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Abstract: A novel metal-coated nanocylinder-cavity architecture fully compatible with III-V 

GaInAs technology and benefiting from a broad spectral  range enhancement  of the local-

density-of-states is proposed as an integrated source of non-classical light. Due to a judicious 

selection of the mode volume, the cavity combines good collection efficiency (≈45%), large 

Purcell factors (≈15) over a 80-nm spectral range, and a low sensitivity to inevitable spatial 

mismatches between the single emitter and the cavity mode. This represents a decisive step 

towards  the implementation  of reliable  solid-state  devices  for the generation  of entangled 

photon pairs at infrared wavelengths.
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Solid-state cavity quantum electrodynamics offers a robust and scalable platform for 

quantum optics experiments and the development of quantum information processing devices. 

Solid-state sources of quantum states of light (single photons, indistinguishable or entangled 

photons) based on semiconductor quantum dots (QDs) embedded in microcavities have seen 

rapid progress during the past decade [1-3]. The microcavity (e.g. a photonic-crystal (PhC) 

cavity or a  micropillar)  induces  an increase of  the spontaneous emission (SE) rate  and a 

preferential funneling of the emitted photons into the cavity mode opening the possibility of a 

high collection efficiency of the emitted photons. It additionally permits to circumvent some 

of the effects of dephasing and partially restores the coherence between the emitted photons 

[2,4].  However,  in  practice,  microcavities  impose  a  spectral  and  spatial  matching  of  the 

emitting dipole with the cavity mode,  which still  limits  the performance of such sources. 

Techniques  are  presently  being  developed  to  guaranty  the  matching,  by  deterministically 

localizing the cavity around the randomly-placed emitting dipole [5,6] or by deterministically 

localizing the emitting dipole [7]. Another approach consists in designing novel architectures 

that are naturally less sensitive to any spectral or spatial matching.  Broadband and efficient 

single-mode-photon sources have been recently demonstrated without any cavity effect, by 

use of PhC waveguides [8-10] or nanowire antennas [11, 12]. While these single-quantum-

emitter architectures may offer high multi-photon probability suppression [10-12] and record 

collection efficiency through a microscope objective [11], the coherence of the emitted light is 

weak, and because the phase memory decay of most solid-state emitters is much faster than 

their radiative recombination lifetimes [2] quantum properties such as indistinguishability or 

entanglement are not achievable. In this letter, we propose a new architecture, ensuring both a 

high collection efficiency and a large SE-rate enhancement (thus restoring coherence), while 

relaxing constraints on spectral and spatial matching. This is achieved with a nanocylinder 

antenna,  which  operates  in  an  intermediate  confinement  regime  with  a  mode  volume 
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V≈0.002λ3.  The mode  volume is  approximately  10-times  larger  than those  achieved with 

ultrasmall  plasmonic nanoantennas,  such as nanogap in metallic  dimers  [13],  relaxing the 

constraint  on  the  emitting  dipole  position,  but  much  smaller  than  those  of  PhC cavities. 

Moreover, the high Purcell factor is achieved over a broad 80-nm spectral range, relaxing the 

constraint on the spectral matching. Such geometry is consequently a promising candidate for 

enhancing  the  capability  of  solid-state  sources  of  quantum  states  of  light,  such  as 

indistinguishable or entangled photons. 

Figure 1(a) sketches the geometry considered in this letter, a textbook case consisting 

in a semiconductor GaAs cylinder of radius a and height H coated by a thin dielectric Si3N4 

adlayer and by a thick silver layer. The 5-nm dielectric layer is introduced for preventing non-

radiative  recombination  at  the  interfaces  and  for  increasing  the  bottom  metallic  mirror 

reflectance.  In  comparison  with  PhC  cavities  or  microposts,  the  metallic  coating  offers 

smaller mode volumes and a suppression of off-resonant leaky modes [14], which boosts the 

emitting dipole-coupling with the cavity mode.  The main drawback is the inevitable  non-

radiative decay rate induced by metallic losses. Except when otherwise specified, the emitting 

dipole is modeled as an in-plane on-axis unpolarized dipole J located at a distance h2 from the 

top air-interface.

The design and interpretation are based on an approximate Fabry-Perot (FP) model. 

We  start  by  considering  the  fundamental  nanocylinder  mode,  denoted  TEC hereafter  and 

assumed to be  formed in the FP picture by the bouncing back and forth of the  guided TE11 

cylinder  modes [15] between the top and bottom interfaces.  The amplitudes  A+ and  A- in 

Fig. 1(a) respectively represent the excitation coefficients of the upward and downward TE11 

modes  [Fig. 1(b)],  rt and  rb are  the  modal  reflection  coefficients  of  the  top  and  bottom 

interfaces,  and  T(θ) denotes the fraction of the energy carried by the TE11  mode, which is 

scattered by the top interface into a cone defined by the opening angle θ. Figure 1(c) shows 
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the effective index neff dependence of the TE11 mode with the cylinder radius a at λ0=950 nm. 

We will  operate  above the  TE11 mode  cut-off  radius  of  50 nm.  The second TM01 mode 

possesses an antinode of the electric field on axis; it  will be considered for analyzing the 

impact of off-axis emitting dipoles on the device performance. The Purcell factor FP, defined 

as the normalized SE rate into the fundamental nanocavity mode TEC, is given by [16]

FP = (1−|ut|4Rt)|A+|2 + (1−|ub|4Rb)|A−|2, (1)

where  Rb=|rb|2, Rt=|rt|2,  ub=exp(ik0neffh1)  and  ut=exp(ik0neffh2)  see  Fig. 1(a),  with  k0=2π/λ, 

A+=As[1+rbub
2]/[1-rtrb(ubut)2] and A-=As[1+rtut

2]/[1-rtrb(ubut)2], As being a dipole-field coupling 

coefficient proportional to the oscillator strength. The extraction efficiency η(θ) is defined as 

the fraction of emitted photons that are collected above the top interface for the opening angle 

θ

η(θ) = T(θ)|ut|2|A+|2/PT, (2)

where PT=FP + γ is the total SE rate and γ is the decay rate into other cavity modes including 

the decay rate into the continuum of radiation modes of the cylinder. As will be shown later  

by comparing the FP predictions with fully vectorial finite-element-method (3D FEM) data, γ 

is negligible for on-axis dipoles. This drastically simplifies the design and can be attributed to 

the beneficial contribution of the metal-coating that inhibit the dipole-field coupling into the 

continuum of off-resonant radiation modes, a remarkable phenomenon already observed in 

micropillars [14] and nanowire lasers [17].

The coefficients, rt, rb and T(θ), of the TE11 mode [Figs. 2(a) and 2(b)] are calculated 

with  a  3D  frequency  fully-vectorial  aperiodic-Fourier-Modal  method  (a-FMM)  [18]  for 

λ0=950 nm. The frequency-dependent refractive index of silver is taken from [19], nSiN=1.95 

and  nGaAs=3.45.  Above  cutoff,  the  reflectance  of  the  bottom  interface  is  Rb≈0.95, 

independently of the cylinder  radius. That of the top interface,  Rt,  rapidly varies at  cutoff 

before slowly decreasing to reach the asymptotic  value of R∞=(nGaAs−1)2/(nGaAs+1)2=0.3 for 
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large  radius  (a→∞).  It  is  considerably  smaller  than  the  mirror  reflectance  usually 

implemented in micropillars or PhC cavities. Nevertheless, the dipole-field coupling in the 

nanocavity  is  strengthened,  due  to  the  small  modal  volume,  and high Purcell  effects  are 

achieved over a broad spectral range. The outcoupling efficiency T(θ) is approximately equal 

to 1−Rt for  θ=π/2. The energy loss, 1−Rt−T(π/2) is due to the launching and absorption of 

plasmons on the top metallic interface and reaches a maximum value of 0.1 for  a=100 nm 

(a≈λ0/10 is the relevant value of the radius for the antenna) and further decreases with a; it is 

only 0.05 for a=200 nm.

In Fig. 2(c) and 2(d), we show the dependence of FP and η with the cylinder radius a 

for  λ0=950 nm.  The  results  are  obtained  at  resonance  for  a  dipole  source  placed  on  the 

antinode of the cavity mode, implying that, as a varies, the cylinder height H and the dipole 

location h2 also vary to maintain the FP resonance condition for the TE11 mode (see the inset). 

The quantitative agreement  between the FP model  predictions  (curves) and fully-vectorial 

data obtained with a 3D FEM software (circles) shows that the model accurately captures the 

physics governing the dipole-field coupling of the nanocavity and convincingly supports our 

assumption that  γ is negligible for on-axis dipoles. The general trends in Figs. 2(c) and 2(d) 

are  understood by considering  the  different  loss  mechanisms,  including  absorption  at  the 

bottom and top interfaces, and absorption in the silver coating when the TE11 mode bounces 

back and forth in the cylinder. With the FP model, we have analyzed their respective impacts,  

by artificially setting either |Rb|=1, |Rt|=1-T(π/2) or Im(neff)=0. We find that absorption in the 

silver cladding is dominant. As a increases, this absorption decreases and this explains well 

why the efficiency increases with  a to reach a maximum value of 1-Rb for large  a’s. The 

general trend for  Fp is primarily explained by mode-volume considerations. However, near 

cutoff, the beneficial effect of the volume reduction is balanced by the sudden increase of the 

nanocylinder height H (due to a decrease of neff, see Fig. 1(c)) and of the concomitant loss in 
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the silver cladding. FP reaches its maximum value for a≈58 nm and for a height of H=152 nm. 

For this combination of geometric parameters, the losses are still compensated by a strong 

dipole-field coupling due to a high reflectance of the top interface and to the small volume.

Figure 3 shows the spectral characteristics of the antenna for an intermediate cylinder 

radius,  a=100 nm, which provides a good trade-off between extraction efficiencies (η=44% 

for θ=45o) and Purcell factors (FP=15). The striking feature is the broadband operation: the 

full-width at half-maximum of the FP spectrum in Fig. 3(a) is as large as the inhomogeneous 

broadening  of  self-assembled  quantum-dot  emission  lines  for  instance  and  the  extraction 

efficiency in Fig. 3(b) is virtually independent of the wavelength from 800 to 1100 nm. This 

spectral range is comparable to that recently reported for semiconductor nanowire antennas 

[11-12], but additionally, the present architecture supports a strong enhancement of the local 

density of states. The latter is essential for the generation of indistinguishable single photons 

and polarization entangled photons arising from the bi-exciton cascade of a single QD, so that 

photons emission occurs before any dephasing mechanisms take place [20,2,4]. In order to 

obtain a maximally entangled state, |Φ+>=(|HH>+|VV>)/√2, it is additionally necessary that 

both horizontal (H) and vertical (V) polarizations undergo the same Purcell enhancement and 

that both exciton and bi-exciton emissions are collected identically [21].

These  requirements  are  automatically  satisfied  for  on-axis  dipoles  due  to  the 

invariance by rotational symmetry. In practice, however, the QD is not exactly on-axis, the 

degeneracy is lifted, and the degree of entanglement is inevitably lowered. As will be shown 

later,  the fidelity of entangled photons pairs,  i.e.  the similarity of the emitted state to the 

maximally  entangled  Bell  state  |Φ+>=1/√2 (|HH>+|VV>),  can  be  accurately  predicted  for 

small misalignments (a0<50 nm) with an extended FP model, by considering only two cavity 

modes, the TEC fundamental mode and an additional TMC mode formed by the bouncing of 

the TM01 cylinder modes in the nanocylinder. TM01 is responsible for the degeneracy lift at 
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small misalignments; it has no azimuthal electric-field component and its radial component 

possesses an on-axis node [15], excluding its coupling with on-axis QDs. With the a-FMM, 

we have calculated the modal reflectance of the TM01 mode at the top and bottom interfaces.

Figure 4a shows the normalized SE rate of radial and orthoradial dipoles as a function 

of the radial misalignment  a0. The results are obtained with the extended FP model for the 

selected nanohole geometry (a=100 nm, H=65 nm). We notice that, due to the coupling to the 

TMC mode,  the  recombination  path  of  H-polarized  photons  (red-dotted  line)  possesses  a 

Purcell  factor  higher  than that  of V-polarized photons (blue-dashed line);  the H-polarized 

photons  are  facilitated  with  regard  to  the  V-polarized  ones,  and this  may lead  to  a  non-

maximally entangled state or even to a loss of entanglement. To quantify this eventuality, we 

calculate the fidelity as Tr(ρΦ+), where Tr(.) is the trace and  ρ is the density matrix of the 

entangled  photons  emitted  by an off-axis  QD.  The density  matrix  is  estimated  using  the 

formalism in [21], under the assumption that the anisotropic spin exchange energy of the QD 

is negligible. The fidelity [Fig. 4(b)] is significantly higher than the threshold value of 0.85 

required to violate the Bell inequalities, for off-axis displacements up to 60 nm. Furthermore, 

it  remains larger than 90% over a remarkable range of off-axis locations,  0<a0<45 nm, an 

alignment  precision largely within the capabilities  of  current  fabrication  technologies  [6]. 

Note that the 3D FEM calculations of the total SE rate of the radial and orthoradial dipoles 

validate the bi-mode assumption of the FP model.

SE-rate asymmetry is not the only cause of disentanglement; path distinguishability 

may also arise from emission into different cavity modes with different radiation diagrams 

[21]. Because H-polarized photons couple to both TEC and TMC modes, whereas V-polarized 

photons only couple to the TEC  mode, it is important to examine the asymmetry induced by 

the TMC mode. An important prediction of the extended FP model is that the TM01 modal 

reflectance  at  the  top  interface  is  very  large  (≈0.99  at  λ0=950 nm),  even  larger  than  the 
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metallic reflectance at the bottom interface. The lifetime of the TMC mode is thus limited by 

Ohmic losses rather than by radiation into the far-field. Therefore the dipole-field coupling to 

the TMC mode is essentially non-radiative and the total (θ = 90o) extraction efficiency  ηTM 

associated to the TMC mode is much smaller than that associated to the TEC mode. This is 

illustrated in Fig. 4c, which compares the probabilities, PTE and PTM, of collecting into the first 

lens  a  photon originating  either  from the TEC (red-dotted curve)  or from the TMC (blue-

dashed curve) mode.  PTE is equal to ηTEβTE, where βTE = FP,TE/(FP,TE+FP,TM) is the β-factor of 

the TEC mode and FP,TE and  FP,TM represent the Purcell factors of the TEC and TMC modes, 

respectively.  With  similar  notations,  we  have  PTM = ηTMβTM and  βTM = FP,TM/(FP,TE+FP,TM). 

Although the TMC mode gives rise to a strong Purcell effect (Fig. 4a), it is weakly affecting 

the far  field collection,  PTE ~103 PTM even for large misalignments.  Since in addition  the 

radiation diagrams of the TMC and TEC modes weakly overlap (Fig. 4d), the TMC contribution 

can be spatially filtered without diminishing the source's brightness, and we are confident that 

the fidelity is only limited by the path asymmetry of the Purcell effect (Fig. 4c). 

In summary, we have investigated a new architecture for implementing III-V GaInAs 

solid-state  sources  of  quantum states  of  light  with  large  Purcell  factors  and  with  a good 

extraction efficiency over a remarkably large 80 nm spectral range. The proposed nanocavity 

is  predicted  to  be  capable  of  generating  polarization  entangled  photon pairs  with  a  high 

fidelity,  even  for  QD misalignments  up  to  50 nm.  The  intermediate  confinement  regime 

(V≈0.002λ3) of the investigated nanocavity completely relaxes the stringent spectral matching 

condition  inherent  to  conventional  PhC  cavities,  while  keeping  spatial  matching  at  a 

reasonable  level  compatible  with  state-of-the-art  nanofabrication  facilities.  This  is  not 

achievable with ultrasmall plasmonic antennas [13] and we believe that the present approach 

is  a  good compromise  (see EPAPS) towards the integration of highly efficient  solid-state 

sources of non-classical light.
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Fig. 1 (Color online). (a) Cross-section of the metal-coated nanocylinder showing the main 

physical quantities involved in the FP model. (b) Top-view including the |Ex|2 field profile of 

the fundamental TE11 mode, calculated for  a=100 nm,  e=5 nm and  λ=950 nm. (c) Effective 

index neff of the TE11 mode for λ=950 nm.
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Fig. 2 (Color online) Main physical quantities of the FP model as a function of the cylinder  

radius a for λ=950 nm and e=5 nm. (a) Reflectance of the top and bottom interfaces. (b) Out-

coupling efficiency of the fundamental mode. (c) Purcell factor. The inset shows the H and h2 

that  maintain  the  FP  phase-matching  resonance  condition  as  a varies.  (d)  Extraction 

efficiency for several θIn (c) and (d), circles are obtained with the 3D FEM.
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Fig. 3 (Color  online)  Spectral  performance  of  the  nanocavity  for  a=100 nm,  e=5 nm, 

H=65 nm and [h1,h2]=[57,8] nm.  (a)  Purcell  factor.  (b)  Extraction  efficiency for several  θ 

(same markers and colors as in Figs. 2c and 2d). The efficiency drop predicted with the FEM 

at λ<850 nm is due to a resoannce of the TE21 mode, near its cut-off at l=750 nm.
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Fig. 4 (Color online) Influence of the off-axis dipole location a0 at λ=950 nm. (a) Red-dotted 

and blue-dashed curves: SE rate of the radial and orthoradial dipoles into the TEC mode. Thin 

gray-solid curve: SE rate of the radial dipole into the TMC mode. Black-solid curve: total SE 

rate of the radial dipole due to radiation into both the TEC and TMC modes.  (b) Fidelity of 

entanglement (0.85 threshold is indicated).  (c) Probability to collect a photon from the TEC 

(red-dotted) and TMC (blue-dashed) modes for θ=90o.  (d) Far-field radiation patterns of the 

TEC and TMC modes.


