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Abstract

In this paper, a novel control strategy for a nonlinear boost inverter is pro-

posed. The idea is based on generating an autonomous oscillator that does

not need an external reference signal. This aim is achieved by using energy-

shaping methodology with a suitable Hamiltonian function which defines the

desired system behavior. A phase controller is added to the control law in or-

der to achieve 180◦-synchronization between both parts of the circuit as well

as synchronize the voltage output with a pre-specified signal, e.g. synchro-
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nization with the electrical grid. An adaptive control is designed for dealing

with the common problem of unknown load. In order to analyze the stabil-

ity of the full system, singular perturbation approach is used. The resulting

control is tested by means of simulations.

Key words: Adaptive control, Inverters, Nonlinear circuits, Limit cycles,

Synchronization, Singular perturbation method.

1. Introduction

The control of switched-mode power converters (SMPC) with AC output

is usually accomplished by tracking a reference (sinusoidal) signal (see Biel

et al., 2004; de Souza et al., 2000; Sanch́ıs et al., 2005; Vázquez et al., 2003).

The use of this external signal makes the closed-loop control system non-

autonomous and thus, causes its analysis to be more involved than if it were

autonomous.

In these systems, the control objective can be seen as the generation of a

stable limit cycle with a given amplitude and frequency. If a control law is

able to produce such a limit cycle, alternating current will be generated with-

out the need to introduce a time-dependent reference signal. The generation

of limit cycles for producing self-oscillations has been successfully applied

to electro-mechanical systems (Gómez-Estern et al., 2002; Gordillo et al.,

2002). Some applications to electronic converters are (Aracil and Gordillo,

2002; Gordillo et al., 2004), where a three-phase UPS and a boost converter

are controlled using this method.

The idea behind (Biel et al., 2001) is similar but there a sliding mode

controller is proposed, which yields the typical drawback of this kind of con-
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troller: the switching frequency is variable.

In this paper, this approach is applied to a novel boost inverter (Albea

et al., 2006). This novel boost inverter is especially interesting because it can

generate alternating current since it produces an oscillating voltage centered

around zero and achieves negative voltages.

In this paper, it is first shown that the direct application of the approach

proposed in Aracil and Gordillo (2002) and Gordillo et al. (2004) does not

fulfil the objective due to the lack of anti-synchronization4 between both parts

of the circuit. In order to achieve anti-synchronization, a phase controller in

an external loop is added to the previous control law. This approach is also

applied to synchronize5 the output with a given signal. An example of such a

configuration is the synchronization of the boost inverter with the electrical

grid in order to achieve a satisfactory power factor.

Some simulations of industrial applications are presented in this paper in

order to validate the circuit performance.

Once the system is controlled, it is well known in industrial applications

that, the load can be unknown or suffer perturbations. This problem in

SMPC is usually dealt with by using adaptation mechanisms along with other

techniques such as feedback stabilization (H. et al., 1993) input-output feed-

back linearization (Hadri-Hamida et al., 2008), backstepping (Ŕıos-Boĺıvar

et al., 1996; Sira-Ramı́rez et al., 1997), a grid-point modeling approach (Ng

4In this paper it is said that two sinusoidal signals of the same frequency are anti-

synchronized, or in anti-phase, when the phase shift between them is equal to 180◦.
5In this paper it is said that two sinusoidal signals of the same frequency are synchro-

nized when the phase shift between them is equal to 0◦.
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et al., 1996), a sliding mode (Carrasco et al., 1997; Sira-Ramı́rez and Ŕıos-

Boĺıvar, 1994; Tan et al., 2005), predictive control (MeVay and Sarpeshkar,

2003), or fuzzy logic (Elmas et al., 2007).

In Pagano et al. (2005), an adaptive control is obtained for the case of

the boost converter controlled using a law based on the oscillation generation

approach. It is computed using passivity arguments. This approach is not

easily applicable to the boost inverter because its model is more involved

than that of the converter of Pagano et al. (2005).

The main goal of this study is to find a load-adaptation mechanism in the

case of the boost inverter. The idea is to design a state observer for some of

the converter variables even when the state variables are measured, in order

to estimate the load. This provides a fast, successful adaptation of the load

parameter (Albea et al., 2007). This approach is applied by simulation to a

real industrial case.

In order to analyze the stability of the full system singular perturbation

analysis, Khalil (2002) and Kokotovic et al. (1999) are used. For the sake

of simplicity, the phase controller is not considered in this analysis. The

resulting adaptive control is tested by means of simulations.

The rest of the work is organized as follows: in Section 2 the model of

the double boost converter (boost inverter) is presented. Section 3 shows the

general idea of generating oscillating behavior by means of the generation of a

limit cycle through energy shaping. This idea yields a controller for the boost

inverter, but it is shown that the behavior is not acceptable due to a lack

of synchronization. In Section 4 a phase controller is added to achieve the

synchronization of an isolated boost inverter as well as the synchronization of
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the boost inverter with a pre-specified signal. Section 5 deals with the main

contribution of this paper: the unknown-load case, which is solved by means

of adaptation mechanism design. Section 6 is devoted to the stability analysis

and presents some simulation results. Finally, conclusions are outlined in

Section 7.

2. Boost Inverter Model

The boost inverter (Cáceres and Barbi, 1999) can generate an AC output

voltage larger than its DC input, i. e., it is an voltage elevator. It is made up

of two DC-DC converters6 and a load connected differentially across them

(see Fig. 1). Each converter produces a DC-biased sine wave output, v1

and v2, so that each source generates a unipolar voltage. Voltages v1 and

v2 should present a phase shift equal to 180◦, which maximizes the voltage

excursion across the load. In this way it is possible to generate an oscillatory

signal without bias. The circuit implementation is shown in Fig. 2.

In order to simplify the analysis, a part of the boost inverter is replaced by

a voltage source as shown in Fig. 3, and these results are extrapolated to the

full inverter. Note, that this replacement shows more clearly the bidirectional

current of each boost DC-DC converter.

2.1. System Description

Let us assume that:

6Throughout this paper, each part of the boost inverter will be referred as “boost

DC-DC converter” since each part is a normal boost converter that is commonly used

as a DC-DC converter. Nevertheless, it should be taken into account that, in the boost

inverter, each part does not act as a DC-DC converter.
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Figure 1: Basic representation of the boost inverter.
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Figure 2: Boost inverter model.
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Figure 3: Boost inverter model with replacement of a voltage source.

• all the components are ideal and the currents of the converter are con-

tinuous,

• the power supply is free of sinusoidal ripple and is known,

• the converter operates at a high-switching frequency characteristic of

SMPC,

• the inductances L1 = L2, and the capacitances C1 = C2, are known

and symmetric,

• v1 and v2 are positive, sinusoidal voltages.

The circuit in Fig. 3 is driven by the transistor ON/OFF inputs Qi. This

yields two modes of operation illustrated in Fig. 4. Formally, this yields

a switched model. For control purposes, it is common to use an average

model described in terms of the mean currents and voltages values. This

model is more suitable for control because it is described by an averaged,
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smooth, nonlinear, continuous-time ODE. This averaging process yields the

normalized model described below.
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Figure 4: Operation modes.

If the control variable, q, is defined as q = 0 when Q1 = OFF and

Q2 = ON, and q = 1, when Q1 = ON and Q2 = OFF, the converter dynamic

equations are

L1
diL1

dt
=−v1 + qv1 + Vin (1)

C1
dv1

dt
= iL1

− qiL1
− v1

R
+

v2

R
. (2)

Let us take u = 1 − q as the control action in equations (1)–(2); getting

L1
diL1

dt
=−uv1 + Vin (3)

C1
dv1

dt
= uiL1

− v1

R
+

v2

R
, (4)

where u is the control variable, which can only take two values u ∈ {0, 1}.
Nevertheless, as is usual (Middlebrook and Ćuk, 1977), let us consider its av-
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erage value by u(t) = 1
T

∫ t

t−T
u(s)ds where T is the switching period. There-

fore, u is a continuous variable u ∈ [0, 1].

2.2. Normalized Average Model

In order to simplify the study, and assuming a resistive load, system

(3)–(4) is normalized in terms of the averaged current x1 and the averaged

voltages x2 and x4 by using the following change of variables

x1 =
1

Vin

√

L1

C1
iL1

(5)

x2 =
v1

Vin

(6)

x4 =
v2

Vin

(7)

and defining

t̃ = ω0t (8)

as a new time variable with

ω0 =
1√

L1C1

, (9)

which yields

ẋ1 =−ux2 + 1 (10)

ẋ2 = ux1 − ax2 + ax4, (11)

where a = 1
R

√

L1

C1
. Note that ẋ1 and ẋ2 are derivatives of x1 and x2 with

respect to t̃.

If u is eliminated in (10)–(11), it is got

x1(1 − ẋ1) = x2(ẋ2 + ax2 − ax4). (12)
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This equation is an implicit equation, which relates the state variables (x2,

x4) and their derivatives and does not depend on the control signal u. Note

that x4 can be considered an exogenous input in system (10)–(11). Equation

(12) can be understood as the internal dynamics of the system. If ẋ1 = 0

and ẋ2 = 0, the equilibrium manifold is x1 = ax2(x2 − x4). In this way, the

internal dynamics of system (10)–(11) given by (12) acts as a constraint on

the state of the system.

From Eq. (12), it is possible to see that given x4 and only controlling

x1, variable x2 can be indirectly controlled 7. Moreover, the stability of the

system is maintained (Fossas and Olm-Miras, 2002).

3. Energy Shaping Control

3.1. Generation of Oscillations by Energy Shaping

The generation of alternating current in power electronic converters can

be achieved by generating a stable limit cycle without the need to introduce

a reference signal. To do this, an oscillatory target system may be defined

and by matching its equations and system equations (10)–(11) a control law

can be obtained. In order to define the target system, consider the following

energy-like function

H0(η1, η2) =
1

4
Γ2(η1, η2), (13)

where η1 and η2 are state variables and Γ(η1, η2) = ω2(η1 − η10)
2 + (η2 −

η20)
2 − µ. Parameters ω, η10, η20 and µ > 0 should be chosen so that the

7For the full system, it is had: x1(1 − ẋ1) = x2(ẋ2 + a(x2 − x4)) and x3(1 − ẋ3) =

x4(ẋ4 + a(x4 − x2)). Thus, controlling x1 and x3, the desired behaviors for x2 and x4 can

be obtained.
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closed curve Γ = 0 defines the desired behavior. This curve is an ellipse

centered at point (η10, η20). A dynamical system can be defined such that

this closed curve is its limit set. This can be reached by adopting H0 as a

Hamiltonian function (Aracil and Gordillo, 2002; Pagano et al., 2005), and

defining the Hamiltonian dynamical system




η̇1

η̇2



 =





−ka1

1
Γ

− 1
Γ

−ka2









∂H0

∂η1

∂H0

∂η2



 , (14)

which, after using (13), results in

η̇1 = (η2 − η20) − ka1
ω2(η1 − η10)Γ (15)

η̇2 =−ω2(η1 − η10) − ka2
(η2 − η20)Γ. (16)

Taking into account that

Ḣ0 = −Γ2
(

ka1
ω4(η1 − η10)

2 + ka2
(η2 − η20)

2
)

≤ 0, (17)

by using the LaSalle invariance principle it can be seen that, for all initial

conditions except the center of the ellipse, the trajectories of the system tend

to the curve Γ = 0.

The behavior of this target system corresponds to the desired sinusoidal

behavior for the DC-AC converter. Constants ω, η10, η20 and µ are design

parameters for the frequency bias and amplitude of the desired behavior while

ka1
and ka2

define the speed of the transient response.

Note that η̇1 and η̇2 are in this case derivatives of η1 and η2 with respect

to t̃, in order to work with the normalized averaged model (10)–(11).

3.2. Controller Design

System (10)–(11) can not be directly transformed to the form of system

(15)–(16), but this can be done using the new change of coordinates given
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below:

ζ1 =
x2

1 + x2
2

2
(18)

ζ2 = x1 − ax2
2 + ax2x4 + ζ20 (19)

where ζ20 is an offset term that will be a tuning parameter. From (18)–(19),

it is easy to see that

ζ̇1 = ζ2 − ζ20 (20)

ζ̇2 = 1 + 2a2x2
2 − 3a2x4x2 + a2x2

4 + ax2ẋ4

−u(x2 + 2ax1x2 − ax4x1). (21)

It is not easy to obtain simple relationships x1 = f(ζ1, ζ2) and x2 =

f(ζ3, ζ4) from (18)–(19) due to the quadratic terms. Nevertheless, this change

of variables is a diffeomorphism if and only if x2 + 2ax1x2 − ax4x1 6= 0,

as follows from the inverse function theorem. This constraint restricts the

domain of attraction of the desired limit cycle when the controller obtained

below is applied. Such a domain of attraction is analyzed in (Albea and

Gordillo, 2007).

Looking at target system structure (15)–(16) and comparing it with (20)–

(21) the choice ka1
= 0 is obvious, resulting in the target system

ζ̇1 = ζ2 − ζ20 (22)

ζ̇2 =−ω2(ζ1 − ζ10) − kΓ(ζ2 − ζ20), (23)

where, for sake of simplicity, ka2
has been denoted as k. The attraction of

curve Γ = 0 can still be proved by the LaSalle invariance principle.
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The control law, u, that matches (20)–(21) and (22)–(23) is

u =
1 + 2a2x2

2 − 3a2x4x2 + a2x2
4 + ax2ẋ4

x2 + 2ax1x2 − ax4x1

+
kΓ(ζ2 − ζ20) + ω2(ζ1 − ζ10)

x2 + 2ax1x2 − ax4x1
. (24)

Indeed, u varies dependently on x, as is noted from Eq. (18)– (19). This

controller has several problems. First, the denominator in (24) may be zero

(this is the same necessary condition for (20)–(21) to be a diffeomorphism).

Furthermore, in other cases, the resulting u can violate the constraint 0 ≤
u ≤ 1. In Albea and Gordillo (2007) an estimation for the region of attraction

of the desired limit cycle is obtained by taking these problems into account.

It is assumed that a starting strategy will bring the state of the system into

this region of attraction (Alonso et al., 2000; Malinowski et al., 2003; Zhu

et al., 2000).

Parameters η10, η20 and µ have to be defined as a function of the desired

behavior. To do so, it is necessary to obtain an analytical expression of

the desired objective curve in plane x1 − x2. Assume that the desired time

evolutions for x2 and x4 are

x∗
2 = A sin ωt + B (25)

x∗
4 =−A sin ωt + B, (26)

where A, B and ω take pre-specified values to obtain the desired evolution

for v1 and iL1
using (5)–(7), (8) and (9). In addition, note that these desired

evolutions allow us to remove the bias in the output. The origin of time in

(25)–(26) is arbitrary so no phase shift value is imposed (signal synchroniza-

tion will be achieved below). Assume that the desired steady state for x1 can
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be approximated by

x∗
1 = aα0 + α1 cos ωt + β1 sin ωt (27)

This assumption is very common in the field of electronics field (see Fossas

and Olm-Miras, 2002; Dixon and Ooi, 1988; Griño et al., 2002; Biel et al.,

2004).

By substituting (25)–(26) and (27) in (12)

aα0 + (β1 + aα0α1ω) sinωt + (α1 − aα0β1ω) cosωt

+
1

2
ω(α2

1 − β2
1) sin 2ωt− α1β1ω cos 2ωt

= aA2 − 2aAB sin ωt − ωAB cos ωt +

1

2
ωA2 sin 2ωt − aA2 cos 2ωt.

If the second order harmonics are neglected, the corresponding coefficients

can be equated:

aα0 = aA2

β1 + aα0α1ω =−2aAB

α1 − aα0β1ω =−ωAB.

When this system is resolved for α0, α1 and β1,

α0 = A2 (28)

α1 =
ωAB(2a2A2 + 1)

1 + a2A4ω2
(29)

β1 =−aAB(ω2A2 − 2)

1 + a2A4ω2
. (30)

The next question is to show that the desired behavior for ζ1 and ζ2 is

an ellipse and to define the ellipse parameters (ω, ζ10, ζ20 and µ) in terms
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of the desired behavior for x2. In order to do this, it is necessary to obtain

the desired evolution for ζ2 by applying the change of variables (18)–(19) to

(25)–(26) and (27).

ζ1 =
1

2
[(aα0 + α1 cos ωt + β1 sin ωt)2 +

(A sin ωt + B)2] (31)

ζ2 = aα0 + α1 cos ωt + β1 sin ωt − a(A sin ωt + B)2 +

a(−A2 sin2 ωt + B2) + ζ20 (32)

Expanding these expressions in Fourier terms yields

ζ1 = ζ
(0)
1 + ζ

(11)
1 cos ωt + ζ

(12)
1 sin ωt + ζ

(21)
1 cos 2ωt

+ζ
(22)
1 sin 2ωt (33)

ζ2 = ζ
(0)
2 + ζ

(11)
2 cos ωt + ζ

(12)
2 sin ωt + ζ

(21)
2 cos 2ωt

+ζ
(22)
2 sin 2ωt. (34)

By equating (31)–(32) with (33)–(34) the following Fourier coefficients
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are obtained

ζ
(0)
1 =

2a2α2
0 + α2

1 + β2
1 + A2 + 2B2

4

ζ
(11)
1 = aα0α1

ζ
(12)
1 = aα0β1 + AB

ζ
(21)
1 =

α2
1 − β2

1 − A2

4

ζ
(22)
1 =

α1β1

2

ζ
(0)
2 = ζ20

ζ
(11)
2 = α1

ζ
(12)
2 = β1 − 2aAB

ζ
(21)
2 = aA2

ζ
(22)
2 = 0.

Assuming that the double frequency terms ζ
(21)
1 , ζ

(22)
1 , ζ

(21)
2 and ζ

(22)
2 can

be neglected, these expressions can be approximated by an ellipse in the

plane ζ1, ζ2 since (31)–(32) yields

ωζ
(11)
1 =−ζ

(12)
2 (35)

ωζ
(12)
1 = ζ

(11)
2 . (36)

The parameters of this ellipse are given by

ζ10 = ζ
(0)
1 (37)

ζ20 = ζ
(0)
2 (38)

µ = ω2((ζ
(11)
1 )2 + (ζ

(12)
1 )2). (39)
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3.3. Control Law for the Full Converter

In this section the previous control law is modified in order to take into

account the fact that the boost inverter is composed of two DC-DC converters

and, thus, it has two control signals. The model of the system is

L1
diL1

dt
=−u1v1 + Vin (40)

C1
dv1

dt
= u1iL1

− v1

R
+

v2

R
(41)

L2
diL2

dt
=−u2v2 + Vin (42)

C2
dv2

dt
= u2iL2

+
v1

R
− v2

R
. (43)

By comparing systems (40)–(43) and (3)–(4) there is a similar structure

for the pairs of current and voltage of both boost DC-DC converters. There-

fore, the two control laws are easily obtained. Control law u2 is obtained by

using symmetry. The control laws are

u1 =
1 + 2a2x2

2 − 3a2x2x4 + a2x2
4 + a2x2ẋ4

x2 + 2ax1x2 − ax4x1

+
k1Γ1(ζ2 − ζ20) + ω2(ζ1 − ζ10)

x2 + 2ax1x2 − ax4x1

, κ1(x) (44)

u2 =
1 + 2a2x2

4 − 3a2x2x4 + a2x2
2 + a2x4ẋ2

x4 + 2ax3x4 − ax2x3

+
k2Γ2(ζ4 − ζ40) + ω2(ζ3 − ζ30)

x4 + 2ax3x4 − ax2x3
, κ2(x), (45)

where

Γ1(ζ1, ζ2) = ω2(ζ1 − ζ10)
2 + (ζ2 − ζ20)

2 − µ (46)

Γ2(ζ3, ζ4) = ω2(ζ3 − ζ30)
2 + (ζ4 − ζ40)

2 − µ. (47)

The expressions for derivatives ẋ2 and ẋ4 are taken directly from the

normalized equations of the boost inverter.
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3.4. Simulation Results

The following simulations shows an industrial case. It is desired to obtain

an output voltage Vo = 220 2√
2
sin(100πt) from an input voltage Vin = 48V .

These simulations are obtained considering, R = 50Ω, L = 600µH , C =

600µF . The desired frequency and voltage amplitude are 50Hz and 220Vrms,

respectively.

Parameter A in Eqs. (25)–(26) has to be the half of the desired output

voltage amplitude and B is chosen so that x2 and x4 are always positive. In

order to obtain this voltage, the parameters are A = 3.33 and B = 5.42 with

ω = 0.188 in the normalized variables (x1, x2).

Figure 5 shows the results of a simulation using a commutation frequency

of 50KHz and employing a sample time of 0.1T s, where T is the commu-

tation frequency period. Both DC-DC converters achieve the desired limit

cycle.

Figure 6 shows the boost inverter output voltage. In this figure only the

steady state behavior is shown. It can be seen that the desired amplitude is

not achieved. The reason is that the previous design does not force the phase

shift between signals v1 and v2 to be in anti-phase. Figure 7 shows that, as

a result, this goal is not achieved. Thus, the system is extremely sensitive to

the initial values of the desired signals: x2 and x4. The next section deals

with this problem.

4. Synchronization Problem

The controllers developed above for boost inverters do not synchronize the

two parts of the circuit with a phase shift of 180◦ since each one independently

18
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Figure 7: Output voltages of the first (solid) and second (dashed) boost DC-DC converters.
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controls a DC-DC converter. Therefore, in the above design, the voltage

signal did not present the phase shift mentioned before. In order to get the

desired output voltage, it is necessary to synchronize these signals: one with

a phase shift of 180◦, and the other one with a phase shift of 0◦. In this

section, a phase controller (PC), inspired by the configuration of a Phase-

Lock Loop (PLL) (Hsieh and Hung, 1996)–(Abramovitch, 2002), is added.

The PC allows us to achieve the desired phase between the output of the two

DC-DC converters as well as the synchronization of the boost inverter output

with respect to a specified voltage signal, as in the case of synchronization

with the electrical grid.

4.1. Boost Inverter Synchronization

The objective is to synchronize voltage signals x2 and x4 in anti-phase.

The method is illustrated in Fig. 8. The normalized voltage of the second

DC-DC converter, x4, is taken as a reference signal and the normalized volt-

age of the first DC-DC converter, x2, is the signal to be synchronized with

x4 in anti-phase. These are the inputs to the PC. The output is a frequency

increment, which is added to the nominal frequency, ω, in the Control 1 block

and the resultant frequency is entered in (44). The output of the converter

is a sinusoidal signal of that resulting frequency.

The PC block diagram appears in Fig. 9. The multiplier obtains the

product, x′
2 × x′

4, in such way, (see Hsieh and Hung, 1996), that its output,

once filtered by a low pass filter (LPF), is a measure of the deviation of

the phase shift with respect to 90◦. For this reason, one of the inputs of

the multiplier, e.g. x′
2, is obtained by passing voltage x2 through a high

pass filter (HPF) in order to eliminate its continuous component. Likewise,
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ControlControl ConverterConverter
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Figure 8: Block diagram of boost DC-AC converter with output voltages in anti-phase by

the PC.

x′
2

x′
4

−1
1
s

x2

x4

Kvd ∆ω

HPF

HPF

LPF×

Figure 9: Conceptual block diagram of the PC.

x′
4 is obtained after passing x4 through another HPF and then changing its

sign and integrating it. In this way, if x4 = B − A sin(ωt), then, x′
4 =

A
ω

sin
(

ωt − π
2

)

+ C. Constant C is eliminated by the LPF.

Note that at state-stable x2 = −x4 is forced by introducing the PC. For

simplicity the PC in the stability analysis is not included. A rigorous analysis

should take the PC into account.
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Simulation Results. The high pass filter applied is:

1.4s

s + ω
.

The LPF is a second order Butterworth filter (Ifeachor and Jervis, 2002):

1

(s + 0.008(
√

2
2
−

√
2

2
j))(s + 0.008(

√
2

2
+

√
2

2
j))

. (48)

The value of the PC gain is Kvd = 5 · 10−4.

The results of the PC application are shown in Fig. 10. Voltages v1 and

v2 in anti-phase. In Fig. 11 the boost inverter output voltage is represented.
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Figure 10: Output voltage of the first (solid) and second (dashed) boost DC-DC converters.

Figure 12 shows the ripple in the inductance currents, which is quite

acceptable.
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Figure 11: Output voltage with PC.
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Figure 12: Inductance currents.
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The output signal has a THD=0.22%. Figure 13 shows the signal spec-

trum of the signals v2 and v4. As can be seen, the harmonics of the funda-

mental frequency wave of the obtained output is quite satisfactory.

0 50 100 150 200 250
0

50

100

150

200

250

300

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 13: Output voltage signal spectrum.

This result justifies the first harmonic approximations carried out during

the design of the control law. Of course, this is only valid for the cho-

sen parameters and it does not prove the usefulness of the law in a general

sense. In fact, the approximation does not work when the circuit parame-

ters are not chosen adequately, but it is thought that, when the circuit is

designed properly (taking into account the voltage, current and power lev-

els), the approximations will yield good results. Note once more that these

approximations are common in the literature (Fossas et al., 2008; Fossas and

Olm-Miras, 2002).
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4.2. Synchronization with the electrical grid

In some applications, such as renewable energy plants, an inverter is nec-

essary to inject energy from production plants into the electrical grid. In this

case, the problem is synchronizing the voltage output with a pre-specified

signal.

In order to synchronize the boost inverter output signal with the electrical

grid, the normalized voltage signals of both DC-DC converters (x2, x4) are

treated with two PCs, as is shown in Fig. 14. x2 is synchronized with the

grid voltage using a phase shift of 180◦ by using PC1, whose structure is

shown in Fig. 15 and which is similar to the PC in Fig. 9. Signal x4 is

synchronized with the grid voltage using a zero phase shift by means of PC2

shown in Fig. 16. In this case, g′ = A
ω

sin
(

ωt − π
2

)

.

∆ω1 ∆ω2

u1 u2

R

ω

x2 x4

Grid

ControlControl ConverterConverter

PC1 PC2

1 1 22

Figure 14: Block diagram of boost DC-AC converter with output voltage synchronized

with the electrical grid.
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Figure 15: Conceptual block diagram of PC1.
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Figure 16: Conceptual block diagram of PC2.
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Simulation Results. The grid voltage is

Vgrid = 220
2√
2

sin(100πt) (49)

The values used in this simulation for the filter parameters and gain, Kvd,

are the same ones used previously.

The performance of the synchronization of the boost DC-AC converter

with the electrical supply voltage is represented in Fig.17.
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Figure 17: Electrical supply voltage (solid) and simulated output voltage synchronized

with PCs (dashed).

30



5. Adaptive Control

An adaptive law (or a load observer) is proposed to cope with load changes

and/or load uncertainties. This observer is designed based only on a one-

sided circuit, which contains enough information to make this parameter

observable. Therefore, the study of the full two-sided circuit is avoided due

to symmetry considerations.

The observer design problem for one-sided circuit (left part of the Fig. 2)

(10)-(11), can be rewritten compactly as:

ẋl = Ulxl + aDly + El (50)

ȧ = 0 (51)

y = x2 − x4 (52)

ym = Mxl (53)

with xl = [x1, x2]
T ; x4 can be considered as an input, and

Ul =





0 −u1

u1 0



 , Dl =





0

−1



 , El =





1

0



 , M = I2×2.

Note, that y ∈ R
1 and ym ∈ R

2.

Remark 1. In what follows, it is assumed that both voltage and current, i.e.

ym, are measurable, and thus accessible for control use

Remark 2. From Remark 1, note that xl and y are measurable variables.

Furthermore, from Remark 1 and 2, it is clear that if both voltage and

current are measurable, then it is evident the observability of system (50) does
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not depend on input, u1. It is clear that a direct analysis of observability of

the extended system, represented by x = (xl, a), is satisfied for y different

to 0. A phase controller can be designed such that the output y becomes

different to 0. Therefore, these measured and generated signals are such that

parameter a becomes observable. The stability of the closed loop scheme will

be guaranteed by using singular perturbation techniques.

5.1. Adaptation law

The proposed adaptation law is comprised of a state observer for one side

of the inverter boost, plus an adaptation law for parameter a.

From Eq. (53): K0(ym − ŷm) = K0(Mxl − Mx̂l) = K(xl − x̂l) where

K0, K ∈ R
2×2 are constant design matrix.

Therefore, the adaptation law has the following structure:

˙̂xl = Ulxl + âDly + El + K(xl − x̂l) (54)

˙̂a = β(xl, x̂l), (55)

where β(xl, x̂l) is the adaptation law to be designed, x̂l is the estimated state

of xl and â is the estimated value of a. From Remark 2, the real state

of xl and y can be used in Eq. (54). Note that even if xl is accessible,

the adaptation law designed here requires the additional (or extended) state

observer. This will become clear during the analysis of the error equation

system, as is shown below.

5.2. Error equation

Assume that a is a constant parameter (ȧ = 0) or that it changes slowly

(ȧ ≈ 0) and define the following error variables:

x̃l = xl − x̂l, ã = a − â, ˙̃a = − ˙̂a.
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Error equations are now derived from (50)–(53) together with (54)–(55)

˙̃xl =−Kx̃l + ãDly (56)

˙̃a =−β(xl, x̂l). (57)

Let K be of the form,

K = αI, α > 0

and P = I be the trivial solution of PKT + KP = −Q, with Q = 2αI.

Now, if

V = x̃T
l P x̃l +

ã2

γ
(58)

is introduced, it follows that

V̇ =−x̃T
l Qx̃l + 2ã

(

x̃T
l PDly +

˙̃a

γ

)

=−x̃T
l Qx̃l + 2ã

(

x̃T
l PDly −

˙̂a

γ

)

.

The adaptation law is now designed by canceling the terms in square brackets,

i.e.

˙̂a = γ(DT
l P x̃l)y. (59)

5.3. Stability properties

The observer and the adaptive law error equations are now fully defined.

These equations are:

˙̃xl =−Kx̃l + ãDly (60)

˙̃a =−γ(DT
l P x̃l)y. (61)
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The stability properties of these equations follow from the Lyapunov function,

V , defined above. Note that with choice (59) it follows that

V̇ = −x̃T
l Qx̃l

From standard Lyapunov arguments Khalil (2002), it follows that error vari-

ables x̃l and ã are bounded. In addition, according to the LaSalle invariant

principle, it is easy to conclude that x̃l → 0, which implies from (61) that

˙̃a → 0.

From (60), and from the property x̃l → 0, and ˙̃xl → 0, it is got

lim
t→∞

{ã(t)Dly(t)} = 0

Note that if y behaves as a sinusoidal, as is expected from the control problem

formulation, the unique asymptotic solution for ã, is ã = 0, as long as y 6≡
0, ∀t ≥ 0.

The following lemma summarizes the above results, assuming that y 6≡ 0

(the points where y ≡ 0 will be analyzed in the next section):

Lemma 1. Consider the open-loop system (50)–(53), and the observer (54)–

(55) with K = αI such that K is a solution for PKT + KP = −Q, then the

observer states have the following properties:

i) The estimated states x̂l, â are bounded.

ii) limt→∞ x̂l(t) = x(t).

iii) limt→∞ â(t) = a, if y(t) 6≡ 0, ∀t ≥ 0.
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6. Stability considerations of the full closed-loop system

In the previous section, the stability properties were presented for the

extended observer. These properties are independent of the evolution of the

system state variables. The stability of the complete system is analyzed in

this section.

The open-loop two-sided inverter (10)-(11) plus (42)-(43) normalized, can

be compactly rewritten as:

ẋ = U(u1, u2)x + aDy + E (62)

y = x2 − x4 (63)

with x = [x1, x2, x3, x4]
T , and

U =















0 −u1 0 0

u1 0 0 0

0 0 0 −u2

0 0 u2 0















, D =















0

−1

0

1















, E =















1

0

1

0















.

6.1. Tuned System

The tuned system is defined as the ideal closed-loop system controlled by

the tuned feedback laws u∗
1 = κ1(x, a∗) and u∗

2 = κ2(x, a∗) (from Eq. (44) and

(45), respectivaly), where a∗ is the exact value of a.

The tuned system given in (25)–(26) and (27) states

ẋ = U(u∗
1, u

∗
2)x + aDy + E (64)

= U(κ1(x, a∗), κ2(x, a∗))x + aDy + E (65)

, f(x) (66)
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and it achieves an asymptotically orbitally stable periodic solution, i.e.

x∗(t) = x∗(t + T ).

In Section 3, it was shown that functions Γ1 and Γ2 defined in (46)–(47)

tend to zero. They correspond to periodic sinusoidal solutions of period

T = 2π/ω. Consequently, y∗ = x∗
2 − x∗

4 is also sinusoidal.

6.2. Closed-loop system

In practice, the control laws that are effectively applied depend on the

estimation, â, of parameter a. This control laws are denoted as û1 = κ1(x, â)

and û2 = κ2(x, â), respectively. Note that these control laws depend on state

x and not on their estimations, x̂l, because state x is directly measured. The

role of x̂l is then just to make the design of the adaptation law for a possible.

The closed-loop equation resulting from the use of û1 = κ1(x, â), û2 =

κ2(x, â), u∗
1 = κ1(x, a∗) and u∗

2 = κ2(x, a∗) is written as

ẋ = U(û1, û2)x + aDy + E + U(u∗
1, u

∗
2)x − U(u∗

1, u
∗
2)x (67)

= f(x) + [U(û1, û2) − U(u∗
1, u

∗
2)]x, (68)

Let us assume that â ∈ [âm, âM ] and denote ã = a∗ − â. Applying mean-

value theorem (Khalil, 2002) yields

U(u∗) − U(û) = T (x)ã,

being

T (x) ,





I
∂u1

∂a
|a=ˆ̄a 0

0 I
∂u2

∂a
|a=ˆ̄a



 ,
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where, ˆ̄a takes any value belonging to the interval A , [min{a∗, âm}, max{a∗, âM}],
and

I ,





0−1

1 0



 .

In view of the discussion above, this term has the following property:

Property 1. Let M = {(x, ã) : ||x−x∗|| ≤ ǫx, |ã| ≤ ǫa} be a compact domain

that includes the asymptotic periodic solutions from the tuned system and

the exact value of a e.i. a∗. Then, T (x)ã has ∀(x, ã) ∈ M, the following

properties:

i) it is continuous, analytic, and free of singularities

ii) limã→0 T (x)ã = 0.

Putting (68) together with the observer error system yields the complete

set of closed-loop equations, with y = y(x)

ẋ = f(x) − T (x)ãx (69)

˙̃xl =−αx̃l + ãDly (70)

˙̃a =−γ(DT
l P x̃l)y, (71)

where K = αI. The stability consideration discussed here will be based on

the time-scale separation. The main idea is that with the suitable choice of

gains (as discussed below), observer equation (70)-(71) can be seen as the

fast subsystem and equation (69) as the slow subsystem. Note again that

this time-scale separation should be enforced by a particular choice of the

observer and adaption gains α and γ.
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Note, that the manifold y(t) ≡ 0 has to be carefully analyzed since can

cause problems (e.g. in Eq. 59). An intuitive explanation about the right

system performance (as will be seen by simulation below) is the PC intro-

duction, see Section 4. The PC objective is to achieve x2 + x4 = 0, thus

avoiding y(t) = x2 − x4 = 0.

6.3. Singular perturbation form

To put the system above in the standard singular perturbation form, it

is necessary to follow the next steps:

• introduce ā = ã
α
,

• select γ = α2

• define ε = 1
α

With these considerations, it is obtained

ẋ = f(x) − T (x)āx

ε ˙̃xl =−x̃l + āDly,

ε ˙̄a =−(DT
l P x̃l)y,

where ε > 0 is the small parameter. Note that this particular selection of

gains imposes relative gains for the adaptation, γ, and defines precisely how

the observer gain is related to γ. If the target system (22)–(23) is divided

by ω2, then its ends up with a similar form to the fast variables equations

(70)-(71).
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Remark 3. The perturbed variable parameter, ε = ς(ã), and for a side ef-

fect, the adaptation gain, γ, must fulfill

ε ≪ min

{

1

ω
,
1

k

}

γ ≫ max
{

ω2, k2
}

.

These relationships with respect to the tuning parameter, k, and desired fre-

quency, ω, ensures the convergency of the observer and adaptation parameter,

a.

Letting z = [x̃l, ā]T yields the general form

ẋ = f(x) − T (x)āx (72)

εż = g(x, z) (73)

with x(t0) = x0, x ∈ R
4, z(t0) = z0, z ∈ R

3, and

g(z, x) =





−x̃l + āDly

−(DT
l P x̃l)y





According to the singular perturbation analysis, the next steps must be fol-

lowed:

1. Find a stationary solution of the fast subsystem (73) by finding the roots

of the equation g(x, z) = 0, i.e. z = φ(x).

2. Replace this solution in the slow subsystem (72), and find the resulting

slow system

ẋ = f(x) − T (x)φ(x)x.

3. Check the boundary layer properties of the fast subsystem along one

particular solution of ẋ = f(x) − T (x)φ(x)x.
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6.4. Slow sub-system

Proceeding with steps 1 and 2 above requires that the solution for the

algebraic equation for g(x, z) = 0, whose roots are calculated from, is found:

x̃l = āDly

0 =−āDT
l PDly

2.

Note that DT
l PDl = 2, and that the above equation has multiple solutions,

i.e

x̃l = 0

āy2(x) = 0

which means that if y ≡ 0, there is one solution for x̃l = 0, and infinite

solutions for ā. However, if y 6≡ 0, for instance, in the particular tuned

solution y∗ = A sin(ωt), then

z = φ(x) =





x̃l

ā



 = 0

becomes an isolated root. Thus, for this particular solution, and taking into

account that ā = a−â
α

= 0, i.e. â = a, the slow model is written as:

ẋ = f(x) − T (x) · 0 · x = f(x), (74)

which is nothing other than the tuned system whose solutions x(t) = x∗(t)

are sinusoidal.

6.5. Boundary layer fast subsystem

The next step is to evaluate the stability of the boundary layer system

in the finite time interval t ∈ [t0, t1]. This is obtained by evaluating the fast
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subsystem (73) along one particular solution of the quasi-steady-state xp(t),

and by re-scaling time t to the stretched time coordinates τ = (t−t0)/ε. The

fast subsystem (73) evaluated along this trajectory is

d

dτ
ˆ̃xl1 =−ˆ̃xl1

d

dτ
ˆ̃xl2 =−ˆ̃xl2 − ˆ̄ayp

d

dτ
ˆ̄a = ˆ̃xl2yp,

which can be rewritten as:

d

dτ
ẑ = J(yp)ẑ = J(τ, ω, ε)ẑ. (75)

with

J =











−1 0 0

0 −1−yp

0 yp 0











(76)

Under these conditions, system (75) is reduced to the autonomous linear

system
d

dτ
ẑ = J(τ, ω, 0)ẑ = J(yp0)ẑ. (77)

Consider the yp0
∈ Dx, with Dx , {x : |y| = |x2 − x4| > ǫ0}. The above

system has the following properties.

Property 2. The eigenvalues of J(yp), for [t, xp, z] ∈ [t0, t1] ×Dx ×R
3, are

all strictly negative, i.e.

λ1 =−1 (78)

λ2 = Re

{

−1 +
√

1 − 4yp
2

2

}

< 0 (79)

λ3 = Re

{

−1 −
√

1 − 4yp
2

2

}

< 0, (80)
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where ǫ0 > 0 is a constant.

Therefore J(yp) is Hurwitz in the considered domain. As a result, there

exists a matrix P (yp) = P (yp)
T > 0 and a Q(yp) > 0 such that the standard

Lyapunov equation holds:

P (yp)J(yp) + J(yp)
TP (yp) = −Q(yp).

From standard Lyapunov arguments, it follows that for all t ∈ [t0, t1],

||ẑ(t, ε)|| ≤ c1 exp

{

−λmin(Q(yp))

(

t − t0
ε

)}

.

Tikhonov’s theorem (see Khalil, 2002) can now be used to summarize the

previous result.

Theorem 1. There exists a positive constant ε∗ such that for all yp0
∈ Dx,

and 0 < ε < ε∗, the singular perturbation problem of (72)-(73) has a unique

solution, x(t, ε), z(t, ε) on [t0, t1], and

x(t, ε) − xp(t) = O(ε) (81)

z(t, ε) − ẑp(t/ε) = O(ε) (82)

hold uniformly for t ∈ [t0, t1], where ẑp(τ) is the solution of the boundary

layer model (77). Moreover, given any tb > t0, there is ε∗∗ ≤ ε∗ such that

z(t, ε) = O(ε)

holds uniformly for t ∈ [tb, t1] whenever, ε < ε∗∗.

In order to extend this result to an infinite time interval, it is necessary that

the boundary layer system is exponentially stable in a neighborhood of the
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tuned slow solution xp(t) for all t ≥ t0. This may not be a simple proof,

and it will be left for further investigation. Instead, the effectiveness of this

approach is shown below using simulation.

An intuitive yet not completely rigorous explanation for the resulting

good behavior in the infinite time interval can be given with the help of

Fig. 18. Notice that the Hurwitz nature of Jacobian (76) is only lost when

y = x2 − x4 = 0. Since the fast motion, z, evolves with almost constant

y (vertical lines in Fig. 18), y will not reach the value zero during this

motion provided that y is initially far enough from zero. Once the slow

manifold is reached, the slow variable will evolve in the domain z = 0. This

domain corresponds to the case when the adaptation mechanism has reached

its objective and parameter a is correctly estimated. In this domain y may

reach the value zero but, intuitively, it is assumed that the system, once the

adaptation law has reached the correct value, will present a behavior that is

similar to the known load case, whose stability is proved in Section 3.

6.6. Simulations

The inverter parameter values are the same as those in the known load

case given in the Section 3, where the load resistance was 50Ω and, therefore,

a = 0.01. The desired output is

Vo = 220
2√
2

sin(100πt).

At time t = 0s, the chosen value for the adaptation parameter is â = 0.001

(which corresponds to R0 = 500Ω, i.e. the relative error is 90%). Later, at

time t = 1.2s, a load variation is produced from R = 50Ω to R = 500Ω, so

parameter a is again equal to 0.01
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Figure 18: Evolution of two trajectories in the state subspace (x1, x2, ‖z‖). The last part

of the trajectory is in the plane ‖z‖ = 0.
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Once again, a commutation time of 50KHz is employed as is a sample

time of 0.1T s.

Figures 19 and 20 show the evolution of the output voltage and the volt-

ages of every boost DC-DC in t = 0s, respectively. Note that the circuit

tends to the desired behavior. During this period the adaptation mechanism

does not destabilize the system.

Figures 21 and 22 show the evolution of the output voltage and the volt-

ages of every boost DC-DC in t = 1.2s, respectively. Note that the circuit

achieves the desired behavior. The time scale is the real time scale before the

change of variable. Note that during this time, when the perturbation in the

resistance and, thus, the corresponding adaptation mechanism is activated,

the output signal does not undergo a significant variation.

The adaptation of parameter a is represented in Figs. 23 and 24 where

the load-change instants in the transition and steady-state are zoomed re-

spectively. Note that the adaptation is very fast relative to the time scale

of the system. In each of these graphs two evolutions are presented for two

different values of ε. Note the smaller ε is, the faster the adaptation is.

7. Conclusions

A control strategy for the nonlinear boost inverter was presented. The

method is based on energy-shaping methodology, which generates a limit

cycle without requiring external reference signals. The resulting controller

achieves the objective by adding a phase controller. The same idea is used

in order to solve the problem of grid electrical synchronization.

After these results, a common and important problem is dealt with in the
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Figure 19: Output voltage with the adaptation of an unknown load in t = 0s.
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Figure 20: Output voltages of the first (solid) and second (dashed) boost DC-DC converters

with the adaptation for an unknown load in t = 1.2s.
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Figure 21: Output voltage with the adaptation of an unknown load in t = 0s.
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Figure 22: Output voltages of the first (solid) and second (dashed) boost DC-DC converters

with the adaptation for an unknown load in t = 1.2s.
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Figure 23: Time-evolution of the fast variable ā with ε = 0.01 in a) and ε = 0.001 in b).

The perturbation is at t = 0s.
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Figure 24: Time-evolution of the fast variable ā with ε = 0.01 in c) and ε = 0.001 in d).

The perturbation is at t = 0.5s.
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field of electronics: the load is unknown. For that, an adaptive control for un-

known load is developed, which adapts the load very fast with respect to the

time evolution of the system. The method is based on using a state observer

on one-sided inverter and assuming that the state variables are measured.

The stability of the complete system is proved by putting the system in

the standard singular perturbation form; hence some relationship between

the adaptation gain, γ, the observer matrix parameter, α, and the perturbed

variable parameter, ε are achieved. Another important relationship between

the perturbed variable parameter, ε, and the system frequency, ω, is achieved

in the analysis of the boundary layer fast subsystem. Finally, the stability is

established by means of Tikhonov’s theorem (Khalil, 2002).

The assumption that voltage and current are measurable simplifies the

observation problem. No persistant signals are required to prove the stability

and the no noise is included in the measurable signals. As future work, an

extension of this development could be done assuming that only the currents

are measurable and including experimental results in order to validate all

assumptions established in the paper.
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Gómez-Estern, F., Aracil, J., and Gordillo, F. (2002). The Hopf bifurcation

and controlled oscillations in electromechanical systems. in Proc. Mediter-

ranean Conference on Control and Automation (MED).
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