of granular materials: DEM results
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Abstract. We systematically investigate the incremental response ofvarious equilibrium states of dense 2D model granular
materials, along the biaxial compression path (σ11 < σ22, σ12 = 0). Stress increments are applied in arbitrary directions in 3-
dimensional stress space(σ11,σ22,σ12). In states with stable contact networks we compute the stiffness matrix and the elastic
moduli, and separate elastic and irreversible strains in the range in which the latter are homogeneous functions of degree
one of stress increments. Without principal stress axis rotation, the response abides by elastoplasticity with a Mohr-Coulomb
criterion and a non-associated flow rule. However a nonelastic shear strain is also observed for increments ofσ12, and shear
and in-plane responses couple. This behavior correlates tothe distribution of friction mobilization and sliding at contacts.
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INTRODUCTION

Although the mechanical behavior of solidlike granular
materials under quasistatic loading conditions is often
modeled as elastoplastic at the continuum level [1, 2],
there are still few studies addressing the microscopic
origins of such a behavior by discrete, grain-level sim-
ulation [3–6]. To assess the applicability of elastoplas-
tic laws, one needs to investigate the response to small
stress or strain increments, superimposed in various di-
rections on an equilibrium state. One essential motiva-
tion for such studies is the prediction of shear band for-
mation, for which such criteria as the Rudnicki-Rice [7]
condition involve the incremental response. In particu-
lar, localization is crucially sensitive to the response to
stress increments with rotation of principal axes, as when
some simple shear is superimposed on a biaxial compres-
sion [8]. The present study addresses this issue for the
simplest model material, an assembly of disks in 2 di-
mensions, for which the response to load increments in
all 3 dimensions of stress space is computed at various
points along a biaxial loading path.

MODEL MATERIAL AND METHODS

Our simulation samples comprise 5600 disks enclosed
in a periodic rectangular cell. The diameter distribution
is uniform between 0.7d and 1.3d. We use a simple,
frictional-elastic contact model, involving (constant) nor-
mal contact stiffnessKN, tangential contact stiffnessKT
(here we setKT = KN) and a friction coefficient,µ , set
to 0.3. The normal (elastic) contact force isFN = KN h
whereh is the interpenetration of contacting disks (which
models surface deflection). The tangential forceFT re-

lates to the elastic partδ of the tangential relative dis-
placement, asFT = KTδ , and is incrementally computed
to enforce the Coulomb condition|FT | ≤ µFN. Some vis-
cous damping is also introduced, which proves irrelevant
to the material behavior for low enough strain rates.

We focus here on dense samples, which are initially
assembled without friction, under an isotropic pressure
P. The initial state is thus characterized by an isotropic
fabric and a large coordination number (close to 4). The
dimensionless stiffness parameterκ = KN/P sets the
scale of contact deflections, ash/d ∝ κ−1. We choose
valueκ = 104 in most simulations.

Deformations of the simulation cell, i.e. macroscopic
strains, are controlled, or vary in response to applied
stresses. This is achieved with specific implementa-
tions of Parrinello-Rahman and Lees-Edwards tech-
niques (first developed for molecular systems [9]), as ex-
plained in Ref. [10]. Stresses are given by the classical
Love formula. In the biaxial compression test, the de-
formable cell remains rectangular, its edges parallel to
the principal stress directions. Principal stress valueσ1
(the lateral stress) is kept equal toP, while σ2 (the ax-
ial stress) increases in response to strainε2, which grows
at a controlled rate (compressive stresses and shrinking
strains are positive). As indicated in Fig. 1, the com-
pression test is stopped at different stages and the sam-
ple is equilibrated at constant stresses. This entails slight
creepstrain increments, which remain quite small (of or-
der 10−6), until equilibrium conditions are satisfied with
good accuracy (the tolerance is 10−4 in units of P, dP,
andd2P for stresses, forces and moments, respectively).
In those well-equilibrated intermediate states, hereafter
referred to asinvestigation points, we first compute elas-
tic moduli. To do so, we use the stiffness matrix associ-
ated to the contact network, as in Ref. [11]. It is conve-



FIGURE 1. Deviator stress versus axial strain curve, and
location of 2 investigation points for incremental response

nient to denote stresses and strains as 3-vectors (asδ~σ ,
δ~ε) with δσ3 =

√
2σ12, while notationsδσ1, δσ2 keep

the same meaning (and similarly forδ~ε). Due to sym-
metry about the principal axes there are four independent
elastic moduli, which satisfy:

δ~σ = C ·δ~εE, with C =





C11 C12 0
C12 C22 0
0 0 2C33



 (1)

superscriptsE recalling that strains are purely elastic.
The incremental response for various load directions
is then computed, for different stress increments. We
chooseδ~σ values on a sphere in 3-space, centered at the
origin, of radius 2

√
2×10−3P. Such increments are ap-

plied, and then multiplied by integer factors 2, 3... up
to 12, in order to record the influence of both their di-
rection and their amplitude. The calculations are fully
stress-controlled, with variations of all 3 strain compo-
nents. Once a new, pertubed equilibrium is reached,δ~ε
is measured, from which the elastic partδ~εE = C−1 ·δ~σ
is subtracted, defining theirreversiblestrain increment,
which we denote with superscriptP (for “plastic”). In-
vestigation points withσ2/σ1 = 1.2, 1.4, 1.6 and 1.8
were studied

Before presenting the results in the next section, let
us recall that as a consequence of the assembling pro-
cess, the investigated states possess a large coordination
number, and (see Fig. 1) are within the range of strain
(“regime I”), along the biaxial loading curve, that is dom-
inated by contact deformation [11, 12]. This means that
the contact network does not break apart, and that the
irreversible strains are due to sliding at contacts where
the Coulomb limit is reached. As a consequence, macro-
scopic strains, on changing confining stresses or stiff-
ness constants, scale asκ−1 [12]. For larger deviators,
or in poorly coordinated samples (which might be very
dense nevertheless [11]), the macroscopic strains stem
from network ruptures and rearrangements (“regime II”)
and the incremental behavior might differ.
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FIGURE 2. Stress increments in principal axis plane

INCREMENTAL RESPONSE

No rotation of principal axes

We first investigate the response to stress increments
lying in the plane of principal stresses (i.e.,δσ3 = 0).
For each investigation point along the curve of Fig. 1, 12
different orientations ofδ~σ in this plane are tested, as
shown in Fig. 2, with 12 different amplitudes (as speci-
fied before). In order to assess the relevance of classical
plasticity models for the material studied here we focus
on the following three aspects: (i) the existence of a flow
rule dictating the direction ofδ~εP; (ii) at equal ampli-
tude|δ~σ |, the linear dependence of amplitude|δ~εP| on
the positive part[δ σ̂ ]+ of δ σ̂ = NC · δ~σ , whereNC is
the outer normal to some yield criterion in stress space;
(iii) the same linear dependence for varying stress incre-
ment amplitudes. The existence of a plastic flow rule is
a sharp feature arising from incremental tests, as shown
in Fig. 3, corresponding to an investigation point with
σ2/σ1 = 1.4. Elastic strain incrementsδεE

1 andδεE
2 are

disposed along as many directions as the stress incre-
ments in Fig. 2, while plastic strain increments (δεP

1 and
δεP

2 ) clearly align along a unique direction, consistently
with the flow rule. The same features are observed for all
investigation points.

We discuss point (ii) of our list by referring to Fig. 4
in which |δ~εP| is plotted versus the angleα between
principal axis 1 and incrementδ~σ , at constant amplitude
|δ~σ |. In the framework of classical plasticity these values
should fit to the positive part of a cosine function reach-
ing its maximum in tnormal to the yield criterion. Fit-
ting theoretical curves to data allows to estimate the an-
gleαNYC characterising the normalNC to the yield crite-
rion [4] and the maximal amplitudeδεP

MAX of the plastic
strain increment. Notably, for all investigation points, the
normalNC, oriented at angleαNYC, is consistently very
nearly orthogonal to the current stress directionσ1,σ2
(oriented at angleαLD in stress space). This suggests
that the yield criterion might be defined by the Coulomb
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FIGURE 3. Elastic and anelastic parts of response to stress
increments marked (0a, 0b, ..., 0l) in Fig. 2
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FIGURE 4. Amplitude |δεP| vs. orientationα of δ~σ for
constant amplitude|δσ |= 3.394·10−2 (σ2/σ1 = 1.4).

condition of a constant ratioσ2/σ1. SinceαPFD 6= αNYC
the plastic flow direction differs from the normalNC, as
in nonassociated elastoplasticity. As to point (iii), it is
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FIGURE 5. Nonelastic strain amplitude vs.[δ σ̂ ]+ defined
with normal to criterion identified in Fig. 4.

checked in Fig. 5, from which the followingplastic mod-
uli CP (in units ofKN) are measured:CP =??, ??, ??, ??
corresponding, respectively, toσ2/σ1 =1.2, 1.4, 1.6 and
1.8.

General case

If elastoplasticity applies – which seems to be the
case forδ~σ in the plane of the principal stress direc-
tions – then a small load increment in the third direction,
δσ3 6= 0, δσ1 = δσ2 = 0 should entail a purely elastic
response. Fig. 6 contradicts this prediction, as a nonelas-
tic shear strainδεP

3 immediately appears, which increase
proportionnally to shear stress|σ12|. Coefficients can be
slightly different for positive and negativeδσ12 because
of finite sample size effects. Like in-plane increments,
suchδ~σ , if extremely small, yield a nonelastic response
that is slightly sublinear in their amplitude, but a plas-
tic modulus can be identified forδσ3/P of order 10−2.
Out-of-plane incrementsδ~σ also entail plastic strains

FIGURE 6. Total, elastic, nonelastic shear strains as func-
tions of applied shear stress to state withσ2/σ1 = 1.8. Plastic
modulus is close to 3KN (resp. 2.8KN) for δσ12> 0 (δσ12< 0).

δεP
1 , δεP

2 , which are still related by the same flow rule
as previously identified for in-plane loads (δσ3 = 0).
Fig. 7 gathers results both from 16 load directions for

which δσ3 = ±
√

δσ2
1 + δσ2

2 , as well as simple shear

increments (δσ1 = δσ2 = 0) with both signs ofδσ3.
Quite surprisingly, the latter also produce a nonelastic re-

FIGURE 7. Analog of Fig. 3 in state withσ2/σ1 = 1.8, for
out-of-planeδ~σ . Big red dots correspond toδσ1 = δσ2 = 0.
Elastic strains (bottom right) are comparatively smaller.

ponse in the plane of principal stresses. We thus observe



that both the irreversible strains and the stress incre-
ments causing them span two-dimensional spaces, with
one in-plane and one out-of-plane direction, and that the
response couples both directions. To be complete, we
should then specify howδ~εP depends onδ~σ for all load
increments. Although we are still investigating this issue,
some preliminary attempts at superposition of responses
to shear and to in-plane stress increments are encourag-
ing, as shown by Fig. 8. Upon superimposing the pre-

FIGURE 8. Predicted, with procedure defined in text, versus
observedδε2 for combined loads (σ2/σ1 = 1.8).

viously identified responses to (in-plane)δ σ̂ = NC · δ~σ
and to|δσ3| in simple shear, Fig. 8 shows that the pre-
dicted values are fairly close to the measured ones.

MICROSCOPIC ASPECTS

The macroscopic nonelastic is due to plastic sliding in
some contacts. While the distribution of contact orien-
tations (fabric) is still moderately anisotropic in the in-
vestigated states, the sliding contact fabric (Fig. 9) has a
much stronger angular dependence. Such a distribution

FIGURE 9. Left: sliding contact orientational distribution
(major principal axis vertical on the plot), normalized such that
its angular average is a coordination number. Diameter of circle
is 1.1, global coordination is 3.5. Right: angular distribution
of amplitude of sliding relative displacement in contacts in
response to in-plane load increment, normalized by plastic
strain.σ2/σ1 = 1.8.

is observed forδ σ̂ > 0, while the population of slid-
ing contacts virtually vanishes on applyingδ σ̂ < 0 and
δσ3 = 0. The sliding contact fabric depends on bothδσ3
andδ σ̂ in general. A nonzeroδσ3 breaks its symmetry.
The angular distribution of sliding displacements at con-
tacts (Fig. 9), albeit different, is also strongly anisotropic
and shows similar sensitivity to the direction ofδ~σ . Fi-
nally, stress increments for whichδ~σ is proportional to~σ
(the neutral direction), entail no sliding, as contact forces
tend to increase proportionnally to their previous value.

PERSPECTIVES

The essential finding of the present study, which still re-
mains to be systematized and calls for more thorough mi-
cromechanical investigations, is the correspondence be-
tween 2D stress increments orthogonal to the currrent
stress level and nonelastic strains belonging to a 2D
space. In the near future we plan to formulate it as a com-
plete constitutive incremental law, to relate it to micro-
scopic phenomena and to use it in localization criteria.
The incremental response in systems with gradually re-
arranging contact networks (“regime II”, associated with
microscopic instabilities) should also be investigated.
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