
HAL Id: hal-00531724
https://hal.science/hal-00531724

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Carbon Dioxide in Montmorillonite Clay Hydrates:
Thermodynamics, Structure, and Transport from

Molecular Simulation
Alexandru Botan, Benjamin Rotenberg, Virginie Marry, Pierre Turq, Benoit

Noetinger

To cite this version:
Alexandru Botan, Benjamin Rotenberg, Virginie Marry, Pierre Turq, Benoit Noetinger. Carbon Diox-
ide in Montmorillonite Clay Hydrates: Thermodynamics, Structure, and Transport from Molecular
Simulation. Journal of Physical Chemistry C, 2010, 114 (35), pp.14962. �10.1021/jp1043305�. �hal-
00531724�

https://hal.science/hal-00531724
https://hal.archives-ouvertes.fr


Carbon dioxide in montmorillonite clay hydrates:

thermodynamics, structure and transport from

molecular simulation
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Abstract

We report a Monte Carlo and molecular dynamics simulations study of carbon dioxide

in hydrated sodium montmorillonite, including thermodynamical, structural and dynamical

properties. In order to simulate the behaviour of a clay caprock in contact with a CO2 reservoir,

we consider clays in equilibrium with H2O−CO2 mixtures under conditions close to relevant

ones for geological storage, namely a temperature T =348 K, and pressures P=25 and 125 bar,

and under which two bulk phases coexist: H2O-rich liquid on the one hand and CO2-rich gas

(P=25 bar) or supercritical fluid (P=125 bar) on the other hand. We first use grand-canonical

MC simulations to determine the number of stable states in clay, their composition and the

corresponding equilibrium interlayer distances. The vertical, horizontal and radial distribution

functions of the confined mixture, subsequently obtained using molecular dynamics, reveal

some structural feature induced by the presence of CO2. Finally, the simulations indicate that

carbon dioxide considerably influences the diffusion of mobile species in clays. We discuss

these results by comparing them with those obtained for the bulk mixtures, as well as for Na-

montmorillonite in equilibrium with a pure water reservoir water at the same temperature and

pressure.

Keywords: carbon dioxide storage, clay minerals, swelling, diffusion, Monte Carlo, molecular

dynamics.
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Introduction

Clay minerals are of great practical importance in soil science, groundwater hydrology, natural gas

and petroleum reservoir engineering, storage of carbon dioxide or toxic chemical and radioactive

waste. The role of a clay formation in gas or oil reservoirs is to trap the buoyant fluid in a lower

porous formation (often water-filled carbonates). In this context, the most important properties are

the low hydraulic permeability of the clay caprock and its ability to retain mobile species. Up to

now, the main focus in the literature on CO2 storage has been on the macrosopic two-phase flow

in the host formation, assuming that the integrity of the caprock will be preserved so as to prevent

the CO2 plume from leaking toward the surface. The physics of this transport is very rich, as the

introduction of CO2 perturbs the equilibrium between carbonate rocks and dissolved carbonate

ions, which may result in the rock dissolution, pore opening, carbonate reprecipitation, etc.1,2 The

interaction between the CO2 plume and the clay caprock is also a crucial issue. However, studies

on the microscopic scale are necessary to understand the complex interplay between pore size,

fluid composition in the pores, and transport of mobile species. Indeed, interactions on the molec-

ular level between water, CO2 and the clay surface determine how the pore size and composition

change when the buoyant bulk water/CO2 mixture reaches the clay cap-rock. A scenario that one

wants to avoid is the dehydration of clay particles induced by the presence of CO2, leading to

their shrinkage. The resulting fractures would then increase the permeability of the caprock, thus

reducing its ability to retain the fluid in the reservoir.3

These properties depend strongly not only on temperature and pressure, mainly controlled by

the burial depth, but also on the clay mineral composition, as was recently discussed by González Sánchez

et al.4 For example, the microscopic diffusion coefficient of water, as measured by Quasi-Elastic

Neutron scattering, is similar to that of bulk water in compacted kaolinite and pyrophillite (un-

charged clays), but considerably smaller in charged clays such as smectites and illites. While all

clay minerals are layered aluminosilicates, their structure depends on their charge (neutral or neg-

ative), as the latter also implies the presence of compensating counterions between layers. The

presence and nature of counterions is a key factor in determining how water and other molecules
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might penetrate into the interlayer space, a process generally accompanied by an increase in the

interlayer distance and thus known as clay swelling.5–7 Ab-initio simulations have shown that

hydration of clay surfaces is a function of the structure of the crystal lattice.8–10 Numerous clas-

sical molecular simulations and neutron scattering experiments have found strong dependence of

swelling and hydration of clay minerals on the interlayer cation size and charge.11–21 Such inter-

layer nanopores are absent in uncharged, non-swelling clays, and mobiles species such as water

are present only in larger pores between clay particles (stacks of clay layers).

Recently, much attention has been paid to the study of the adsorption of different molecules

and ions onto hydrated clay surfaces. These investigations are, in general, experimentally difficult

and may be supplemented by using molecular simulation. Molecular simulations have been used

to study the atomic-scale interactions between ions and clay surfaces, e.g. in the case of uranium

sorption22,23 or cation exchange.24,25 Adsorption is also possible in the case of methane26–29 and

carbon dioxide,30 for which stable hydrate complexes were observed experimentally in the pres-

ence of smectites under pressures as low as 10 bar and at temperatures as high as 300 K. Titiloye

and Skipper31–33 used molecular simulation to investigate the structure and dynamics for given

compositions of methane-water mixtures as interlayer species under pressure and temperature cor-

responding to reservoir conditions. They observed that an increase in pressure (in the reservoir)

or in size of the cations causes a larger swelling and an increase in the self-diffusion coefficient

for the methane molecules. Yang and Zhang also reported molecular dynamics simulations of the

structure and diffusion coefficient of carbon dioxide in dry, uncharged clay-like slit pores.34 Cole

et al. investigated the influence of pressure on the properties of dry supercritical CO2 in muscovite

nanopores, using molecular simulations and small-angle neutron scattering.35

However, the above-mentioned simulation studies were carried out at fixed number of molecules,

pressure and temperature (NPT ensemble) and do not provide information on the amount and com-

position of the interlayer water-gas mixture, which vary with burial depth and pore size.36,37 Since

it is the chemical potential of the adsorbing molecules (water, methane, carbon dioxide) that is

fixed by the reservoir, previous studies of the thermodynamics of clay swelling as a function of
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relative humidity have been performed using grand-canonical simulations, i.e. in the µH2OV T

ensemble.14,38 The mixture composition in clays differs from that of the bulk mixture under the

same conditions because the phase diagram is modified by the clay/fluid interactions. In order to

address this issue, Odriozola et al performed simulations in the µH2OµC2H6
PT ensemble to study

the behaviour of ethane in hydrated montmorillonite interlayers.39 This ensemble allows a direct

measurement of the water and ethane content in the clay in equilibrium with given reservoir con-

ditions. The ethane concentration observed in the simulations was very low and did not affect the

swelling. Since the solubility of carbon dioxide in water is higher than that of ethane and even

methane,30,40 one could expect a priori a stronger effect of CO2 on clay swelling.

In this paper we report a molecular simulation study of carbon dioxide in hydrated interlayers of

Na-montmorillonite for two reservoir conditions, with the same temperature T =348 K but different

pressures, namely P=25 and 125 bars. The equilibrium interlayer distance and composition are

first obtained from Monte Carlo simulations in the µH2OµCO2
V T ensemble, where the chemical

potentials for water and carbon dioxide correspond to bulk phase coexistence in the reservoir.

Molecular Dynamics simulations are then used to investigate the interlayer structure and dynamics.

Computational methods

General strategy

In order to simulate the behaviour of a clay caprock in contact with a CO2 reservoir, we consid-

ered a Na-montmorillonite clay in equilibrium with H2O−CO2 mixtures under two sets of P/T

conditions close to relevant ones for geological storage, and under which two bulk phases coexist:

H2O-rich liquid and CO2-rich gas at P=25 bar and T =348.15 K on the the one hand, H2O-rich

liquid and CO2-rich supercritical fluid at P=125 bar and T =348.15 K, on the other hand. To assess

the influence of CO2 on the thermodynamics, structure and dynamics of hydrated clay we also

considered Na-montmorillonite clay in equilibrium with pure water at P=125 bar and 348.15 K.

The grand canonical Monte Carlo method (µV T ensemble) provides an ideal computational
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tool for investigating the adsorption of molecules in porous materials.41,42 In the present work,

the clay interlayer exchanges both water and carbon dioxide molecules with reservoirs which set

their chemical potentials. The latter are fixed by the coexistence between the CO2 plume and the

liquid H2O which fills the clay pores (liquid-vapour equilibrium). In the case of the clay phase the

pressure has only normal component, therefore the external pressure is also considered as pressure

applied normal to the clay surface Papp. The equilibrium states of the system, characterized by

the interlayer distance z and their composition, correspond to the minimum of the swelling free

energy (F):11

∆F =−LxLy

∫ z

z0
[P(z′)−Papp]dz′, (1)

where Lx and Ly are the dimensions of the simulation box along x and y axes, respectively. P(z′) is

the pressure as a function of the interlayer distance z′.

GCMC simulations require the knowledge of the chemical potentials µH2O and µH2O in the

reservoirs. Numerous experimental and numerical works provides the data for pressure, tempera-

ture and composition of mixtures under reservoir conditions, but no data is available for the chem-

ical potential. However, the chemical potential can be estimated from these data in µV T ensemble

by running a series of simulations at fixed µH2O and µCO2
and choosing the ones which give the

right density and composition of the mixture for both coexisting bulk phases.

The equilibrium states are subsequently simulated using Molecular Dynamics to investigate

the interlayer structure and dynamics.

Model and methods

The model of clay used in the calculations is the sodium-saturated Wyoming-type montmorillonite

with unit formula43 Na+0.75[Si8](Al3.25Mg0.75)O20(OH)4.

The layered structure of the clay is simulated by two clay layers, using periodic boundary

conditions, as done previously e.g. in Refs. 11,14,43,44. One of the clay layers is situated in

the centre of the simulation box, while the other is divided in two half-layers located at the top
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and bottom of the box, as shown in Figure 1. Na+ cations, water and carbon dioxide molecules

are distributed in the interlayer spaces. Each clay layer consists of 8×4 clay unit cells, totalling

1280 atoms, and is treated as a rigid body. The water and carbon dioxide molecules are simulated

using the SPC45 and EPM246 models, respectively. The combination of these two models was

shown to correctly predict the phase behaviour of H2O−CO2 mixtures in the range of pressures

and temperatures considered in the present work.47

Pairwise additive Lennard-Jones and Coulomb potentials are used to model interactions be-

tween particles:

U(ri j) =ULJ +UC = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
+

qiq j

4πε0ri j
,

where ri j is the distance between sites i and j of different molecules, qi is the partial charge of the

site, σi j and εi j are LJ parameters deduced from the conventional Lorentz–Berthelot combining

rules.42 These parameters and charges can be found in references.44–46,48

Monte Carlo simulation in the grand canonical ensemble (µH2OµCO2
V T ) were performed using

configurational bias techniques (CBMC).14 The main idea is to divide the trial molecule insertion

into two insertion steps: first of the central atom (O for water and C for carbon dioxide), then of

other atoms (H or O). We generate k1 trial configurations for the first atom and select one with

probability p1 = exp(−β∆uLJ
1 )/W1, where β = 1/(kBT ), ∆uLJ

1 is the change in the LJ contribution

to the energy produced by the first atom insertion, W1 = ∑k1
j=1 exp(−β∆uLJ

1 ) is the Rosenbluth

factor. Then we generate k2 trial configurations for the other atoms. An orientation of the molecule

is selected with probability p2 calculated similarly to p1, but with ∆uLJ
2 the change in the LJ

contribution to the energy for all atoms of the molecule, except the central one. The same procedure

applies for the molecule’s removal, though in this case we generate only k-1 trial configuration,

since the kth one corresponds to the actual position which must be included in the set of trial

7



configurations. The acceptance probability for the insertion step reads:

PN→N+1
acc = min

(
1,

V
Λ3(N +1)

W1

k1

W2

k2
exp[β (µ −∆UC)]

)
,

and for the removal:

PN→N−1
acc = min

(
1,

Λ3N
V

k1

W1

k2

W2
exp[β (∆UC −µ)]

)
.

Here Λ is the de Broglie wavelength, V the volume of the simulation box, N the number of

molecules, µ the chemical potential, and ∆UC the change in electrostatic energy induced by

the molecule insertion (removal). This algorithm was applied for H2O and CO2 molecules with

kH2O
1 = kCO2

1 = 50, kH2O
2 = 25 and kCO2

2 = 50. The acceptance probability for the translation and

rotation steps is based on the standard Metropolis criterion.49

The simulations to estimate the chemical potentials from the density and composition of the

mixture were performed for both coexisting bulk phases separately in a cubic simulation box. The

box size was taken to correspond to 400-500 molecules of H2O and CO2 for each considered den-

sity. An approximate set of chemical potentials was first obtained by trying 50 (µH2O; µCO2
) pairs

in the range [-49:-42]×[-40:-34] kJ/mol. More precise values were then determined by dichotomy

(see next section for a discussion of sensitivity). In the case of the clay phase the simulation box

corresponds to a periodically replicated parallelepiped with angles adjustable on-the-fly, which al-

lows us to shift clay layers in the horizontal directions without destroying the structure. This is

necessary since the relative arrangement of the clay surfaces has been shown to depend on the in-

terlayer distance and content.13,48 The x-y dimensions of the simulation box are 41.44×35.88 Å2,

and values for z were taken in the range 24 to 35 Å, corresponding to interlayer distances from

12 to 17.5 Å. The spherical cutoff radius is equal to the half of the smallest box side. Long-range

electrostatic interactions were computed using Ewald summation.42 The system was equilibrated

for 2 · 107 steps and 2 · 107–5 · 107 additional steps were used for the calculation of the interlayer

composition and pressure.
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The pressure is calculated from the expression:

P = kBT
< Ntot >

V
− 1

LxLy

⟨(
δU
δ z

)⟩
. (2)

Here Ntot is the total number of interlayer molecules, δU the change in configurational energy

induced by an infinitesimal change δ z in the box size in the z direction (normal to clay layers). The

pressure was computed every 100 steps with ghost volume changes δ z taken randomly within the

range -0.01:0.01 Å. In the case of bulk phases one changes the volume along all directions.42

Molecular dynamics simulations were carried out in the canonical ensemble using the DLPOLY

software package.50 Initial configurations were taken from Monte Carlo simulations at the equilib-

rium distances,with the relative horizontal position of the clay surfaces fixed to the most probable

one (as determined from the Monte-Carlo simulations). The equations of motion were integrated

using a 1 fs time step and the SHAKE algorithm.51 The temperature was fixed using a Nosé-Hoover

thermostat. Configurations were sampled every 0.1 ps, and the production runs were 3.0 ns. Self-

diffusion coefficients along the clay surfaces were calculated using the two-dimensional Einstein

relation:

D∥ = lim
t→∞

⟨∆x(t)2 +∆y(t)2⟩
4t

, (3)

where < ∆x(t)2 > is the mean-square displacement of the particle in the x direction.

Results and discussion

Thermodynamics

Monte Carlo simulation in the µH2OµCO2
V T ensemble requires the knowledge of the chemical

potentials µH2O and µCO2
, which are fixed by the temperature T and pressure P in the reservoir.

Thus, we first determined the chemical potentials of water and carbon dioxide so as to obtain in

grand-canonical µH2OµCO2
V T density and composition of both bulk phases close to experimental

data52,53 and molecular simulations in the Gibbs ensemble.47 Both quantities are most sensitive to
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changes in the chemical potential of CO2. Depending on the bulk phase (H2O-rich or CO2-rich),

notable changes are observed either in the density or in the mole fraction. In the liquid H2O phase

a change of 0.25 kJ/mol in µCO2
leads to changes in mole fraction up to 20 % (in its absolute value)

and in density of only 1 %. For the CO2-rich phase such variations of µCO2
result in significant

density changes (up to 30 %) and negligible changes in the mole fraction (1 %). Changing µH2O by

0.25 kJ/mol leads to small changes in density or mole fraction (less 3 %). The retained values for

the chemical potential are shown in Table 1. The chemical potential for pure water at T =348.15 K

is found with the same approach to be -46.95 kJ/mol. These values were then used for three

different sets of GCMC simulations in Na-montmorillonite clay at 348.15 K, corresponding to

three different reservoir conditions: 1) pure water at 125 bar, which serves as a reference (before

injection of CO2), 2) CO2-H2O mixture at Papp=25 bar, and 3) CO2-H2O mixture at 125 bar. As

can be seen in Table 1, the composition of both phases (CO2-poor and CO2-rich) in the reservoir,

as well as the density of the CO2-rich phase (gas vs. supercritical fluid) are not the same at 25 and

125 bar.

Figure 2 shows how the pressure normal to the clay layers varies with the interlayer distance.

Each data point, indicated with a symbol, is taken from 1 to 5 independent simulations, while the

lines are guides to the eye. A quantitative difference is observed in the first pressure minimum.

This results in a larger free energy barrier for the transition from monolayer to bilayer state for

the mixture, as shown in Figure 3. We calculated the swelling free energy per unit area for each

chosen set of chemical potentials using Eq. (1). For each reservoir condition, there are only two

free energy minima points: The first one represents a monolayer state (a layer one molecule thick),

the second a bilayer (two molecular layers); all other intermediate states are unstable. They are

found for the mixture under 25 bar at 12.3 (monolayer) and 15.4 Å(bilayer), for the mixture under

125 bar at 12.3 and 15.5 Å, and for pure water at 125 bar at 12.4 and 15.3 Å. It should be noted

that there is no difference (within the error bars) between pure water and the mixture for bilayer

states, while the monolayer spacing is slightly larger for pure water. The bilayer state for all curves

is favored with a free energy much lower than that of the monolayer.
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The CO2 interlayer mole fraction for mixtures at 25 and 125 bar are presented in Figure 4. The

horizontal lines represent the CO2 mole fraction in the bulk H2O-rich phase. In contrast to the

reservoir (bulk), there is only one stable phase in the interlayer, with a CO2 mole fraction larger

in the clay phase than in the bulk one. We checked that these results do not depend on the initial

composition of the simulated system. From a more quantitative point of view, the monolayer for

pure water in the reservoir consists of 6.2 water molecules per sodium ion; for the mixture at

25 bar, 5.2 H2O and 0.6 CO2; and for the mixture at 125 bar, 4.9 H2O and 0.8 CO2. For the

bilayer under the same reservoir conditions we find 11.7 H2O per Na+, 11.6 H2O and 0.3 CO2,

and 11.4 H2O and 0.6 CO2, respectively. These data show that the total interlayer density increases

with pressure. It should be noted that the number of CO2 molecules is larger for the monolayer.

This observation persists despite very long simulation times and the use of temperature annealing,

and is not a simulation artefact. A similar feature was found for an ethane-water mixture in clay.39

Nevertheless the decrease in CO2 mole fraction from the monolayer to the bilayer mainly originates

from the increase in water molecules.

These equilibrium states determined by grand-canonical Monte-Carlo were then simulated us-

ing Molecular Dynamics to investigate the interlayer structure and dynamics. For these simula-

tions, the relative horizontal position of the clay surfaces was fixed to the most probable configu-

ration as determined during the MC simulations and will be discussed bellow.

Structure

Figure 5 displays the density profiles for water oxygen (OH2O) and hydrogen (HH2O), carbon diox-

ide oxygen (OCO2
) and carbon (C) and sodium (Na) atoms perpendicular to clay surface. The data

for the mixtures at 25 and 125 bar are very similar and we report only the results at 125 bar. The

profiles obtained in the mono- and bilayer cases are compared to the clay system with pure water

only. As can be seen from the figure, CO2 molecules hardly influence the distribution of other

atoms. The distance between the C peaks and the surface are almost the same in the mono- and

bilayer states. This indicates that C have a tendency to remain close to the clay surface, and is
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in line with the absence of increase in the number of interlayer CO2 from the monolayer to the

bilayer case. In the monolayer case, CO2 molecules are preferentially aligned parallel to the clay

surface. The situation changes slightly in the bilayer state, where the peaks of OCO2
atoms do not

coincide with that of C atoms. It means that CO2 molecules are neither parallel nor perpendicular

to the surface, despite the fact that contrary to the monolayer case there would be enough space to

accommodate a perpendicular orientation.

In order to clarify the situation, we plot in Figure 6 the x-y distributions for OCO2
and C atoms.

The oxygen atoms tend to arrange near the center of the clay hexagonal cavities, whereas C atoms

have a small tendency to stay close to Oclay atoms. In the bilayer state, one oxygen of the CO2

molecule enters in the hexagonal cavities, as can be inferred from the location in the x-y plane of

the oxygen atoms that are closest to the surface (|z| ∈ [2.0:4.5] Å see Figure 5). The projected

C-OCO2
distances (in the x-y plane) are different for monolayer and bilayer states, which is in

agreement with the density profiles: In the former case the distance is larger and corresponds to

CO2 parallel to the surface, while for the bilayer state CO2 molecule orientations are distributed

rather uniformly around the center of the cavity. These observations are in agreement with MD

simulations for carbon dioxide in dehydrated uncharged clays.34 This means that the charge of the

clay surface and the associated presence of counterions and water molecules does not seem to play

an important role in this case. Furthermore, horizontal movements of the clay layers, performed

using MC simulation, show that in the monolayer case CO2 molecules fully determine the position

of each layer with respect to the other, a feature observed with Sr2+ counterions.13 The preferred

position is shown in Figure 6, where the two clay layers are represented by blue and red-yellow

hexagons, respectively. Such an arrangement can be explained by the fact, that both oxygen atoms

of the same CO2 molecule tend to arrange near the center of the hexagonal cavity at the same time

(one per surface) as illustrated on Figure 6. Note that we have not found any preferred positions

for bilayer state. This means that CO2 molecules near one surface do not influence the position of

the second one, and is consistent with the entrance of the CO2 molecule in the hexagonal cavity.

The radial distribution functions (r.d.f.) for the Na-OH2O, Oclay-C and OH2O-C pairs for both
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interlayer spacings at P=125 bar are shown in Figure 7. Changes in the Na-OH2O r.d.f. due to the

presence of CO2 are very small. The first peak for OH2O-C is situated at 3.92 Åin both the clay

interlayer and in the bulk phase. The nearest-neighbour coordination number was calculated by

integrating over the first peak of the correlation function. C atoms are surrounded by approximately

the same number of oxygen atoms for both interlayer hydration state (15.9 for mono- and 16.7 for

bilayer, respectively). Interestingly, however, the nature of these atoms differ: There are 4.9 OH2O

and 11 Oclay around each carbon atom in the monolayer case, and 11 OH2O and 5.7 Oclay in the

bilayer case.

Transport

The transport properties of the interlayer fluid can be characterized by the self-diffusion coeffi-

cients of the species parallel to the clay surface (D∥). The trajectories obtained from molecular

dynamics simulation were analyzed and D∥ were calculated as the longtime limiting slope of mean

square displacements (MSD) versus time (see Eq. (3)). Table 2 reports the values of the diffu-

sion coefficients calculated from the MSD between 0.5 and 1.0 ns. The standard deviation was

calculated over four independent simulations. The experimental diffusion coefficients of H2O

given in Table 2 were obtained by collaborators in synthetic hectorite at T =347 K by neutron spin

echo.54 Although hectorite clay is different from montmorillonite, it has the same swelling prop-

erties and gives similar diffusion coefficients at ambient temperature.55 All data, given in the table

for comparison, correspond to P=1 bar. Diffusion coefficients generally decrease with an increase

in pressure.56 This means that the ratio of our simulations over the corresponding experimental

data for bulk phase, which is already equal to ∼1.4, should probably be higher if we compared

with experimental data at higher pressures (see Table 3). This discrepancy can be traced back to

the inaccuracy of the SPC model for describing the dynamical properties of water.57 Nevertheless,

we can estimate the influence of CO2 on the diffusion of interlayer species by analyzing the ratio

D∥/Dbulk, where Dbulk are the values of D simulated in the bulk solution. This allows to compare

with the previous studies of H2O-clay systems.58 In the absence of CO2, we find that D∥/Dbulk for

13



water and counterions are smaller than in Ref. 58, both in the mono- and bilayer cases, as expected

for the higher pressure investigated in the present work.

The results given in Table 2 indicate that the presence of carbon dioxide molecules reduces

the mobility of interlayer H2O and Na+. To reach this conclusion, one must separate the effect

of confinement by the clay layers, which can be deduced from the simulations in the absence of

CO2. This confinement results in a decrease of the diffusion coefficient, relative to the bulk, by a

factor ∼ 2 in the bilayer and ∼ 10 in the monolayer cases, respectively. These values are consistent

with the experimental data at 347 K (see Table 2). In the presence of CO2, this reduction is even

more dramatic, with a factor of ∼3 for the bilayer, and ∼25 for the monolayer. Thus, the diffusion

of H2O and Na+ in the presence of CO2 for the monolayer is about 2.5 times smaller than in the

absence of CO2 and only 1.5 times for the bilayer. Since the CO2 content is higher in the former

case (see Figure 4), we conclude that the more CO2 molecules in the interlayer, the smaller the

diffusion coefficient of all species. Such a behaviour is of course not unexpected, as crowding by

bulky molecules such as CO2 hinders the diffusion of other species. Finally, it is worth noting

that the smallest D∥/Dbulk ratios are obtained for the CO2 molecules themselves. This can be

explained by the apparently stronger interactions of these molecules with the surface, reflected

in the molecular profiles discussed in section Structure. Such a behaviour is reminiscent of the

observed difference between isovalent cations, for which it has been observed that larger ions

(e.g. Cs+ compared to Na+) tend to remain closer to the surface than smaller ones, and that their

diffusion in the interlayer is more reduced compared to the bulk.59

Conclusion

We used grand-canonical Monte Carlo and Molecular Dynamics simulations to study the Na-

montmorillonite hydrates in equilibrium with carbon dioxide rich reservoirs. From the µV T study,

we determined H2O and CO2 contents as a function of the interlayer distances. These results show

that the hydrated clay system is capable of adsorbing CO2 molecules. The swelling free energy
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curves indicate that for the considered conditions neither swelling nor shrinkage should be ob-

served. For monohydrated systems containing carbon dioxide, CO2 molecules lie in the center of

interlayers, parallel to the clay surface, and they stabilize a particular position of the clay surfaces

relative to each other. For the bilayer, which contains more water molecules but no additional

carbon dioxide, the linear O=C=O molecules are located close to the clay surface with one O atom

above the center of hexagonal cavities and slightly tilted relative to the surface. The presence of

interlayer CO2 inhibits the diffusion of all the mobile species.

In the future, we will investigate how much the results depend on the force field and describe

the system, using e.g. the CLAYFF force field.60,61 Another interesting aspect is the effect of the

reservoir composition, taking into account the presence of salt and dissolved HCO−
3 and CO2−

3

ions. We are also investigating large (interparticle) pores to clarify the crossover between the

surface dominated regime in the interlayer, where only the water-rich phase was found to be stable

to the bulk regime where two phases coexist.
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Figure 1: Schematic representation of the simulation box.

Figure 2: Pressure as a function of the interlayer distance at T = 348.15 K. The black solid, red
dashed and blue dashed-dotted lines are interpolations of the data points for reservoir conditions
corresponding to the mixture at 25, 125 bar and pure water at 125 bar, respectively.

Figure 3: Clay swelling free energy per unit area plotted as a function of the interlayer distance.

Figure 4: CO2 mole fraction plotted as a function of interlayer distance for Na+- montmorillonite
at T =348.15 K. The horizontal lines indicate the CO2 mole fraction in the bulk H2O-rich phase.
The grey stripes visualize the location of the stable states.

Figure 5: Density profiles of the C, O, H and Na atoms for the mixture (first column) and pure water
(second column) at P=125 bar, T =348.15 K. The first and second rows correspond the monolayer
and bilayer states, respectively. The vertical dashed lines represent the clay surface oxygen atoms.

Figure 6: Distribution of OCO2
(left) and C(right) atoms parallel to the clay surface. Light regimes

correspond to high density. The first and second rows correspond the monolayer and bilayer states,
respectively. In the monolayer case, a typical configuration of the CO2 molecule is indicated. In
the bilayer case, results for OCO2

correspond only to the atom closest to the surface (|z| ∈[2.0:4.5]
Å see Figure 5). Results are given for one unit cell with dimensions a× b = 5.18 × 8.97 Å2 .
Oxygen surface atoms are indicated for one clay surface by red circles, silicon atoms by yellow
circles. The location of the second surface is indicated by the blue hexagons.

Figure 7: Radial distribution functions. Results are compared to a bulk ionic solution for Na-H2O,
and to the bulk CO2-poor liquid for OH2O-C.
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